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WEIGHTED COMPOSITION OPERATORS FROM
WEIGHTED-TYPE SPACES TO ZYGMUND-TYPE SPACES

XIANGLING ZHU

(Communicated by S. Stevic)

Abstract. Some criteria for the boundedness and the compactness of weighted composition op-
erators from weighted-type spaces into Zygmund-type spaces are given in this paper. Moreover,
we give some estimates for the essential norm of these operators.

1. Introduction

Let D be the open unit disk in the complex plane C and H(D) be the space
of analytic functions on D. An analytic self-map ¢ of D induces the composition
operator Cyp, defined by Cypf = fo¢ for f € H(D). Let u € H(D). The weighted
composition operator, denoted by uCy, is defined by

Cof)(z) =u(2)f(@(2), feH(D), zeD.

There has been a great interest in studying the operator on various domains, see, e.g.,
[2,3,4,6,7,8,10, 12, 15, 16, 17, 18, 22, 26, 27, 28, 32] and the related references
therein.

Let H* be the space of bounded analytic functions. The Bloch space, denoted by
2, is the space of all f € H(ID) such that

1

2 = sup(1—[z*)[f'(2)] <.
z€eD

See [35] for more information on the Bloch space.
Let o > 0. The weighted-type space, denoted by H, , is the space of all f € H(DD)
for which

£l = sup(1 —[2[)* | f(2)] < ee.
z€eD

It is easy to check that H;; is a Banach space with the norm || - ||zz. Composition
operators, weighted composition operators and related concrete operators from or into
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weighted-type spaces and their generalizations have been studied a lot, see, for example,
[3, 15,17, 18,19, 22, 23,25, 29, 32, 36]. For the case of the upper half-plane, see, for
example, [26, 27]. On these and related operators from or into the Bloch-type spaces,
see, for example, [4, 6,7, 8,9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 24, 25, 31, 32,
34, 36, 37] and the references therein.

We say that a function v: D — R is a weight, if v is a continuous, strictly positive
and bounded function. The general weighted-type space, denoted by H,”, is the space
consisting of all f € H(ID) such that

I1£1lv = supv(z)| f(z)] < .
z€eD

H;® is a Banach space under the norm || - ||,. The weight v is called radial if v(z) =
v(|z|) for all z € D. The associated weight v of v is defined by

v=(sup{|f(2)] : f € B [If |, < 1}) ',z €D.

When v =v4(z) = (1 — |2]*)%(0 < & < o), it is well-known that v, (z) = v(z). In this
case, we denote H;” by H;’; , which is in fact Hg; .

For 0 < B < o, the Zygmund-type space, denoted by % B, is the space of all
f € H(D) such that

1

o8 =1f0)|+f(0)] +sgg(1 —ZPIf" @) < oo

2P is a Banach space with the above norm. When =1, 2! = 2 is the classical
Zygmund space. See [1, 5] for more information on the Zygmund space on the unit
disk. Composition operators, weighted composition operators and related operators on
Zygmund-type spaces and their generalizations, including n-dimensional ones, were
studied, for example, in [1, 2, 5,9, 10, 11, 20, 25, 33].

Madigan and Matheson studied the compactness of the operator C, : 8 — % in
[13]. In [14], Montes-Rodrieguez obtained the exact value for the essential norm of the
operator Cy : # — %, i.e.,

| (- 1:P)le )
Colle.pz =1lim sup —— 22
Il fim S T e@P)

Recall that the essential norm of a bounded linear operator 7 : X — Y is its distance to
the set of compact operators K mapping X into Y, that is,

| T||ex—y =inf{||T — K||x—y : K is compact},

where X,Y are Banach spaces and || - ||x—y is the operator norm. Tjani in [30] proved
that Cp : & — % is compact if and only if limy,_ [|Cyp (%) 2 = 0. Wulan, Zheng
and Zhu in [31] showed that Cy : 2 — 28 is compactif and only if lim;_...||¢/|| = 0.
In [34], Zhao showed that

e
1Colle.2—2 = EthUPH(P"H@-
n—oo
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The boundedness and compactness of the operator uCy : % — % were studied in [16],
while the essential norm of the operator uCy : % — % was studied in [4, 12].

Motivated by the above statements, in this paper, we completely characterize the
boundedness, compactness and the essential norm of the operator uC, from weighted-
type spaces to Zygmund-type spaces. In particular, we use three families of functions
and ¢/ to characterize the operator uCy : Hy — L

Throughout this paper, we say that A 5 B if there exists a constant C such that
A < CB. The symbol A ~ B means that A <B S A.

