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TYPE INEQUALITIES FOR NORMAL MATRICES
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(Communicated by J.-C. Bourin)

Abstract. We survey some well-known matrix exponential formulae, with emphasis on log-
majorization results, by using the compound matrix method.

1. Introduction

This is a short survey of some well-known matrix exponential formulae, with em-
phasis on log-majorization results, by using the compound matrix method. Though
proofs are given for the sake of completeness or of showing compound matrix method,
the author does not claim originality of these beautiful results.

Let Mn be the linear algebra of all n× n complex matrices, let Hn be the real
subspace of all Hermitian matrices, let Pn be the set of all positive definite matrices in
Mn , and let Nn be the set of all normal matrices in Mn .

The famous Golden-Thompson inequality asserts that

treA+B � treAeB (1.1)

for all A,B ∈ Hn , where trX denotes the trace of X ∈ Mn . Equality in (1.1) holds
if and only if AB = BA [19, 25]. This celebrated result was independently discovered
by Golden [13], Symanzik [26], and Thompson [27] in the same year of 1965, all
motivated by statistical mechanics. Since then, the Golden-Thompson inequality has
received intensive attention and been generalized in various ways and applied in many
fields (see, for example, [1, 3, 4, 5, 8, 12, 15, 16, 18, 19, 24, 28] and the references
therein). For historical aspects, one may see a recent paper by Forrester-Thompson
[12].

Motivated by the Golden-Thompson inequality (1.1) and problems in linear-quad-
ratic optimal feedback control, Bernstein [4] proved the following inequality

treA∗
eA � treA∗+A (1.2)

for all A ∈ Mn , where A∗ denotes the Hermitian adjoint of A . So [25] showed that
equality in (1.2) holds if and only if A is normal.
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Another interesting trace inequality is the Lieb-Thirring inequality [20]

tr(A1/2BA1/2)r � tr(Ar/2BrAr/2),

for all A,B ∈ Pn and r � 1. It was further generalized by Araki [2] as

tr(A1/2BA1/2)rq � tr(Ar/2BrAr/2)q, ∀q � 0,∀r � 1, (1.3)

tr(A1/2BA1/2)rq � tr(Ar/2BrAr/2)q, ∀q � 0,∀0 � r � 1. (1.4)

The trace inequalities (1.1)–(1.4) were generalized in terms of unitarily invariant
norms, as well as even sounder form of log-majorization. The main purpose of this arti-
cle is to give a short survey of these beautiful Golden-Thompson type log-majorization
relations and to further generalize them for normal matrices.

2. Log-majorization and unitarily invariant norms

Let x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) be in R
n . Let x↓ = (x[1],x[2], . . . ,x[n])

denote a rearrangement of the components of x such that x[1] � x[2] � · · · � x[n] . We
say that x is weakly majorized by y , denoted by x ≺w y , if

k

∑
i=1

x[i] �
k

∑
i=1

y[i], k = 1,2, . . . ,n.

If, in addition, the equality holds for k = n , we say that x is majorized by y and denote
this by x ≺ y . When x and y are nonnegative, we say that x is weakly log-majorized
by y , denoted by x ≺w-log y if

k

∏
i=1

x[i] �
k

∏
i=1

y[i], k = 1,2, . . . ,n.

If, in addition, the equality holds for k = n , we say that x is log-majorized by y and
denote this by x ≺log y . In other words, when x and y are positive, x ≺log y if and
only if logx ≺ logy , and x ≺w-log y if and only if logx ≺w logy . It is known that [15,
Proposition 1.3]

x ≺log y ⇒ x ≺w-log y ⇒ x ≺w y. (2.1)

Each of the above four types of majorization is a pre-order (and thus induces a partial
order) on R

n or R
n
+ =: {x ∈ R

n : x � 0} .
For any A ∈ Mn , let

λ (A) = (λ1(A), . . . ,λn(A))

denote the vector of eigenvalues of A whose absolute values are in decreasing order,
and let

s(A) = (s1(A), . . . ,sn(A))

denote the vector of singular values of A in decreasing order, and let |A|= (A∗A)1/2 so
that λ (|A|) = s(A) .
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A matrix norm ‖| · ‖| on Mn is said to be unitarily invariant if ‖|UAV‖| = ‖|A‖|
for all A∈ Mn and for all unitary U,V ∈Mn . As characterized by von Neumann [29],
a function f : Mn → R is a unitarily invariant norm if and only if f (A) is a symmetric
gauge function on the singular values of A (see also [5, p. 91]). In particular, the
operator norm ‖ · ‖ defined by

