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Abstract. In this paper, we consider the following nonlinear elliptic system:

(P)

⎧⎨
⎩

−Δp(x)u = ua(x)vb(x), x ∈ Ω,

−Δq(x)v = uc(x)ve(x) , x ∈ Ω,
u > 0, v > 0,

in a smooth bounded domain Ω ⊂ R
N , with different Dirichlet boundary conditions u = λ ,

v = μ , u = v = +∞ or u = λ , v = +∞ on ∂Ω , where λ ,μ > 0 . p,q : Ω → R are continuous
functions with 1 < p(x) , q(x) < +∞, for x ∈ Ω, where a(x) > p(x)− 1 and e(x) > q(x)− 1 ,
for x ∈ Ω . The main objective of this paper is to prove existence, nonexistence and uniqueness
or multiplicity of positive solutions in both critical and subcritical cases. For this, a comparison
type principle is used intensively.

1. Introduction

This paper concerns the study of the following nonlinear elliptic system

(P)

⎧⎨
⎩

−Δp(x)u = ua(x)vb(x), x ∈ Ω,

−Δq(x)v = uc(x)ve(x), x ∈ Ω,
u > 0, v > 0,

where Ω ⊂ R
N is a smooth bounded domain and −Δr(x)u = −div(|∇u|r(x)−2∇u) is

the r(x)-Laplacian, r(.) is a function defined on Ω with 1 < r(x) < +∞, for x ∈ Ω .
Moreover, a,b,c and e are continuous functions such that, for x ∈ Ω, a(x) > p(x)−1,
e(x) > q(x)− 1 and b(x),c(x) > 0. This system will be studied under three different
types of Dirichlet boundary conditions: both components (u,v) are bounded on ∂Ω ,
this is the finite case (F) , both components (u,v) are blowing up simultaneously, this
is the infinite case (I) , or one of them is bounded while the other is blowing up, this is
the semifinite case (SF) . More precisely

(F)
{

u = λ , on ∂Ω,
v = μ , on ∂Ω.
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(I)
{

u = +∞, on ∂Ω,
v = +∞, on ∂Ω.

Or

(SF)
{

u = λ , on ∂Ω,
v = +∞, on ∂Ω.

Where λ ,μ > 0. The condition u = +∞ on ∂Ω means that u(x) → +∞ as d(x) → 0
with d(x) = d(x,∂Ω). Our motivation for this work comes from [27], [18] and [20],
where the problem (P) was studied in the quasilinear case ( p -Laplacian operator) and
in the semilinear case (Laplacian operator, p = 2). In [18], J. Garcı́a-Melián ob-
tained necessary and sufficient conditions for the existence and nonexistence of pos-
itive solutions. The uniqueness and multiplicity were also obtained, together with
the boundary behavior of the solutions in the semifinite case, under the assumptions
(a− p+1)(e−q+1)> bc or (a− p+1)(e−q+1)= bc. Moreover, in [20], J. Garcı́a-
Meliána and J. D. Rossi showed the existence and nonexistence of positive solutions,
uniqueness and non uniqueness, the exact asymptotic behavior of the solutions and their
normal derivatives near ∂Ω, assuming that (a−1)(e−1) > bc or (a−1)(e−1) = bc,
subject to different types of Dirichlet boundary conditions (F), (I) and (SF).

Our objective is to obtain similar results as those in [27] and [18], for the strongly
nonlinear system (P) . For this, we show that the results for (P) are depending on the
sign of (a(x)− p(x)+1)(e(x)−q(x)+1)−b(x)c(x) , for x ∈ Ω . Precisely, we will be
interested in the so-called “subcritical” and “critical” cases, given by

(a(x)− p(x)+1)(e(x)−q(x)+1)> b(x)c(x),

or

(a(x)− p(x)+1)(e(x)−q(x)+1)= b(x)c(x),

for x ∈ Ω, respectively. In the subcritical case, we find that the problem (P) has a
unique positive solution with each of the boundary conditions. Our proof of existence
is based on the method of sub-and-super-solutions. Uniqueness and global estimates
are also given, for solution (u,v) satisfying u = v = +∞ on ∂Ω. Moreover, we obtain
these global estimates trough an iterative procedure. While in the critical case, we find
infinitely many positive solutions. The nonexistence of solutions, both in the subcrit-
ical and critical case will be established also through the iterative procedure used for
obtaining global bounds.