2. Main results and proofs

In this section we give our main results and proofs. For this purpose, we need two
lemmas as follows. The following lemma is well-known.

LEMMA 2.1. Assume that 0 < o < eo. Let n be a nonnegative integer and
f € Hy,. Then there is a positive constant C independent of f such that

1| g
(1 _ ‘Z|2)a+" :

F@)I<C

LEMMA 2.2. [4] For o >0, we have limy_.. k%251, = (2%)2.

e

LEMMA 2.3. [15] Let v and w be radial, non-increasing weights tending to zero
at the boundary of . Then the weighted composition operator uCy : H;" — H is
bounded if and only if

w(z)
sup ———

P Sl O <

LEMMA 2.4. [3] Let v and w be radial, non-increasing weights tending to zero
at the boundary of D. Then the weighted composition operator uCy : H — H} is
bounded if and only if

k
sup 140"
k=0 [Bd|®

Now we are in a position to give various characterizations for the boundedness of
the operator uC, : Hy — 2 B . Some of the methods and ideas in the following result
are closely related to those in [25], which was one of our motivations.

THEOREM 2.1. Let 0 < a,3 <, u € H(D) and ¢ be an analytic self-map of
D. Then the following statements are equivalent:
(a) The operator uCy : Hy — B is bounded.

b ue 2P, Q:=sup,p(l—[<*)Plu)le’'(2) <

M :=sup(1 — [2]*)P |24/ (2) ¢ (2) + u(2) 9" (2)| < o=,

z€eD

A:=maX{sugDHuC¢f<p IIJB,supllqu&p Hfﬁ,supllqu )l s } <o
we
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where
1 — |af? (1—la)? (1—a*)?
a — T — o1 a — T — o a — T — o2 D
[ (Z) (1 —EZ)O"H 8 (Z) (1 _az)a+2 (Z) (1 _az)a+3 aec
(©
(1—[z)Pu"(2)]
M| :=sup———— "7 <oo, (1
e (-TeP)
(1—1z)P |20/ () @' (2) + u(2) 9" (2)|
M, ;= sup < oo 2)
gl ¢ (1= ToG)P)H
and
(1= [z)Pluz)l¢’ @)
M3 :=su < oo, 3)
YT (- le@P)er
(d)
sup /129" ") 7 lyy < oo, sup a9y < o @
iz iz
and
supJ“”HMPQ(P’ g < oo (5)

j=1

Proof. (c) = (a). Suppose that (c) holds. For arbitrary z in D and f € Hy, by
Lemma 2.1 we have

(1= dPY | Co )" ()]
< (1— PP @ @) + (= PP (@) ) (@ ()]
1 PRI (0124 (' () + u(2)9" ()
(=PRI @l (1= PPREIPER, .
SCalemme T pgpjer M
(1= [P 2 () () + u(D) 0" (2)]
N (T
S (My 4 M+ M3)|| f| s - (6)
In addition, by Lemma 1.1,
WCo)(O)] = O (0(O)] < — XLy 7y )
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and

Clu'(0)] Clu(0)¢'(0)|
(1= lp(0)P) (1= lp(0)2)o+!

Taking the supremum in (6) over DD and then using the condition in (c) we see that
uCy : Hy — 2P is bounded.

(a) = (b). Assume uC, : Hy — 2P is bounded. Taking the functions 1, z, z?
and using the boundedness of uC, and the fact that |@(z)] < 1 we see that u € 2P,
Q < e and M < o. For each a € D, it is easy to check that f,,g4,h, € Hy . Moreover
| fulltg » ||galls and ||hal| g are bounded by 2%, 2%+2 and 2973 respectively. By
the boundedness of uC, : Hy — 2B, we get

|(uCp f)'(0)] < 1/l + 1/ 11z - ®)

1
Su%”uc(l’fq) w)ll s < luColl Supllfq, g <277 [uCol| < o,
we

2
supllqug(p s < HquHSHPH&p g <27 |uCy| < oo

and
sup [[uCoph ()|l 8 < 1UCol| SUp [| A [z < 2% [uCy || < oo,
wel wel

as desired.
(b) = (c). Suppose that u € 2B, 0, M, and A are finite. A calculation shows
that

n a’ n+1 —n
(n) . a
(X+] gu'(a) = O+ j)—— ©)]
,1_[1 | )a+n ( ) JI:I2( )(1 _ |a\2)°‘+"
and
n+2 —n
() N _ : a
hu (a)_ j:H?’(a+])(1_‘a|2)a+n' (10)