‖A‖ = max
‖x‖=1

‖Ax‖ = s1(A)

is unitarily invariant. An equivalent formulation of Fan Dominance Theorem [11] is
that for all A,B ∈ Mn

s(A) ≺w s(B) ⇔ ‖|A‖| � ‖|B‖| for all unitarily invariant norms ‖| · ‖| . (2.2)

Combining (2.1) and (2.2), we get that for all A,B ∈ Mn

s(A) ≺log s(B) ⇒ ‖|A‖| � ‖|B‖| for all unitarily invariant norms ‖| · ‖| . (2.3)

When A,B ∈ Pn , (2.3) can be rewritten as

λ (A) ≺log λ (B) ⇒ ‖|A‖| � ‖|B‖| for all unitarily invariant norms ‖| · ‖| . (2.4)

For each k = 1, . . . ,n , the k -th compound of A∈Mn is the
(n
k

)×(n
k

)
matrix Ck(A)

whose elements are given by

Ck(A)α ,β = detA[α|β ],

where α,β ∈ Qk,n and Qk,n = {ω = (ω(1), . . . ,ω(k)) : 1 � ω(1) < · · · < ω(k) � n} is
the set of strictly increasing sequences of length k chosen from 1, . . . ,n . For example,
if n = 3 and k = 2, then

C2(A) =

⎛
⎝

detA[1,2|1,2] detA[1,2|1,3] detA[1,2|2,3]
detA[1,3|1,2] detA[1,3|1,3] detA[1,3|2,3]
detA[2,3|1,2] detA[2,3|1,3] detA[2,3|2,3]

⎞
⎠ .

In particular, C1(A) = A and Cn(A) = detA . The following lemma collects some useful
properties of compound matrices that will be used later.

LEMMA 2.1. [21, 22, 23] Let A,B ∈ Mn . The following statements are true.

(1) Ck(AB) = Ck(A)Ck(B) .

(2) Ck(A∗) = [Ck(A)]∗ .

(3) If A is unitary (normal, Hermitian, positive definite), so is Ck(A) , respectively.

(4) The eigenvalues of Ck(A) are
k

∏
j=1

λω( j)(A) for all ω ∈ Qk,n .

(5) The singular values of Ck(A) are
k

∏
j=1

sω( j)(A) for all ω ∈ Qk,n .
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3. Inequalities for normal matrices

We start with the following equivalent Cordes inequalities for the operator norm.

LEMMA 3.1. [9, Cordes] Let A,B ∈ Pn . Then for the operator norm ‖ · ‖ ,

‖AB‖r � ‖ArBr‖, ∀r � 1, (3.1)

‖ArBr‖ � ‖AB‖r, ∀0 � r � 1. (3.2)

For general normal matrix A , the term Ar makes no sense for positive real number
r , except r being a positive integer.

COROLLARY 3.2. Let A,B ∈ Nn and m ∈ N . Then for the operator norm ‖ · ‖ ,

‖(AB)m‖ � ‖AB‖m � ‖AmBm‖. (3.3)

Proof. Obviously ‖(AB)m‖ � ‖AB‖m , since ‖ · ‖ is a matrix norm. Let A = UPA

and B = VPB be polar decompositions with PA = |A| ∈ Pn and PB = |B| ∈ Pn and
unitary U,V ∈ Mn . Note that UPA = PAU and VPB = PBV by the normality of A and
B . Then we have for each m ∈ N

‖AB‖m = ‖UPAPBV‖m

= ‖PAPB‖m

� ‖PA
mPB

m‖ (by (3.1))

= ‖UmPA
mPB

mVm‖
= ‖(UPA)m(VPB)m‖
= ‖AmBm‖.