We underline that all main results obtained in this paper are based on a comparison
type principle.

The paper is organized as follows. In Section 2, we give some tools and pre-
liminaries namely definitions of the variable exponent Lebesgue, Sobolev spaces and
the comparison principle. In Section 3, we get existence, uniqueness. Moreover, we
give nonexistence and global estimates for solutions, in the subcritical case. In Section
4, we are interested in the critical case. Finally, In Section (5) we give an appendix
gathering the results of existence of the problem (P), under different types of Dirichlet
boundary conditions.
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2. Preliminaries

In this paragraph, we recall some definitions and properties of the variable ex-
ponent Lebesgue and Sobolev spaces Lp(.)(Ω) and W 1,p(.)(Ω) (for more details, see
[11, 15]). We write

C+(Ω) = {r ∈C(Ω) : min
x∈Ω

r(x) > 1}.

Let r ∈C+(Ω) and denote

r− = min
x∈Ω

r(x) � r(x) � r+ = max
x∈Ω

r(x).

For any r ∈C+(Ω) , we define the variable exponent Lebesgue space:

Lr(.)(Ω) =

⎧⎨
⎩u : u is a measurable real valued function,

∫
Ω

|u|r(x)dx < +∞

⎫⎬
⎭ ,

endowed with the so-called Luxemburg norm

‖u‖r(.) = inf

⎧⎨
⎩λ > 0 :

∫
Ω

∣∣∣∣u(x)
λ

∣∣∣∣
r(x)

dx � 1

⎫⎬
⎭ .

The space (Lr(.)(Ω),‖u‖r(.)) is a separable and a reflexive Banach space (see [11]). For
more details on basic properties of the variable exponent Lebesgue spaces, we refer to
[15].

We define the following Sobolev space

W 1,r(.)(Ω) = {u ∈ Lr(.)(Ω) : |∇u| ∈ Lr(.)(Ω)}.
The space W 1,r(.)(Ω) endowed with the norm

‖u‖1,r(.) = ‖u‖r(.) +
N

∑
i=1

∥∥∥∥ ∂u
∂xi

∥∥∥∥
r(.)

, ∀u ∈W 1,r(.)(Ω),

is a separable and a reflexive Banach space (see [15]).

We define W 1,r(.)
0 (Ω) as the closure of D(Ω) with respect to the norm ‖u‖1,r(.) .

We will need the following comparison principle, for weak solutions.

LEMMA 1. (Weak comparison principle). Let Ω be a bounded domain in R
N ,

with smooth boundary ∂Ω and f : Ω× (0,+∞) → (0,+∞) is a continuous and de-
creasing function, in the second variable.

Assume that, u,v ∈W 1,r(.)(Ω) satisfy for all non-negative ϕ ∈W 1,r(.)(Ω) the in-
equalities ∫

Ω

|∇u|r(x)−2∇u∇ϕ dx �
∫
Ω

f (x,u)ϕ dx,
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and ∫
Ω

|∇v|r(x)−2∇v∇ϕ dx �
∫
Ω

f (x,v)ϕ dx.

Then, the inequality lim
x→∂Ω

sup(u(x)− v(x)) � 0 implies that u � v in Ω .

Proof. Assume that u > v . For ϕ ∈W 1,r(.)(Ω), ϕ > 0, we have

∫
Ω

|∇u|r(x)−2 ∇u∇ϕ dx−
∫
Ω

|∇v|r(x)−2 ∇v∇ϕ dx �
∫
Ω

(
f (x,u)− f (x,v)

)
ϕ dx.