For the simplicity, we denoted 2u/(z)¢'(z) + u(z) 9" (z) by v(z). From (9) and (10), for
w €D, we have

M) = V) __viwelw)
N (O T L
w(w) (@' (W) o(w)”
o+ 1)(a+2) EJ_(“’(p((W);P‘)”LO? 7 (1
o) = W) __vwelw)
(ot ) = T o T T gtmp) e
, —
s 2) (a3 O 04T "

(1= lp(w)[2)>+e
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and
v(w)(w)
(1—lp(w)[2)+e

u(w)(¢' (W) 29(w)”
(= ()P

u//(w)
T lp(mpe @

+o+3)(ax+4)

(UCphg(y))" (W) =

From (11) and (12), we get

‘(“be¢W)

_ vwew)
= p(w)P) 7

From (11) and (13), we obtain

"(w) + (uCog o))" (w

—(UCqfpm)" (W) + (UCohg ()" (W)

__ 2(we(w) +(4a+10) u(w) (@' () p(w)
(1=lp(w)[2)t+e (1= lp(w)[?)>*e '

Multiplying (14) by 2, we get

=2(uCp o))" (W) +2(uCpg ()" (W)
2

__2me(w) +(4a+8)u(W)(¢’(W))2W
(1=lp(w)[2)!+e (I=lp(w)p)>re -

Subtracting (16) from (15), we obtain

2u(w)(¢/ (W) *9(w)”
(1= lp(w)[2)>e

= (uCq fpm)" (W) = 2(uCo8¢(w))" (W)
+(uC¢h¢(W))’/(w)7

which implies that

(L= [wP)P lu(w) (@' (w))*[l@(w)?
(1= lp(w)[2)>+e

1
< 5= WP [(uCo fioy)” W)+ (1 = WP (uCpgp))” (W)]
1
+§(1_|W|2)ﬁ|(ucfph(p( )" (w)]
1
< EH”Cqu(p ||jB+H”qug<p Hjﬁ+ H”qu ||;z’ﬁ
< 2A.

13)

(14)

15)

(16)

a7)

(18)
19)
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From (15) and (17), we obtain

v(w)p(w)

W = —(o+ 3)(uC¢fq,(w))”(w) + 2o+ 5)(qu,g¢,(W))”(w)

— (0t +2) (uCphg))" (W), (20)

which implies that

(1= WP (w)|lp(w)]
(I—[@(w)[|?)t+e
< (o4 3)(1= WP |UCy fo)" W) + 20+ 5) (1 = [w[*)P | (uCpgpmy)” (W)]
+Ha+2) (1= WP | (uCohgy )" (w)]
(o +3)uCp fo(u)ll 8 + (20 +5)[[uCog o) | 2 + (0t +2)[[uCohg | 28 (21)
(400 + 10)A. (22)

<
<

By (11), (17) and (20), we have

(UCphp))" (W), (23)
which implies that
(1= wP)B " w9 ()
= TowP)*

< 2O D@D (1 )| o))
(04 3)(1 = WP (uCpgpiuy)" ()
(1= )P (uCohg() )
)(o+4)

tox
S R
T+
)
+
[\®)

—_

o 24+ (a+

X

[uCo fow)ll 28 + (a4 1) (0 +3)[uCpgp(m)ll 28

uCohpw)ll 28 (24)
1)(cr+3))A. (25)

IS
+
+ o=
Q
_|_
D

< [142(a
Fix r€ (0,1). If |@(w)| > r, then from (25) we obtain

(1= [wl)P lu" ()| <!
(I=lemwP)* = r

[1+2(a+ 1) (0 +3)]A < oo, (26)
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On the other hand, if |@(w)| < r, we get

(1= w28 /()] )
T JomPeE < [T bl

From (26) and (27) we see that M is finite. Using similar arguments, by (19) and (22)
we can obtain that M, and M3 are finite as well.

