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JACOBI NORMING MESHES

FEDERICO PIAZZON AND MARCO VIANELLO

(Communicated by T. Erdélyi)

Abstract. We prove by Bernstein inequality that Gauss-Jacobi(-Lobatto) nodes of suitable order
are L∞ norming meshes for algebraic polynomials, in a wide range of Jacobi parameters. A
similar result holds for trigonometric polynomials on subintervals of the period, by a nonlinear
transformation of such nodes and Videnskii inequality.

1. Univariate L∞ norming meshes

In this note we study L∞ norming meshes for univariate function spaces, in partic-
ular Jacobi norming meshes for univariate algebraic polynomials, and for trigonometric
polynomials on subintervals of the period.

Given a sequence {Sn} of finite dimensional spaces of real-valued (or complex-
valued) continuous functions on a compact interval [a,b] , Sn ⊂C([a,b]) , we term L∞

norming mesh a sequence of sets Xn ⊂ [a,b] such that

‖p‖[a,b] � C‖p‖Xn , ∀p ∈ Sn , (1)

for some constant C > 0 (that we term “norming constant”), where ‖ f‖D denotes the
L∞ norm of a bounded function f on a continuous or discrete set D . Since Xn turns
out to be Sn -determining (i.e., a function p ∈ Sn vanishing there vanishes everywhere
in [a,b]), necessarily card(Xn) � dim(Sn) .

We begin with the following Lemma, whose elementary proof follows the lines of
[15] via Bernstein-like inequalities.

LEMMA 1. Let {Sn} be a sequence of finite dimensional spaces of differentiable
functions defined in the compact interval [a,b] . Assume that for any p ∈ Sn and x ∈
(a,b) the following Bernstein-like inequality holds

|p′(x)| � φn(x)‖p‖[a,b] , ∀x ∈ (a,b) , (2)
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where φn ∈ L1
+(a,b) , and define

Fn(x) =
∫ x

a
φn(s)ds . (3)

Let {ξi = ξ (n)
i , i = 1, . . . ,N = Nn} be a set of points such that a � ξ1 < ξ2 < .. . <

ξN � b, and for a fixed σ ∈ (0,1)

max

{
Fn(ξ1) , Fn(b)−Fn(ξN) ,

1
2

max
i

δi

}
� σ , (4)

where δi = Fn(ξi+1)−Fn(ξi) , i = 1, . . . ,N−1 .

Then, Xn = {ξ (n)
i } , n = 1,2, . . . , is a norming mesh for Sn on [a,b] , such that

‖p‖[a,b] �
1

1−σ
‖p‖Xn , ∀p ∈ Sn . (5)

Proof. Fix p ∈ Sn and x ∈ [a,b] , and let ξi ∈ Xn . By the fundamental theorem of
calculus and the Bernstein-like inequality

|p(x)| =
∣∣∣∣p(ξi)+

∫ x

ξi

p′(s)ds

∣∣∣∣ � |p(ξi)|+
∫ max{ξi,x}

min{ξi,x}
|p′(s)|ds

� |p(ξi)|+‖p‖[a,b]

∫ max{ξi,x}

min{ξi,x}
φn(s)ds

= |p(ξi)|+‖p‖[a,b] |Fn(x)−Fn(ξi)| .

Now, Fn(x) is a nondecreasing function with range [0,Fn(b)] , and yn = Fn(x) be-
longs to at least one (and at most two) of the (possibly degenerate) intervals [0,Fn(ξ1)] ,
[Fn(ξN),Fn(b)] , [Fn(ξi),Fn(ξi+1)] , 1 � i � N−1. Thus there exists an index i = i(x,n)
such that

∣∣yn−Fn
(
ξi(x,n)

)∣∣ � σ , from which we get

|p(x)| � |p(ξi(x,n))|+ σ‖p‖[a,b] � ‖p‖Xn + σ‖p‖[a,b] ,

and hence (5). �

REMARK 1. We stress that the present formulation is more general than [15, Prop.
1]. In fact, there the range [0,Fn(b)] is partitioned by equally spaced points (including
the endpoints), whereas here the distribution of the points {Fn(ξi)} has only to satisfy
inequality (4) (and the endpoints are not necessarily included).

REMARK 2. In the case when

φn(x) = nφ(x) , φ ∈ L1
+(a,b) , (6)

which is relevant to polynomial and trigonometric spaces in view of the classical Bern-
stein and Videnskii inequalities (see the next subsections), we have

Fn(x) = nF(x) , F(x) =
∫ x

a
φ(s)ds , (7)
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and condition (4) becomes

max

{
F(ξ1) , F(b)−F(ξN) ,

1
2

max
i

(F(ξi+1)−F(ξi))
}

� σ
n

. (8)

1.1. Jacobi polynomial meshes

We focus now on normingmeshes of Jacobi type for algebraic polynomials, namely

for Sn = Pn = span{1,x,x2, . . . ,xn} . Let P(α ,β )
N be the Jacobi orthogonal polynomial

of degree N , where α,β > −1, let G
(α ,β )
N be the N Gauss-Jacobi points (the zeros of

P(α ,β )
N ), and let G L

(α ,β )
N be the N Gauss-Jacobi-Lobatto points (the zeros of P(α ,β )

N−2
together with the endpoints ±1); cf., e.g., [14] and [12, §18].