For ϕ = u− v . The hypotheses on f allow to conclude that the right hand side is
negative. Thus, we find that

∫
Ω

|∇u|r(x)−2 ∇u∇ϕ dx−
∫
Ω

|∇v|r(x)−2 ∇v∇ϕ dx � 0

So, we obtain

0 � 〈−Δr(x)u+ Δr(x)v,ϕ(x)〉 =
∫
Ω

( |∇u|r(x)−2 ∇u−|∇v|r(x)−2 ∇v
)(

∇u−∇v
)

dx � 0

Thus, ∇ϕ = 0 a.e. in Ω and therefor ϕ = 0 a.e. in Ω. Since lim
x→∂Ω

sup(u(x)−v(x))� 0.

Hence, u � v a.e in Ω. �

Now, we will establish some properties of positive solutions to an equation related
to the system (P). We consider the problem

(2.1)

⎧⎨
⎩

−Δr(x)w = d(x)−γ(x)wm(x), x ∈ Ω,
w → +∞, x ∈ ∂Ω,

w > 0,

such that γ ∈C+(Ω) and for x ∈ Ω , we have m(x) > r(x)−1. This problem has been
considered in [1], where they showed all issues concerning the existence, uniqueness
and asymptotic behavior of positive solutions near the boundary.

So, we give the following existence result.

LEMMA 2. Let m(x) > r(x)− 1 and γ(x) ∈ (0,r(x)), for all x ∈ Ω . Then, the
problem (2.1) admits a nonnegative blow-up solution denoted by Wm,γ ∈W 1,r(.)(Ω).

Proof. See Theorem 2.1, page 149, in [1], with f (u(x)) = u(x)m(x) and g(x) =
d(x)−γ(x), for x ∈ Ω. �

In this paper, we will use the following comparison result.
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LEMMA 3. Let w∈W 1,r(.)(Ω) satisfy −div(|∇w|r(x)−2∇w) �Cd(x)−γ(x)wm(x) in
Ω , for some positive constant C and w = +∞ on ∂Ω . Then, for x ∈ Ω

w(x) � C− 1
m−−r++1Wm,γ (x).

Similarly, if −div(|∇w|r(x)−2∇w) �Cd(x)−γ(x)wm(x) in Ω with w = +∞ on ∂Ω . Then,
for x ∈ Ω

w(x) � C− 1
m+−r−+1Wm,γ (x).

Proof. For x ∈ Ω , let ν(x) =C
1

m−−r++1 w(x). Then, we have for ϕ ∈W 1,r(.)(Ω)

∫
Ω

|∇ν|r(x)−2 ∇ν∇ϕ dx =
∫
Ω

C
r(x)−1

m−−r++1 |∇w|r(x)−2 ∇w∇ϕ dx

� C
r+−1

m−−r++1

∫
Ω

|∇w|r(x)−2 ∇w∇ϕ dx

� C
r+−1

m−−r++1
+1

∫
Ω

d(x)−γ(x)wm(x)ϕ dx

�
∫
Ω

C
m−

m−−r++1 d(x)−γ(x)wm(x)ϕ dx

�
∫
Ω

d(x)−γ(x)νm(x)ϕ dx.

Thus, we obtain that∫
Ω

|∇ν|r(x)−2 ∇ν∇ϕ dx �
∫
Ω

d(x)−γ(x)νm(x)ϕ dx.

We consider Wm,γ , the solution of the problem (2.1), with γ(x) < r(x) and m(x) >
r(x)−1, for x ∈ Ω.

Thus, for ϕ ∈W 1,r(.)(Ω), we have

∫
Ω

∣∣∇Wm,γ
∣∣r(x)−2 ∇Wm,γ∇ϕ dx =

∫
Ω

d(x)−γ(x)Wm(x)
m,γ ϕ dx.

Moreover, ∫
Ω

(|∇ν|r(x)−2 ∇ν∇ϕ −d(x)−γ(x)νm(x)ϕ) dx

�
∫
Ω

(
∣∣∇Wm,γ

∣∣r(x)−2 ∇Wm,γ ∇ϕ −d(x)−γ(x)Wm(x)
m,γ ϕ) dx.
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We have lim
x→∂Ω

sup(ν(x)−Wm,γ (x)) � 0. Thus, by the weak comparison principle, given

in Lemma 1, it follows that C
1

m−−r++1 w(x) � Wm,γ (x) .