(d) < (a). We have proved that uC, : Hy, — 2P is bounded if and only if (c)
holds. By Lemma 2.3, M, < o is equivalent to the weighted composition operator
u' o' +uep”)Cy : HY = — Hy? is bounded. By Lemma 2.4, this is equivalent to

Vo+1

1—[2)P " (2)] < eo. 7)

1(2u' 9" +up")p’ |1
sup — < oo,
j>1 (B |

M, < oo is equivalent to the operator u”Cy : Hy? — H is bounded. By Lemma 2.4,
this is equivalent to
i—1
a9l

izt 1177 g

M3 < oo is equivalent to the operator u(p’zC(p THY L, — H{j; is bounded. By Lemma

2.4, this is equivalent to
[ug e ="l

S P2 [N

By Lemma 2.2, we see that uCy : Hy — 2 B is bounded if and only if

: JCd o +ue”) o
su o+1 20 /—l—u "y ~j—1 ~ Su ' ' B < oo,
j>11)J IGue al Hvﬁ j>11) F 2 g

. ja””//(Pj_IHV

AT/ Bt ~ B
sup j“[lu" @’ |y, A sup — ——

>l | BT % v

and , I
: JO 2 ue" @7 |
sup j% 2 ||lugp @/, ~ sup — — < oo,
|| HVﬁ 1 ]O(Jr2||z] l||v0!+2

j=1

The proof is completed. [J

3. Essential norm of uCy : Hy — 2 B

In this section, we give some estimates of the essential norm for the operator uCy, :
H — 2B Hence, we first state some lemmas which will be used in the proofs of the
main results in this section.
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LEMMA 3.1. [30] Let X,Y be two Banach spaces of analytic functions on D.
Suppose that

(1) The point evaluation functionals on Y are continuous.

(2) The closed unit ball of X is a compact subset of X in the topology of uniform
convergence on compact sets.

(3) T:X —Y is continuous when X and Y are given the topology of uniform con-
vergence on compact sets.

Then, T is a compact operator if and only if given a bounded sequence {f,} in X such
that f, — O uniformly on compact sets, then the sequence {T f,} converges to zero in
the normof Y .

LEMMA 3.2. [15] Let v and w be radial, non-increasing weights tending to zero
at the boundary of D. Suppose uCy : H;" — H,; is bounded. Then

. w(z)
|uCylle.rz—mz = lim  sup =
¢ =17 ()5 V(9(2))

u(z)].

LEMMA 3.3. [3] Let v and w be radial, non-increasing weights tending to zero
at the boundary of D. Suppose uCy : H® — H, is bounded. Then

k
. u@”|l,
|uCp||e,st>—mz = limsup ” (i ”W
oo IZE

THEOREM 3.1. Let 0 < o, < oo, u € H(D) and @ be an analytic self-map of
D such that uCy : Hy — %P is bounded. Then

[uColl, gz . 5 A max {A,B,C} ~max {E,F,G},

where
: 1 —a? ) , ( (1—1al*)? )
A :=limsup||uCyp | ———— ,  B:=limsup|[uCy, | —————— ,
‘a‘—>lp ‘P((l—az)a+l o |a|—>1p P\ (T—a@)*2 ) || s
1—lal?)3 1— 12128
C — timsup||uc, <(_7“|a>+3> . Fi=limsup LR G
lal—1 (1-az) 2B o@)—1 (1—]0(2)]?)
_1-12\B / / "
E:zlimsup(l 297124 (2)p (5);?@)%0 ()]
0()|—1 (1—lo)P?)
and 2 ,
. /
6 i timsup (LI EII P

o@—1 (1= lo(z)?)*+?
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Proof. When |@|l.. < 1. It is easy to see that uCy : Hy — 2P is compact by
using Lemma 3.1. In this case, the asymptotic relations vacuously holds.
Now we consider the case ||¢||. = 1. First we prove that

max {A7B7C} < “uc¢“e7Ha°~>,@’ﬁ :

Let a € D. From the proof of Theorem 2.1, we see that f,,84,hq € Hy and fy,84,hq
converges to 0 uniformly on compact subsets of ID. Thus, for any compact operator
K:Hy — B by Lemma 3.1 we have

hm | K fall 5 lim ||Kga||4p =0, lim
|a[— la|—1 ’ |a[—1
Hence
||“C<p_KHHaHg'ﬁ = hlnllsuPH(”Cq) K) fall »s
a —?
> limsup ||uCy ful| 5p — limsup || K ful| 55 = A,
la|—1 ‘ la—1 ‘
H”Cgo K||H°°—>jﬁ 2 ll‘n‘lSUPH(”CqJ )gaHfZ’ﬁ
Ll—}
> thUPH”CQDgaHffﬁ —limsup ||Kga|| 5 = B
‘u‘%l ‘u‘%l
and

