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JACOBI NORMING MESHES

FEDERICO PIAZZON AND MARCO VIANELLO

(Communicated by T. Erdélyi)

Abstract. We prove by Bernstein inequality that Gauss-Jacobi(-Lobatto) nodes of suitable order
are L™ norming meshes for algebraic polynomials, in a wide range of Jacobi parameters. A
similar result holds for trigonometric polynomials on subintervals of the period, by a nonlinear
transformation of such nodes and Videnskii inequality.

1. Univariate L norming meshes

In this note we study L™ norming meshes for univariate function spaces, in partic-
ular Jacobi norming meshes for univariate algebraic polynomials, and for trigonometric
polynomials on subintervals of the period.

Given a sequence {S,} of finite dimensional spaces of real-valued (or complex-
valued) continuous functions on a compact interval [a,b], S, C C([a,b]), we term L*
norming mesh a sequence of sets X, C [a,b] such that

HpH[a,b] < C”p”Xn , VP ESn, (D

for some constant C > 0 (that we term “norming constant™), where || f||p denotes the
L~ norm of a bounded function f on a continuous or discrete set D. Since X, turns
out to be S, -determining (i.e., a function p € §,, vanishing there vanishes everywhere
in [a,b]), necessarily card(X,,) > dim(S,).

We begin with the following Lemma, whose elementary proof follows the lines of
[15] via Bernstein-like inequalities.

LEMMA 1. Let {S,} be a sequence of finite dimensional spaces of differentiable
Sfunctions defined in the compact interval [a,b]. Assume that for any p € S, and x €
(a,b) the following Bernstein-like inequality holds

P < 0u() [IPlljasy > Vx € (a.b) 2
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where ¢, € L' (a,b), and define

= /xq),,(s)ds. 3)

Let {é,—’g' ,i=1,...,N = Ny,} be a set of points such that a < & <& < ... <
Ey < b, andforaﬁxed o <(0,1)

max{Fn(§1)7F,,( )—Fu(&n), max5} o, 4)

where & = F,(§iv1) — Fu(&), i=1,...,N—1.
Then, X, = {éi(")}, n=1,2,..., is a norming mesh for S, on |a,b], such that

1
HpH[ab] g m HpHXn ’ vp S S" . (5)

Proof. Fix p €S, and x € [a,b], and let &; € X,,. By the fundamental theorem of
calculus and the Bernstein-like inequality
max{&x}
&I+ [ P lds

= |p(&)+ / p'(
Pl = ‘ min{&; x}
{&x}

<m@ﬂﬂmmﬂéué 0(s)ds

=mauwmmawéaaw

Now, F,(x) is a nondecreasing function with range [0, F,,(b)], and y, = F;(x) be-
longs to at least one (and at most two) of the (possibly degenerate) intervals [0, F,,(&;)],
[Fh(EN), En(B)], [Fu(&)  Fu(&it1)], 1 <i<N—1. Thus there exists an index i = i(x,n)
such that |y, — F, (§i(xn)) | < 0, from which we get

)] < [P(&iem) |+ OllPllap) < IPIlx, + Ol Pl ap) »
and hence (5). [

REMARK 1. We stress that the present formulation is more general than [15, Prop.
1]. In fact, there the range [0, F;,(b)] is partitioned by equally spaced points (including
the endpoints), whereas here the distribution of the points {F,(&;)} has only to satisfy
inequality (4) (and the endpoints are not necessarily included).

REMARK 2. In the case when

On(x) =n¢(x), ¢ €L!(a,b), (6)

which is relevant to polynomial and trigonometric spaces in view of the classical Bern-
stein and Videnskii inequalities (see the next subsections), we have

F) =nF(x), P = [ 9()ds, 9
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and condition (4) becomes

3| Q

max {F (&), F(6) - F(&). 5 max(F(&) - FE) < @)

1.1. Jacobi polynomial meshes

We focus now on norming meshes of Jacobi type for algebraic polynomials, namely
for S, = P, = span{1,x,x%,...,x"}. Let P]E]a,/i ) be the Jacobi orthogonal polynomial
of degree N, where o, 3 > —1, let %ﬁ,a’ﬁ ) be the N Gauss-Jacobi points (the zeros of

P]E]a,/i )), and let gi”](va’ﬁ ) be the N Gauss-Jacobi-Lobatto points (the zeros of Pls,oig )
together with the endpoints +1); cf., e.g., [14] and [12, §18].