Hence, w(x) � C− 1
m−−r++1Wm,γ (x) .

For the symmetric inequality, we suppose that

−div(|∇w|r(x)−2∇w) � Cd(x)−γ(x)wm(x)

in Ω . let ν(x) = C
1

m+−r−+1 w(x) . Then, we have for ϕ ∈W 1,r(.)(Ω)∫
Ω

|∇ν|r(x)−2 ∇ν∇ϕ dx =
∫
Ω

C
r(x)−1

m+−r−+1 |∇w|r(x)−2 ∇w∇ϕ dx

� C
r−−1

m+−r−+1

∫
Ω

|∇w|r(x)−2 ∇w∇ϕ dx.

By hypothesis, we have∫
Ω

|∇ν|r(x)−2 ∇ν∇ϕ dx � C
r−−1

m+−r−+1
+1

∫
Ω

d(x)−γ(x)wm(x)ϕ dx

�
∫
Ω

C
m+

m+−r−+1 d(x)−γ(x)wm(x)ϕ dx

�
∫
Ω

d(x)−γ(x)νm(x)ϕ dx.

Thus, we obtain that∫
Ω

|∇ν|r(x)−2 ∇ν∇ϕ dx �
∫
Ω

d(x)−γ(x)νm(x)ϕ dx.

Moreover, by definition of Wm,γ , we obtain∫
Ω

(|∇ν|r(x)−2 ∇ν∇ϕ −d(x)−γ(x)νm(x)ϕ) dx

�
∫
Ω

(
∣∣∇Wm,γ

∣∣r(x)−2 ∇Wm,γ ∇ϕ −d(x)−γ(x)Wm(x)
m,γ ϕ) dx.

Using that lim
x→∂Ω

sup(ν(x)−Wm,γ (x)) � 0. Thus, by the weak comparison principle,

given in Lemma 1, it follows that C
1

m+−r−+1 w(x) �Wm,γ (x), for x ∈ Ω, hence, w(x) �
C− 1

m+−r−+1Wm,γ (x), for x ∈ Ω.
In particular, the quantities

Am,γ (x) = (sup
x∈Ω

d(x))ρ1Wm,γ (x), (2.2)
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and

Bm,γ (x) = ( inf
x∈Ω

d(x))ρ2Wm,γ (x), (2.3)

are finite and positive, for x ∈ Ω. Such that,

ρ1(x) = ρ2(x) =
r(x)− γ(x)

m(x)− r(x)+1
. �

The following lemma certifies that the functions defined by (2.2) and (2.3), are
also bounded.

LEMMA 4. The functions Am,γ and Bm,γ are bounded.

Proof. We aim to prove that the functions Am,γ and Bm,γ defined by (2.2) and
(2.3) respectively are bounded. For this, let Wm,γ be solution for the problem (2.1)
with γ(x) < r(x) and m(x) > r(x)−1, for x ∈ Ω.

Thus, for ϕ ∈W 1,r(.)(Ω), we have

∫
Ω

∣∣∇Wm,γ
∣∣r(x)−2 ∇Wm,γ ∇ϕ dx =

∫
Ω

d(x)−γ(x)Wm(x)
m,γ ϕ dx. (2.4)

First, let σ ∈C+(Ω) such that γ(x) < σ(x), for x ∈ Ω. Hence

∫
Ω

∣∣∇Wm,γ
∣∣r(x)−2 ∇Wm,γ ∇ϕ dx =

∫
Ω

d(x)−γ(x)+σ(x)d(x)−σ(x)Wm(x)
m,γ ϕ dx

�
∫
Ω

(sup
x∈Ω

d(x))−γ(x)+σ(x)d(x)−σ(x)Wm(x)
m,γ ϕ dx.