[uCo — K|y s 2 limsup || (uCop — K)hal|

la|—1
> limsup |[uCphq|| 5p — limsup || Khy|| 5p = C.
‘u‘%l a|~>l
Therefore, from the definition of the essential norm, we obtain

Next, let {z;} jen be a sequence in D such that |¢(z;)| — 1 as j — eo. Define

L-lp(z)*  2a+5 (1-|o(z)]*)

YO T T @3 e
Lo+ (1-lp@)P)’
a+3(1-g(z))et?
pie) = LTIOEIE | 2AakD(@+3) (1= lo)P)
T U =e(gn)ett 2+ (et D(at4) (1 g(z)z)e+?
L (e4)(atl) (1-|pE)P)

2+ (a+1)(a+4) (1-@(zj)z)*t3
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and

el (le)P? (- o))
L T e P R (e BT BT e RIS

Similarly, all k;,p; and g; belong to Hg and converges to 0 uniformly on compact
subsets of ID. Moreover,

1 9(z))]
043 (1=l(z))P)e+

ki(@(z) =0, ki(9(z)) =0, [Kj(@(z))| =
2 1
24 (a+ 1)(a+4) (1=|o(z))?)*

2|o(z;)?
(I—o(zj)?)er?

Then for any compact operator K : H; — Z B, by Lemma 3.1 we obtain

Pi(9(z) =0, pj(e(;)) =0, |pj(e(z))l=

qj(9(z)) =0, qj(0(z;)) =0, lgj(¢(z;)) =

[uCp = K gz . 2 limsup [[uC(k;) || op — limsup [[K(k;)]| 5

J*} JA}OO
- msap LBV )0 () + utz) 0" @)l ()
i (T—ToGIP) ™ |

[uCp — K| = p Z limsup |[uCy(p;)|| 5 —limsup ||K(p;)]| »
j—wo Jj—oo
> limsup (1- \Zjlz)ﬁlu’;(zj)\
e (L= lo(z)[)

and

[uCp = Kl gz . xp 2 limsup [|[uCo(g;)| 5 — limsup [[K(g;) || 5

j—wo J—eo
1—1z:]2)B N ()2 (2
> timsup L= P GO G)Ploy)
j (1=1lo(z))

From the definition of the essential norm, we obtain

\\”C¢\‘e,Hg_>yﬁ = ing”qu _K”Hg—»;fﬁ

(1= lziP)P 120 (2)) @' () +u(z) 9" (1) | @ (2))]
[
¢'(z

< limsup PG
ey (=P RO e

19(2)|—1 (I—|p(z)[>)t+e ’
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, , (L= 2P (z)]
|uColl, g, 5p = inf|[uCy — K| o, 5p 2 limsup : :
sz = B =Rl S B0 T o e

: (1= [z[»)P|u"(2)]
= limsup ———————— =
lp(z)|—1 (I—[o(2)[*)*

and
H”Cq)”eﬂg;ﬁfz’ﬁ = i%fHuC(p _K”H;H,@f’ﬁ
- tmsap (P )0/ C)Plo ()P
e (1= o(zj)|?)+?
_1512\B / 2
 imup LRI
wo—1 1= le@)])
Hence

HuC(P||e7Ha~>,Zﬁ NmaX{E FG}

Finally, we prove that
[uColl, gz 6 < max{A,B,C} and [[uCol|, = »p < max{E,F,G}.

For r € [0,1), set K, : H(D) — H(D) by (K.f)(z) = f+(z) = f(rz), fe€HD). It
is obvious that f, — f uniformly on compact subsets of D as r — 1. Moreover, the
operator K, is compact on Hy, and [|K;||g= gz < 1. Let {r;} C (0,1) be a sequence
such that rj — 1 as j — eo. Then for every positive integer j, the operator uCyKj,; :
Hy - % B is compact. By the definition of the essential norm, we get

[uColl, pr=— o8 < limsup[[uCy — uCo Ky || e, o5 (28)

J—roo
Therefore, we only need to prove that

limsup [[uCp — uCpKy, || e 55 < Max{A,B,C}

j —00
and

limsup [|[uCyp — uCoKy, ||y, 5 < max{E,F,G}.