PROPOSITION 1. The set sequence {%(ﬁf’ﬁ )}, n =1, is a polynomial mesh on
[—1,1], namely

m
<cC wp . Cl=—2 YpeP,, 9
Pl < Cillpllyes » Cr —n "PEE ©)

provided that m > v, where

1 B €[-33]
3
v=v(a,B) = max{o‘T”,ﬁ%},a>2,or0<a<%and Bl >3 (10)
max{%ﬁ’%ﬁ} 7[3>%, or 0<ﬁ<% and |o| > 1
Similarly, for the set sequence {%X(a’ﬁ)}, n > 1, we have that
m

n<C wp, OO =—7— VYpeP,, 11
1Pll-1.1 2\\17\\%351’1& 2= g PR (11)

provided that m > vrr /2.

REMARK 3. Observe that in Proposition 1 not all parameters o, 3 > —1 are cov-
ered. There is a small region of excluded nonpositive parameters, that is (¢, ) €
(—=1,—1/2)x (=1,0]U[—1/2,0] x (—1,—1/2), where precise quantitative bounds such
as (12), (13) and (14), were reported in [8] to be (and seem still to be) missing in the
literature.

Proof of Proposition 1. Let Oy;, i=1,...,N, denote the zeros of P,E,a’ﬁ)(cos(e))

with 0 <Oy <...<Oyn <7 (ie., g}&aﬁ) = {cos(6n,)}). There is a vast literature
on estimating the zeros of Jacobi polynomials, with bounds that are typically valid
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in (more or less) restricted ranges of parameters; cf., e.g., [0, 7, 8, 12, 14] with the

references therein. For o, 3 € [—%7 %] the classical inequality

(i—1/2)n< in .1
T 1A X , L=1,..
N+1/2 S M SN¥12

N (12)
holds, cf. [12, §18.16]. Now, by Bernstein polynomial inequality in (6) we have ¢(s) =

1/V1—s2, s € (a,b) = (—1,1), and F(x) =  — arccos(x) in (7). Setting Ey_iy1 =
cos(Oy;), i=1,...,N, and taking N = mn in (12), we can write the estimate

max {F(&1). F(1) - F(&). 5 max (F(G) - F(E)) )

1
= max {ﬂ— Onn, Oni, 5 max (Oy i1 — ON,i)}

/2 T 3n/4 T T T
< max , , - <=
N+1/2"N+1/2"'N+1/2 N+1/2 N mn

and thus by (8) and Lemma 1 we get (9) provided that 6 = /m < 1.
On the other hand, for o« > 0, B > —1 the estimate

(i—l—i:a/Z)n <6y, < (i—l—Of/Z)n

i=1,....N 13
N 5 N y 1 ) ) ) ( )

where N =N+ (oc+ 3 +1)/2, was obtained in [8, Lemma 4.1], along with

(i+(a—1)/2)m (i+(a+1)/2)m

<Oy < L i=1,....N, (14)
which is valid for & > —1, B > 0. Thenfor o« > 1/2,0or 0 < ¢ < 1/2 and || > 1/2,
and N = mn, we get

max {ﬂ:— 9N7N7 ON,I s % miax(GNJH — ONJ)} < T max { %, aZ——;ZULV}
{[3+3 a+2} vk vVm vE
=Tmaxy —=, = (= = <—F/=—,
2N 2N N N mn
from which (9) follows, provided that 6 = vt /m < 1. A chain of estimates of the same
kind gives the third instance in (10) when > 1/2,0or 0 < 3 <1/2 and || > 1/2,in
view of (14).

The proof in the case of the Gauss-Jacobi-Lobatto points is similar since the same
zeros are involved, with the difference that the interval endpoints belong to the family,
so that F(&)=0=F(1) — F(&um+2) and hence a factor 1/2 appears in the final
estimate, which gives the condition o = vzr/(2m) < 1 when applying Lemma 1. O

REMARK 4. The fact that n+ 1 Gauss-Jacobi(-Lobatto) points form good inter-
polation meshes (i.e., have a slowly increasing Lebesgue constant A;,) is a well-known
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result by Szego (cf., e.g., [11]), who showed that A, = &(logn) for —1 < o, < 1/2
and A, = O(n"*'/2), y = max(a,B), otherwise. Clearly, the polynomial inequal-

ity [[pll=1,1) < Gullpllx,» Co = An, holds for every p € Py, with X, = %n(i’lﬁ) or

X, =92 ,(qifs ). Here we have shown that, for the displayed ranges of a,f3, a suit-
able number of Gauss-Jacobi(-Lobatto) points gives instead a polynomial inequality
with C, =C.