So, we obtain

∫
Ω

∣∣∇Wm,γ
∣∣r(x)−2 ∇Wm,γ ∇ϕ dx � (sup

x
d(x))σ+−γ−

∫
Ω

d(x)−σ(x)Wm(x)
m,γ ϕ dx.

Using Lemma 3, we get

Wm,γ (x) � (sup
x

d(x))−
σ+−γ−

m−−r++1Wm,σ (x).

Moreover, by the definition of Am,γ (2.2) , we have for x ∈ Ω

Am,γ (x) � (sup
x

d(x))
γ−−σ+

m−−r++1 Am,σ (x). (2.5)
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Second, let ρ ∈ C+(Ω) such that γ(x) > ρ(x), for x ∈ Ω. Wm,γ being solution for
(2.1), then

∫
Ω

∣∣∇Wm,γ
∣∣r(x)−2 ∇Wm,γ ∇ϕ dx =

∫
Ω

d(x)−γ(x)+ρ(x)d(x)−ρ(x)Wm(x)
m,γ ϕ dx

�
∫
Ω

(sup
x∈Ω

d(x))−γ(x)+ρ(x)d(x)−ρ(x)Wm(x)
m,γ ϕ dx

� (sup
x∈Ω

d(x))ρ−−γ+
∫
Ω

d(x)−ρ(x)Wm(x)
m,γ ϕ dx.

So, by using Lemma 3, we obtain

Am,γ(x) � (sup
x

d(x))
γ+−ρ−

m+−r−+1 Am,ρ(x). (2.6)

Then, by combining (2.5) and (2.6), we get for x ∈ Ω

(sup
x

d(x))
γ−−σ+

m−−r++1 Am,σ (x) � Am,γ(x) � (sup
x

d(x))
γ+−ρ−

m+−r−+1 Am,ρ(x).

A similar calculation proves that Bm,γ is bounded in Ω . On the one hand, we define a

function δ in C+(Ω) such that γ(x) < δ (x), for x ∈ Ω.

Hence, using Lemma 3 and (2.3), we get

Bm,γ(x) � (inf
x

d(x))
γ+−δ−

m+−r−+1 Bm,δ (x). (2.7)

On the other hand, we consider λ ∈C+(Ω) such that γ(x) > λ (x), for x ∈ Ω. So, by
using Lemma 3 and the definition of Bm,δ , we obtain

Bm,γ (x) � (inf
x

d(x))
γ−−λ+

m−−r++1 Bm,λ (x). (2.8)

Then, by combining (2.7) and (2.8), we get for x ∈ Ω

(inf
x

d(x))
γ−−λ+

m−−r++1 Bm,λ (x) � Bm,γ (x) � (inf
x

d(x))
γ+−δ−

m+−r−+1 Bm,δ (x). �

3. The subcritical case

In this section, we will state our results. We begin with the subcritical case (a(x)−
p(x)+1)(e(x)−q(x)+1) > b(x)c(x), for x ∈ Ω. In this case, the system (P) behaves
like a single equation, because the coupling between the two equations is not too strong.



BOUNDARY BLOW-UP SOLUTIONS FOR A CLASS OF ELLIPTIC SYSTEM 1115

3.1. Existence of solutions

We will prove that the problem (P) admits a solution for each of the boundary
conditions (F),(SF) and (I), provided some conditions.

THEOREM 1. Let us assume that (a(x)− p(x)+ 1)(e(x)− q(x)+ 1) > b(x)c(x)
and p(x) = q(x), for x ∈ Ω.

(i) Problem (P) admits a unique positive solution (u,v)∈W 1,p(.)(Ω)×W1,q(.)(Ω) with
the boundary condition (F).

(ii) Problem (P) admits a positive solution (u,v) ∈ W 1,p(.)(Ω)×W1,q(.)(Ω) with the
boundary condition (I), if and only if c(x) < a(x)− p(x)+1 and b(x) < e(x)− p(x)+
1, for x ∈ Ω.

(iii) Problem (P) admits a positive solution (u,v) ∈W 1,p(.)(Ω)×W1,q(.)(Ω) with the
boundary condition (SF), if and only if c(x) < a(x)− p(x)+1, for x ∈ Ω.