This completes the proof. �
The following result of Horn, as a generalization of Corollary 3.2 by (2.3), can

serve as a typical example of generalizing inequalities for unitarily invariant norms to
those for log-majorization. The technique of compound matrix arguments in the proof
will be used often.

PROPOSITION 3.3. [17, Horn] Let A,B ∈ Nn and m ∈ N . Then

s((AB)m) ≺log [s(AB)]m ≺log s(AmBm). (3.4)

Proof. Because s(Xm) ≺log [s(X)]m for all X ∈ Mn and all m ∈ N (see (3.7)
below), we have

s((AB)m) ≺log [s(AB)]m.

It remains to show the second log-majorization. Because λ1([(AB)∗(AB)]m) =
[λ1((AB)∗(AB))]m = [s1(AB)]2m = ‖AB‖2m and λ1((AmBm)∗(AmBm) = [s1(AmBm)]2 =
‖AmBm‖2 , it follows from (3.3) that

λ1([(AB)∗(AB)]m) � λ1((AmBm)∗(AmBm)). (3.5)
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Now applying (3.5) on Ck(A) and Ck(B) , by Lemma 2.1 we have for all 1 � k � n

k

∏
j=1

λ j([(AB)∗(AB)]m) = λ1(Ck([(AB)∗(AB)]m))

= λ1([(Ck(A)Ck(B))∗(Ck(A)Ck(B))]m)
� λ1(([Ck(A)]m[Ck(B)]m)∗([Ck(A)]m[(Ck(B)]m))
= λ1(Ck((AmBm)∗(AmBm)))

=
k

∏
j=1

λ j((AmBm)∗(AmBm)).

Furthermore, determinant consideration yields

det([(AB)∗(AB)]m) = det([A∗A]m)det([B∗B]m) = det([AmBm]∗(AmBm)).

Therefore by definition of log-majorization we have

λ ([(AB)∗(AB)]m) ≺log λ ((AmBm)∗(AmBm)),

which is equivalent to
[s(AB)]m ≺log s(AmBm).

This completes the proof. �
Corollary 3.2 and Proposition 3.3 are not valid for general A,B ∈ Mn , due to the

following result of Ky Fan. To see this, compare s((AB)m)≺log s(AmBm) and (3.6). We
note that (3.7) also follows from Horn’s log-majorization result for singular values.

PROPOSITION 3.4. [10, Fan] Let A ∈ Mn and m ∈ N . The following two rela-
tions are equivalent and valid:

λ ((Am)∗Am) ≺log λ ((A∗A)m), (3.6)

λ (|Am|) = s(Am) ≺log [s(A)]m = (λ (|A|)m. (3.7)

Moreover, (Am)∗Am = (A∗A)m if and only if A ∈ Nn .

Proof. The equivalence of (3.6) and (3.7) follows immediately. By compound
matrix arguments similar to the proof of Proposition 3.3, to derive (3.6) it suffices to
show

λ1((Am)∗Am) � λ1((A∗A)m). (3.8)

But (3.8) is just the first of the following inequalities by Fan [10] (see [7, Theorem 1]
for more interesting inequalities):

k

∑
j=1

λ j((Am)∗Am) �
k

∑
j=1

λ j((A∗A)m), 1 � k � n.
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If A ∈ Nn , then (Am)∗Am = (A∗)mAm = (A∗A)m . Conversely, if (Am)∗Am =
(A∗A)m , then tr(Am)∗Am = tr(A∗A)m , and hence A ∈ Nn by [25, Theorem 4.4], which
states that “if trX∗pX p = tr(X∗X)p for some p � 2, then X is normal”. �

As an application of Proposition 3.4, the following result of Cohen is a general-
ization of the Bernstein inequality (1.2). It is a matrix version of the scalar identity
|ex+iy| = ex for x,y ∈ R .

COROLLARY 3.5. [7, Cohen] Let A ∈ Mn . The following two relations are
equivalent and valid:

λ (eA∗
eA) ≺log λ (eA∗+A), (3.9)

λ (|eA|) = s(eA) ≺log s(eRe A) = λ (eReA), (3.10)

where Re A = (A∗ +A)/2 is the Hermitian part of A. Moreover, eA∗
eA = eA∗+A if and

only if A ∈ Nn .