Jj—ee
For any f € H such that || f| gz < 1, we consider

[(uCop —uCoKr;) f| 6
= [u(0)(¢(0)) = u(0)£(r;0(0))|
+Hu' (0)(f = £r,)(€(0)) + u(0)(f = fr,) (9(0)) ¢’ (0)]
Fllulf = fr)) 0 @l (29)
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here ||g]|+« = sup,cp (1 —[2I*)P[g" (2).
It is obvious that

lim [u(0)f(¢(0)) —u(0)f(r;@(0))[ =0

J—ree

and
}ilgolu’(o)(f—frj)(fp(())) +u(0)(f = £,) (9(0))¢'(0)| = 0.
Now, we consider

timsup|u-(f ~ f;,) 0 @]l

jee

<limsup sup  (1—[z)P|(f = ;) (9(2))]12 (2)9' (2) + u(2) " (2)]

J=e Jo(g)l<ry

+limsup sup (1= [P (f = f) (0(2)|12¢ (2)9' () + u(2) 9" (2)|

J=e o(@)|>rn

+limsup sup (1= )P (f = f,) (0 (2))]]u" (2)]

J=e Jo(g)<ry

+limsup sup (1— |Z|2)l3|(f—fr,-)((P(Z))||”H(Z)|

J=e lo(@)|>rn

+limsup sup (1= [2)P[(f — £,)" (9(2)llg' (2) *|u(2)

J=e o2y

+limsup sup (1= [2)P[(f = £,)" (9(2)llg' (2) *u(2)

J=e o3>y

=01+ 02+ 03+ 04+ 05+ Oe,

where N € N is large enough such that r; > % forall j > N,

01 :=limsup sup (1—[z)P|(f = 1,) (9(2))[[2' (2)9'(z) +u(2)9" (2)],

J=e lo(g)l<ry

0x:=limsup sup (1= [z)P|(f = £,) (9(2))[[2' (2)9'(z) +u(2)9" (2)],

J=e o(@)>rn

Qs :=limsup sup (1= |z)P|(f = £ ) (@)l (2)].

= o(2)|<ry

Qs :=limsup sup (1= |z)P|(f — /i) (@)l (2)].

= |o(2)|>ry
Qs :=limsup sup (1— \Z|2)ﬁ|(f—fr,)//(¢(z))|‘(P/(Z)|2|”(Z)|
J=e o(2)|<ry

and
Qs :=limsup sup (1—[z*)P|(f = )" (9(2))l|¢' (2)*[u(2)I-

J=e (2)[>rn
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Since uCy : Hy — 2 B is bounded, applying the operator uCy to 1,z and 7%, we obtain
(uCy1)"(z) = u"(2), (uCyz)"(2) = u"(2)p(z) +2u/ (2)'(2) + u(2) 9" (2) and
(uCo2?)"(2) = u" (2)9*(2) + 4 (2)9(2) ¢’ (2) +2u(2) 9 (2) 9" (2) +2u(2) 7 (2).
Thus u € 2B . Using the boundedness of ¢, we also get
Ji= sup(l = 2P 126 (2)9' (2) + u(2) 9" (2)] < o0
z

and J 1= sup,cp (1 — |212)B |’ (2)|*|u(z)| < o. Since rify;— [, as well as r?f,’; — [
uniformly on compact subsets of D as j — oo, we have

01 <Jilimsup sup |f'(w )—=rif (riw)| =0 (33)

J=ee wlsry
and
Qs < Jplimsup sup [f”(w) —rif" (rjw)| = 0. (34)

J=ee w|<ry
Similarly, from the fact that u € 2 B we have
< lul| yp limsup sup |f(w) — f(r;w)| = 0. (35)

J=ee wl<ry
Next we consider Q,. We have Q, < limsup j_m(Sl +5,), where
Si= sup (1= 2P 1 (@) 124 (0 () +u(2)9" @)
lo(z)[>ry
and
Sy:=sup (1—[z)Prilf (rie(2)]12¢ (2)9' (2) + u(2)9" (2)].
lo@)[>ry
First we estimate S . Using the fact that || f||g= < 1 and Lemma 2.1, we have
Si= s (=PI (9120 @9/ @) +u(2)g" )
lp()|[>ry
(1-loE))** ! (a+3) lp(2)]
[p(2)] (o +3)(1—[o(z)[H)**!
< Il sup 26/ (2)9'(2) + u(2) 9" ()I(1 = 2P| 9 (2)|
N o> (a+3)(1=]o(g)[) !
< sup 26/ (2)¢ (2) + u(2)9" (1) |(1 = [z*)P|9(2)]|
o>y (o +3)(1—[g(z))*H!
200+5 o+2