EXAMPLE 1. We give an example illustrating the main assumptions of Theorem
1. For this, we define Ω ⊂ R

2 by

Ω = {x = (x1,x2) ∈ R
2
+ : x2

1 + x2
2 < 1}.

There exist c1,c2,ε,ε ′ > 0 satisfying the inequality c1c2 < (ε + 1)(ε ′ + 1) such that,
for x ∈ Ω, ⎧⎨

⎩
p(x) = q(x) = x1 + x2 +1,

a(x) = x1 + x2 + c1, e(x) = x1 + x2 + c2,
b(x) = x1 + ε, c(x) = x2 + ε ′.

By the hypothesis of the constants c1,c2,ε and ε ′ , it is easy to see that the functions
p,q,a,b,c and e satisfy the assumptions of Theorem 1. In particular, if c1 < ε +1 and
c2 < ε ′+1, it is easy to see that the functions p,q,a,b,c and e satisfy the assumptions
of Theorem 1((ii),(iii)).

Proof. (i) We consider the finite case, that is the boundary condition (F). We will
use sub-and-super-solutions method (see Theorem 4 in the Appendix). Indeed, we can
take a pair (u,v) = (0,m) as a subsolution and (u, v) = (M,0) as a supersolution, for
a small positive constant m and for a large positive constant M.

Then, Theorem 4 guarantees the existence of a positive solution.
(ii) Now, we consider the boundary condition (I). We employ sub-and-super-

solutions method to prove the existence of (P), looking for a subsolution of the form
(u,v) = (ε−δ−

Ua,γ ,εUe,σ ), where δ ,γ,σ ∈ C+(Ω) and ε > 0 is small enough with
γ(x) < p(x) and σ(x) < p(x), for x ∈ Ω.

The definition of Ua,γ gives

−div(|∇u|p(x)−2∇u) = ε−δ−(p(x)−1)d(x)−γ(x)Ua(x)
a,γ

= εδ−(a(x)−p(x)+1)−b(x)d(x)−γ(x)U−b(x)
e,σ ua(x)vb(x)

� εδ (x)(a(x)−p(x)+1)−b(x)d(x)−γ(x)U−b(x)
e,σ ua(x)vb(x).
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With the same procedure, we prove that

−div(|∇v|p(x)−2∇v) = ε p(x)−1d(x)−σ(x)Ue(x)
e,σ

� εσ(x)c(x)−e(x)−p(x)+1d(x)−σ(x)U−c(x)
a,γ uc(x)ve(x).

Hence, (u,v) will be a subsolution, if and only if

εb(x)−δ (x)(a(x)−p(x)+1)d(x)γ(x)Ub(x)
e,σ � 1,

and

εe(x)−p(x)+1−δ (x)c(x)d(x)σ(x)Uc(x)
a,γ � 1.

Since (a(x)− p(x)+1)(e(x)− p(x)+1)> b(x)c(x) , we may choose δ such that e(x)−
p(x)+1 > δ (x)c(x) and b(x) < δ (x)(a(x)− p(x)+1), that is

b(x)
a(x)− p(x)+1

< δ (x) <
e(x)− p(x)+1

c(x)
, for all x ∈ Ω.

It is shown in a similar way that (u, v) = (MUa,γ ,M−σ+
Ue,σ ) is a supersolution for the

same choice of δ ,γ and σ , provided that M is large enough.
Hence, Theorem 5 in the Appendix implies the existence of a positive solution

(u,v) to (P), satisfying u = v = +∞ on ∂Ω.

(iii) We now turn to the boundary conditions (SF). It is not hard to show that the
condition c(x) < a(x)− p(x)+1 is necessary.

Using Theorem 6 in the Appendix, we prove the existence of (P). For this, we con-
sider a large positive constant M and γ ∈C+(Ω), such that (u, v)=(M−δ+

Ua,γ ,MVe,0)
will be a supersolution provided that

Mb(x)−δ (x)(a(x)−p(x)+1)d(x)γ(x)Vb(x)
e,0 � 1, x ∈ Ω,

and

Me(x)−p(x)+1−δ (x)c(x)Uc(x)
a,γ � 1, x ∈ Ω.