PROPOSITION 1. The set sequence
{
G

(α ,β )
mn

}
, n � 1 , is a polynomial mesh on

[−1,1] , namely

‖p‖[−1,1] � C1 ‖p‖
G

(α,β)
mn

, C1 =
m

m−νπ
, ∀p ∈ Pn , (9)

provided that m > νπ , where

ν = ν(α,β ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 α,β ∈ [− 1
2 , 1

2

]

max
{

α+2
2 , β+3

2

}
, α > 1

2 , or 0 < α � 1
2 and |β | > 1

2

max
{

β+2
2 , α+3

2

}
, β > 1

2 , or 0 < β � 1
2 and |α| > 1

2

(10)

Similarly, for the set sequence
{

G L (α ,β )
}

, n � 1 , we have that

‖p‖[−1,1] � C2 ‖p‖
GL

(α,β)
mn+2

, C2 =
m

m−νπ/2
, ∀p ∈ Pn , (11)

provided that m > νπ/2 .

REMARK 3. Observe that in Proposition 1 not all parameters α,β > −1 are cov-
ered. There is a small region of excluded nonpositive parameters, that is (α,β ) ∈
(−1,−1/2)×(−1,0]∪[−1/2,0]×(−1,−1/2) ,where precise quantitative bounds such
as (12), (13) and (14), were reported in [8] to be (and seem still to be) missing in the
literature.

Proof of Proposition 1. Let θN,i , i = 1, . . . ,N , denote the zeros of P(α ,β )
N (cos(θ ))

with 0 < θN,1 < .. . < θN,N < π (i.e., G
(α ,β )
N = {cos(θN,i)} ). There is a vast literature

on estimating the zeros of Jacobi polynomials, with bounds that are typically valid
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in (more or less) restricted ranges of parameters; cf., e.g., [6, 7, 8, 12, 14] with the
references therein. For α,β ∈ [− 1

2 , 1
2 ] the classical inequality

(i−1/2)π
N +1/2

� θN,i � iπ
N +1/2

, i = 1, . . . ,N (12)

holds, cf. [12, §18.16]. Now, by Bernstein polynomial inequality in (6) we have φ(s) =
1/

√
1− s2 , s ∈ (a,b) = (−1,1) , and F(x) = π − arccos(x) in (7). Setting ξN−i+1 =

cos(θN,i) , i = 1, . . . ,N , and taking N = mn in (12), we can write the estimate

max

{
F(ξ1) , F(1)−F(ξN) ,

1
2

max
i

(F(ξi+1)−F(ξi))
}

= max

{
π −θN,N , θN,1 ,

1
2

max
i

(θN,i+1 −θN,i)
}

� max

{
π/2

N +1/2
,

π
N +1/2

,
3π/4

N +1/2

}
=

π
N +1/2

<
π
N

=
π
mn

,

and thus by (8) and Lemma 1 we get (9) provided that σ = π/m < 1.
On the other hand, for α > 0, β > −1 the estimate

(i−1+ α/2)π
Ñ

< θN,i <
(i+ α/2)π

Ñ
, i = 1, . . . ,N , (13)

where Ñ = N +(α + β +1)/2, was obtained in [8, Lemma 4.1], along with

(i+(α −1)/2)π
Ñ

< θN,i <
(i+(α +1)/2)π

Ñ
, i = 1, . . . ,N , (14)

which is valid for α >−1, β > 0. Then for α > 1/2, or 0 < α � 1/2 and |β |> 1/2,
and N = mn , we get

max

{
π −θN,N , θN,1 ,

1
2

max
i

(θN,i+1 −θN,i)
}

< π max

{
β +3

2Ñ
,

α +2

2Ñ
,
1

Ñ

}

= π max

{
β +3

2Ñ
,

α +2

2Ñ

}
=

νπ
Ñ

<
νπ
N

=
νπ
mn

,

from which (9) follows, provided that σ = νπ/m < 1. A chain of estimates of the same
kind gives the third instance in (10) when β > 1/2, or 0 < β � 1/2 and |α| > 1/2, in
view of (14).