X

(36)

S s Co(fu— +
sup oGyl — 2D+ )
(2a+53)
< sup |[uCy (fa)Hiy)ﬁ‘i‘i( 1) sup |[uCy ga)’
la|>ry la|>rn

o+2
(o) op ool
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Taking limit as N — oo we obtain
limsupS; < limsup ||uCyp (fa)
j—soo |a|—

+limsup || Dl , (ha)

la]—1

o +li‘rI‘ISUPHMC(p (8a)|| 8
al—1

B
=A+B+C.
Similarly, we have limsup;_,.,$> < <A+ B+C, ie., we get that
0> SA+B+C<max{A,B,C}.

From (36), we see that

=E.

. - (1— 2P 124/ (2) ¢’ (z) + u(2) 9" (2)|
limsup S < limsu
j_mp e Iw(z)\ali (1=]o(z)[?)'*

Similarly we have limsup;_,., $> < E. Therefore
A SE.

Next we consider Q4. We have Q4 < 11msupj_m(S3 +S4), where
Syi= sup (1—[z)P|f(0(2))l[u" (2)|
lo(z)|>rn

and

Sy = L (1 =1PP o)l ().
o(z)|>rN

After a calculation, we have

S;=sup (1= z)PIf(o()lu"(2)]

(1-le@P)*@2+ (a+ )(a+4)

9@)>ry 2

2 1
"2 (a+ D(at4) (1-pRP)
2 (1— |z2)P " (2)]
Sl s e et d) (- le@P)e
- 2 (1= 2Pl (2)]
o 2+ @+ D(a+4) (1—|9@P)"
2(+1)(ax+3)
= e Ul 25 @ ey 2 o el
(aa+1)(a+2)
24 (a+1)(o+4)

S sup [luCy (1)

~

sup ||uCy (ha)

la|>rn

ot s Gy ()],

la|>rn aj>ry la|>rn

B

y8+ sup [[uCp (ha)]| g -
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Taking limit as N — oo we obtain

limsupS3 < limsup HuC(p (fa)||yﬁ +li‘rr‘1sup HuC(p (g,l)||yﬁ
al—1

jeo |a|—1
+ limsup Hqu (ha)
|a|~>l

=A+B+C.

B

Similarly, we have limsup;_,.,S4 <A+B+C,i.e., we get that
04 SA+B+CS max{A,B,C}.

From (39), we see that

1= 12128,
limsupS3 < limsup A=)l (@) =F.

e lp(z)|—1 (1—]o(2)[*)*
Similarly we have that limsup;_... S < F. Therefore
Q4 SF.

Finally we consider Qg. We have Qg < limsup j_>,,<,(S5 +S6), where

Ssi= sup (1—[zP)P I (9(2)]|¢ (2) P lu(z)]

lp@)[>rn

and

Sor= sup (1— PP RIf (ri0()]|0' Q) Plu).

lo(2)|>rn

After a calculation, we have

2P
Ss < \fllaz sup (1—122)P @' (2)|u(z
5 H ”Ha |(p(z)\ErN( ‘ | ) |§0( )| | ()|(1—‘(P(Z)|2)a+2
2|(z)
< sup (1= 2Pl (o) Plulz)| s ——
\q)(z)|I>)rN( ‘ | ) |§0( )| | ()|(1—‘(P(Z)|2)a+2
< sup [|uCy (fu—28a+ha)]| »p
la|>ry

S 310 ([lCo (o)l + 1o (80) L + 1o ) )

Taking limit as N — co we obtain

limsupSs < limsup Hqu, (fa)

J—eo la]—1
+limsup ||uCyp (ha)|
la|—1

=A+B+C.

&P +1i‘rr‘15upHqu, (ga)
al—1

ZB

(40)

(41)

(42)
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Similarly, we have limsup;_.., S¢ SA+B+C,i.e., we get that
Q¢ SA+B+C <max{A,B,C}. (43)

From (42), we see that

=G.

(1= 1zP)P 9’ (2) [u(z)]
limsup Ss < limsup
oo o lp(z)|—1 (1—]o(z)[>)+?