Proof. Obviously, (3.9) and (3.10) are equivalent. Applying (3.6) on eA/m and
noting that (eA)∗ = eA∗

, we get

λ (eA∗
eA) ≺log λ ([eA∗/meA/m]m), ∀m ∈ N. (3.11)

Combining (3.11) with the Lie product formula (see [8, p. 60] for interesting discus-
sions about the name)

lim
m→∞

(eX/meY/m)m = eX+Y , ∀X ,Y ∈ Mn, (3.12)

we conclude that λ (eA∗
eA) ≺log λ (eA∗+A) by the continuity of eigenvalues.

If A ∈ Nn , then A∗ and A commute so that eA∗
eA = eA∗+A by a property of the

matrix exponential function. Conversely, if eA∗
eA = eA∗+A , then treA∗

eA = treA∗+A ,
and hence A ∈ Nn by [25, Theorem 4.7]. �

The following result of Araki generalizes (1.3) and (1.4).

PROPOSITION 3.6. [2, Araki] Let A,B ∈ Hn . Then

λ ((eA/2eBeA/2)r) ≺log λ (erA/2erBerA/2), ∀r � 1, (3.13)

λ (erA/2erBerA/2) ≺log λ ((eA/2eBeA/2)r), ∀0 � r � 1. (3.14)

Proof. We only show (3.13), since (3.14) is similar. By compound matrix argu-
ments similar to the proof of Proposition 3.3, it suffices to show

λ1((eA/2eBeA/2)r) � λ1(erA/2erBerA/2),

or, equivalently (since eigenvalues respect power and λ (XY ) = λ (YX) for all X ,Y ∈
Mn ),

[λ1(eAeB)]r � λ1(erAerB). (3.15)
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But (3.15) is equivalent to (3.1) for the operator norm, because

‖(eAeB)‖r = ‖eAe2BeA‖r/2 = [λ1(eAe2BeA)]r/2 = [λ1(e2Ae2B)]r/2

and

‖erAerB‖ = ‖erAe2rBerA‖1/2 = [λ1(erAe2rBerA)]1/2 = [λ1(e2rAe2rB)]1/2.

This completes the proof. �
Proposition 3.6 yields the following result about normal matrices.

COROLLARY 3.7. Let A,B ∈ Nn . Then

λ ((|eA/2| · |eB| · |eA/2|)r) ≺log λ (|erA/2| · |erB| · |erA/2|), ∀r � 1, (3.16)

λ (|erA/2| · |erB| · |erA/2|) ≺log λ ((|eA/2| · |eB| · |eA/2|)r), ∀0 � r � 1. (3.17)

Proof. Note that |eA| = e(A∗+A)/2 by the normality of A , with (A∗ +A)/2 ∈ Hn .
Therefore, (3.16) and (3.17) follows from (3.13) and (3.14), respectively. �

The following well-known result is a generalization of the Golden-Thompson in-
equality (1.1). It first appeared in [28, Lemma 6]. See also [8, Theorem 1] and [5,
Theorem IX.3.5]. Instead of applying compound matrix arguments, we offer another
proof as an application of Proposition 3.6 and the Lie product formula (3.12).

PROPOSITION 3.8. [28, Thompson] Let A,B ∈ Hn . Then

λ (eA+B) ≺log λ (eAeB). (3.18)

Moreover, eA+B = eAeB if and only if AB = BA.

Proof. We first note that (3.13) and (3.14) are both equivalent to

λ ((eqA/2eqBeqA/2)1/q) ≺log λ ((epA/2epBepA/2)1/p), ∀0 < q � p. (3.19)

To see this for (3.13), setting r = p/q and replacing A and B by qA and qB , respec-
tively, we get

λ ((eqA/2eqBeqA/2)p/q) ≺log λ ((epA/2epBepA/2)), ∀0 < q � p.

Since the matrix products on both sides are positive definite, (3.13) and (3.19) are equiv-
alent. Similarly, (3.14) and (3.19) are equivalent.