Indeed, estimate (11) was already obtained by Bernstein inequality in [15] in the
special case o = 8 = —1/2 (the Chebyshev-Lobatto points of the first kind). As
recalled there, in this instance there is a slightly tighter classical estimate by Ehlich
and Zeller [5] (see also [2]). On the other hand, even though they are not fully tight,
the present estimates (9)—(11) hold for a wide range of parameters o, 3, that includes
all nonnegative couples, for example the ultraspherical instances of Gauss-Legendre(-
Lobatto) points (o« = = 0), and Chebyshev(-Lobatto) points of the second kind

(=P =1/2).

1.2. Jacobi trigonometric meshes

“Subperiodic” trigonometric approximation, that is approximation by trigonomet-
ric polynomials on subintervals of the period, has received some attention recently,
especially for its connections with multivariate polynomial approximation and cuba-
ture on domains defined by circular arcs, such as sections of disk, sphere, torus; cf.,
e.g., [3, 4, 10, 13] and the references therein.

In the subperiodic setting, L™ norming meshes for trigonometric polynomials have
been studied for example in [9, 15]. Here, with reference to Lemma 1 we have that

Sy = Tu([— 0, w]) = span{1,cos(u),sin(u),...,cos(nu),sin(nu), u € [—0, 0]},

the space of trigonometric polynomials of degree not exceeding n restricted to an an-
gular interval [—®,®] with 0 < @ < . The role of (2) is played by the following
Videnskii inequality, valid for any 7 € T, ([— o, ©])

7' ()] <

V/1—cos?(®/2)/cos?(u/2)

cf. [1, E.19, p. 243]. Moreover, we shall resort to the following nonlinear transformation
T7:[-1,1] = [-0,0],

T(x) = 2arcsin <sin <§> x) , xe[-1,1], (16)

that plays a key role in the theory of subperiodic interpolation and quadrature, cf. [3, 4].
We are now ready to state and prove the following

||ZH[—0),0)] S (—(D,(D) ) (15)

PROPOSITION 2. Let v = v(o,f3) be defined as in (10), and the transformation
T as in (16). Then, the set sequences {T <54,,(1?f’ﬁ)>} and {’L’ (%X%f%) }, n>1, are

norming meshes for trigonometric polynomials on [—®,®], 0 < ® < 7, namely

m
< __m _
1l w.0 < Ci Hl||1(%<fnxﬁﬁ))  Ci= o Vi E T ([~ 0, 0]), a7
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provided that m > 2vr, and

m

1]l [-0,0] < C2 Htllf(gj(aﬁ%) =", VieT([~0,0]), (18

mn-+ -
provided that m > VT.
Proof. By Videnskii inequality (15), in (7) we have

u 1
Flu) = /—a) VI—cos?(0/2)/cos?(v/2)

dv = ;+ arcsin (M) .

in(w/2)

Let Oy, i=1,...,N, denote the zeros of Pls,a’m(cos(e)) with0< Oy <...<Oyn <
7, and set

En—it1 = T(cos(Oy,;)) = 2arcsin (sin (%) cos(ON’i)> ,

i=1,...,N. Then
F (&) = m+ 2arcsin (cos(Oy y—i+1))

T
=n+2 (5 - arCCOS(COS(GN,N—i+1))> =2(m—6yn_i+1) ,
from which follow
F(é]) = 2(7’[ — ON,N) N F((D) — F(é}v) =2r— 2(7’[— GN,I) = 29]\/71 s

and
max {F(&i1—F(&)} = Zm;‘lX{GN,H-I — 0O}

The proof now proceeds like that of Proposition 1, taking into account a new factor
equal to 2 appearing in the estimates. [

We conclude by observing that, as already obtained in [15] for the T-image of the
Gauss-Chebyshev-Lobatto points (improving the estimates of [9]), the norming con-
stants C; and C; are independent of @.
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