The proof in the case of the Gauss-Jacobi-Lobatto points is similar since the same
zeros are involved, with the difference that the interval endpoints belong to the family,
so that F(ξ1) = 0 = F(1)− F(ξmn+2) and hence a factor 1/2 appears in the final
estimate, which gives the condition σ = νπ/(2m) < 1 when applying Lemma 1. �

REMARK 4. The fact that n+ 1 Gauss-Jacobi(-Lobatto) points form good inter-
polation meshes (i.e., have a slowly increasing Lebesgue constant Λn ) is a well-known
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result by Szegö (cf., e.g., [11]), who showed that Λn = O(logn) for −1 < α,β � 1/2
and Λn = O(nγ+1/2) , γ = max(α,β ) , otherwise. Clearly, the polynomial inequal-

ity ‖p‖[−1,1] � Cn ‖p‖Xn , Cn = Λn , holds for every p ∈ Pn , with Xn = G
(α ,β )
n+1 or

Xn = G L
(α ,β )
n+1 . Here we have shown that, for the displayed ranges of α,β , a suit-

able number of Gauss-Jacobi(-Lobatto) points gives instead a polynomial inequality
with Cn ≡C .

Indeed, estimate (11) was already obtained by Bernstein inequality in [15] in the
special case α = β = −1/2 (the Chebyshev-Lobatto points of the first kind). As
recalled there, in this instance there is a slightly tighter classical estimate by Ehlich
and Zeller [5] (see also [2]). On the other hand, even though they are not fully tight,
the present estimates (9)–(11) hold for a wide range of parameters α,β , that includes
all nonnegative couples, for example the ultraspherical instances of Gauss-Legendre(-
Lobatto) points (α = β = 0), and Chebyshev(-Lobatto) points of the second kind
(α = β = 1/2).

1.2. Jacobi trigonometric meshes

“Subperiodic” trigonometric approximation, that is approximation by trigonomet-
ric polynomials on subintervals of the period, has received some attention recently,
especially for its connections with multivariate polynomial approximation and cuba-
ture on domains defined by circular arcs, such as sections of disk, sphere, torus; cf.,
e.g., [3, 4, 10, 13] and the references therein.

In the subperiodic setting, L∞ norming meshes for trigonometric polynomials have
been studied for example in [9, 15]. Here, with reference to Lemma 1 we have that

Sn = Tn([−ω ,ω ]) = span{1,cos(u),sin(u), . . . ,cos(nu),sin(nu), u ∈ [−ω ,ω ]} ,

the space of trigonometric polynomials of degree not exceeding n restricted to an an-
gular interval [−ω ,ω ] with 0 < ω � π . The role of (2) is played by the following
Videnskii inequality, valid for any t ∈ Tn([−ω ,ω ])

|t ′(u)| � n√
1− cos2(ω/2)/cos2(u/2)

‖t‖[−ω,ω] , u ∈ (−ω ,ω) , (15)

cf. [1, E.19, p. 243]. Moreover, we shall resort to the following nonlinear transformation
τ : [−1,1] → [−ω ,ω ] ,

τ(x) = 2arcsin
(
sin

(ω
2

)
x
)

, x ∈ [−1,1] , (16)

that plays a key role in the theory of subperiodic interpolation and quadrature, cf. [3, 4].
We are now ready to state and prove the following

PROPOSITION 2. Let ν = ν(α,β ) be defined as in (10), and the transformation

τ as in (16). Then, the set sequences
{

τ
(
G

(α ,β )
mn

)}
and

{
τ
(
G L

(α ,β )
mn+2

)}
, n � 1 , are

norming meshes for trigonometric polynomials on [−ω ,ω ] , 0 < ω � π , namely

‖t‖[−ω,ω] � C1 ‖t‖τ
(
G

(α,β)
mn

) , C1 =
m

m−2νπ
, ∀t ∈ Tn([−ω ,ω ]) , (17)
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provided that m > 2νπ , and

‖t‖[−ω,ω] � C2 ‖t‖τ
(
G L

(α,β)
mn+2

) , C2 =
m

m−νπ
, ∀t ∈ Tn([−ω ,ω ]) , (18)

provided that m > νπ .

Proof. By Videnskii inequality (15), in (7) we have

F(u) =
∫ u

−ω

1√
1− cos2(ω/2)/cos2(v/2)

dv = π + arcsin

(
sin(u/2)
sin(ω/2)

)
.

Let θN,i , i = 1, . . . ,N , denote the zeros of P(α ,β )
N (cos(θ )) with 0 < θN,1 < .. . < θN,N <

π , and set

ξN−i+1 = τ(cos(θN,i)) = 2arcsin
(
sin

(ω
2

)
cos(θN,i)

)
,

i = 1, . . . ,N . Then
F(ξi) = π +2arcsin(cos(θN,N−i+1))

= π +2
(π

2
− arccos(cos(θN,N−i+1))

)
= 2(π −θN,N−i+1) ,

from which follow

F(ξ1) = 2(π −θN,N) , F(ω)−F(ξN) = 2π −2(π −θN,1) = 2θN,1 ,

and
max

i
{F(ξi+1−F(ξi)} = 2max

i
{θN,i+1 −θN,i} .

The proof now proceeds like that of Proposition 1, taking into account a new factor
equal to 2 appearing in the estimates. �

We conclude by observing that, as already obtained in [15] for the τ -image of the
Gauss-Chebyshev-Lobatto points (improving the estimates of [9]), the norming con-
stants C1 and C2 are independent of ω .
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