Similarly we have that limsup;_..S¢ < < G. Therefore
06 S G. (44)
Hence, by (29), (30), (31), (32), (33), (34), (35), (37), (40) and (43) we get

limsup [|uCy — uCoKy; || = _, 8

oo

= limsup sup |[(uCy —uCoKy,)f|| 48
J=e f g <t

= limsup sup |lu-(f—fy,) 0 @[l S max{A,B,C}. (45)

J=e g <t
Similarly, by (29), (30), (31), (32), (33), (34), (35), (38), (41) and (44) we get

limsup [|[uCp — uCoKy, || e, 5 S Max{E,F,G}. (46)

jeo
Therefore, by (28), (45) and (46), we obtain
[uColl, gz, 26 < max{A,B.C} and |[uCpl|, y, p S max{E,F,G}.

This completes the proof of Theorem 3.1. [

Next, we give another characterization for the essential norm of weighted compo-
sition operator uCy : Hy — 2P .

THEOREM 3.2. Let 0 < o, < oo, u € H(D) and @ be an analytic self-map of
D such that uCy : Hy — 2P is bounded. Then
||uC(P||e,Ha°4>.”X)ﬁ ~ max {NlaN27N3}7

where

Ny = limsup j**1 [ 2u'@" + ug") "],

j—

Ny = limmsup @7 [, N i=limsup 2 u(o/ /.

J—oe —}oc

Proof. From Theorem 2.1 we known that the boundedness of uCy : Hy — 2 B is
equivalent to the boundedness of the operators (2u'¢’ +u@”)Cy : Hy? —H;, u"Cy:

Va+1 v’
Hy, — Hy and u@Cy : HY,  — H .

V+2
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The upper estimate. By Lemmas 2.2, 3.2 and 3.3, we get

1(2u' 9" +up") '~ |1y

! ! 1 T
|(2u'¢" +ue )CKP“E,HS:’X+14>H% = limsup

je 1277 v

o Jd e ue”) ey,
= limsup AT

joe JHZ v

~ limsup /1|29’ +ug") 97y,

J—roo

" @ )y J (" @My
" . B : B
u'C He —H> = limsup ————— = limsu i1
e Colet g, = WnSp Ty, = = WSO e
~ limsup j [u” ¢/~ |,,

Jj—reo

and
100G Hmsupr’zwf‘lllvﬁ hmsupj“”\\urp’z(p"lllvﬁ
u olleH: ——HZ = — = = - —
g n Mg jmvon |2/ 1||Va+2 . JOr2|z 1||Vm+2
~ limsup /% [lug @/,
J—eo
It follows that

uColl, pr— 28 < 1120/ @" +u@")Co et

Vara g + Hu”Cq’ HE'H\% —Hy

s
+|ugp?Co|| e,

N
Vo+2

< max {N;,N2,Ns }.

&

The lower estimate. From Theorem 2.1, Lemmas 2.2, 3.2 and 3.3, we have

[uColl, prz— 28 2 E =29 +u@")Co i

Vor1 g

~ limsup |@u'g’ +up")o s,
jeo 127~ lver

~ lir'ns.upjo‘+1 12u' ¢’ +ug”) /! llvg

]

HMC§0||e7H§—>§Z’ﬁ ZF= H”//Cfp”eﬂ;jx—ﬂ% = limsup

~ limsup j*{|u" @’ |,,

J—oo
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and
lug@/ 1|,
>0 — 2 - - — 1 7 v "
||MC(P||e,H§—>fZ’ﬁNG 2% Cq)He.,HvaH—»HVB hrjyfgp 17 g
~ limsup j2||lug @/,
j~>oo
Therefore

||uC(P||e,Ha°4>.”X)ﬁ Z max {NlaN27N3}'

This completes the proof of this theorem. [

From Theorems 3.1 and 3.2, we immediately get the following characterization
for the compactness of uCy, : Hy — 2P

COROLLARY 3.1. Let 0 < o, 3 < oo, u € H(D) and ¢ be an analytic self-map
of D such that the operator uCy : Hy — 2 B is bounded, then the following conditions
are equivalent:

(a) The operator uCy : Hy — 2 B is compact.

(b)
limsup |[uCofo()ll 28 = limsup [[uCogp() |l 28 = limsup |[uCphg ) || 25 = 0.
lo(w)|—1 lo(w)|—1 lo(w)|—1

()

N o R o L T T ol
S T @R T 1 [pl) )
(- ERPREREE) @)

Rt (= lp@P)e

=0.

(d)

limsup j**|(24'¢" +ug") 9! lyy =0, limsup j*|[u” ¢’ [|,5 =0
j—wo j—>oo
and

limsup /%2 u(¢") ¢’ |y =0.

J—oo
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