Now (3.19) is equivalent to

λ ((eqAeqB)1/q) ≺log λ ((epAepB)1/p), ∀0 < q � p. (3.20)

Applying the Lie product formula on the left side of (3.20), we have that

λ (eA+B) ≺log λ ((epAepB)1/p), ∀ p > 0 (3.21)
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and that λ ((epAepB)1/p) decreases to λ (eA+B) as p decrease to 0. In particular, when
p = 1, (3.21) reduces to (3.18).

It follows from [25, Theorem 3.4] that eA+B = eAeB if and only if AB = BA . �
Proposition 3.8 yields the following result about normal matrices.

COROLLARY 3.9. Let A,B ∈ Nn . Then

λ (|eA+B|) ≺log λ (|eA| · |eB|). (3.22)

Proof. Note that Corollary 3.5 yields

λ (e(A+B)∗eA+B) ≺log λ (e(A∗+A)+(B∗+B)). (3.23)

By Proposition 3.8 and the normality of A and B , we have

λ (e(A∗+A)+(B∗+B)) ≺log λ (eA∗+AeB∗+B) = λ (eA∗
eAeB∗

eB). (3.24)

Combining (3.23) and (3.24), we derive the desired (3.22), because eigenvalues respect
product and power. �

The following interesting result in [6, Corollary 2.12] is credited to Cohen and
Thompson.

COROLLARY 3.10. [7, 28] Let A,B ∈ Mn . Then

λ (|eA+B|) ≺log λ (eReA+ReB) ≺ λ (eReAeReB). (3.25)

Proof. The first log-majorization follows from (3.10) and the second (3.18). �

REMARK 3.11.

(1) Because of (2.3), many of the log-majorization relations can be written in terms
of unitarily invariant norms (and hence operator norm and trace). For example,
(3.10) implies that

‖|eA‖| � ‖|eReA‖| (3.26)

for all unitarily invariant norms ‖| · ‖| . The inequality (3.26) appeared in [5, p.
258] and [24, Theorem 18], as a rephrasing of part of [7, Theorem 2].

(2) Proposition 3.6 is indeed a generalization of (1.3) and (1.4). To see this, we show
(3.13) implies (1.3). Note that (3.13) implies

λ ((eA/2eBeA/2)rq) ≺log λ ((erA/2erBerA/2)q),

which yields
λ ((eA/2eBeA/2)rq) ≺w λ ((erA/2erBerA/2)q),

and hence (1.3).
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(3) By a similar argument as in the equivalence of (3.13) and (3.19), we note that
(3.20) is equivalent to

λ ((eAeB)r) ≺log λ (erAerB), ∀r � 1, (3.27)

λ (erAerB) ≺log λ ((eAeB)r), ∀0 � r � 1. (3.28)

Because λ ((eAeB)r) = [λ (eAeB)]r , (3.27) and (3.28) yields respectively (3.15)
and

λ1(erAerB) � [λ1(eAeB)]r, ∀0 � r � 1. (3.29)

As shown in the proof of Proposition 3.6, (3.15) and (3.29) are respectively equiv-
alent to following Cordes inequalities

‖eAeB‖r � ‖erAerB‖, ∀r � 1, (3.30)

‖erAerB‖ � ‖eAeB‖r, ∀0 � r � 1. (3.31)

Thus the relations (3.13), (3.14), (3.19), (3.20), (3.27), (3.28), (3.15), (3.29),
(3.30), (3.31) are all pairwise equivalent.

(4) Most results in the article can be obtained by applying [5, Theorem IX.3.5] for
an appropriate function in the class T . It is known that every symmetric gauge
function of the numbers |λ1(X)| , . . . , |λn(X)| , where X ∈Mn , is in T . Because
of the usefulness of [5, Theorem IX.3.5], it would be nice to give a characteri-
zation of T (maybe similar to (but definitely not the same) the one for unitarily
invariant norms in terms of symmetric gauge functions given by von Neumann
[29]).

Acknowledgement. The author thanks Professor Jean-Christophe Bourin for many
helpful notes in the revision.
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