We may choose δ such as, e(x)− p(x)+1 > δ (x)c(x) and b(x) < δ (x)(a(x)− p(x)+
1), for x ∈ Ω. That is

b(x)
a(x)− p(x)+1

< δ (x) <
e(x)− p(x)+1

c(x)
, for all x ∈ Ω.

This is possible thanks to the subcriticality condition (a(x)− p(x)+ 1)(e(x)− p(x)+
1) > b(x)c(x). So, we have a supersolution. It is shown in a similar way that for a small
positive ε and γ ∈C+(Ω), (u,v) = (ε−δ−

Ua,γ ,εVe,0) is a subsolution.
Thus, it follows from Theorem 6 in Appendix that there exists a solution to

(P). �
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3.2. Uniqueness results

In this section, we obtain a new uniqueness result for the system (P), with finite
boundary conditions.

In the linear operator (Laplacian operator), we can use the fact that, if u,v are C2

functions in a domain Ω, with u � v and u(x0) = v(x0) , for x0 ∈ Ω , then Δu(x0) =
Δv(x0).

In our approach, the situation is more delicate, when we use nonlinear operator
with variable exponent, mainly due to the fact that solutions are not in general C2. For
that, let us announce the following result.

LEMMA 5. Let f ,g∈C(Ω) and u,v∈W 1,p(.)(Ω)×W 1,q(.)(Ω) be weak solutions
to the following problem

{−Δp(x)u = f (x), x ∈ Ω,
−Δq(x)v = g(x), x ∈ Ω,

with u � v and u = v at some point of Ω . Let us assume moreover that u < v on ∂Ω.

Then, there exists x0 ∈ Ω such that u(x0) = v(x0) and f (x0) � g(x0).

Proof. Let E = {x ∈ Ω : u(x) = v(x)}. By assumptions, E is nonempty and it is
strictly contained in Ω (E ⊂ Ω).

Assuming by contradiction that f > g in E. Then, we can choose an open neigh-
borhood U of E such that f > g in U and u < v on ∂U.

Then, for a small ε > 0, we have u+ ε � v on ∂U together with

−Δp(x)(u+ ε)−Δp(x)v > ( f −g)(x), x ∈U.

By the comparison principle, we obtain that u+ ε � v in U, which is clearly a contra-
diction since E ⊂ U. Thus, f > g is not possible in E and there exists x0 ∈ E with
f (x0) � g(x0). �

Next, we give a uniqueness result for the problem (P), with a finite boundary
condition.

THEOREM 2. Let (u1,v1),(u2,v2) be positive weak solutions to the system

⎧⎨
⎩

−Δp(x)u = ua(x)vb(x), x ∈ Ω,

−Δq(x)v = uc(x)ve(x), x ∈ Ω,
u = λ , v = μ , x ∈ ∂Ω,

with λ ,μ > 0 on ∂Ω such that, for x ∈ Ω , a(x) > p(x)− 1 , e(x) > q(x)− 1 and
(a(x)− p(x)+1)(e(x)−q(x)+1)> b(x)c(x).

Then, u1 = u2 and v1 = v2 in Ω.
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Proof. Since the solutions are positive, we can choose a large k > 1. First, we
consider that

u1(x) � k
− b(x)

a(x)−p(x)+1 u2(x), x ∈ Ω, (3.1)

and
v1(x) � kv2(x), x ∈ Ω. (3.2)

Using Lemma 5, we obtain a point x0 ∈ Ω with

u1(x0) = k
− b(x0)

a(x0)−p(x0)+1 u2(x0).

u1(x0)a(x0)v1(x0)b(x0) � k
− b(x0)(p(x0)−1)

a(x0)−p(x0)+1 u1(x0)a(x0)v1(x0)b(x0).

Which implies by (3.2), that v1(x0) = kv2(x0).
Hence, we may apply Lemma 5 to get a point x0 ∈ Ω verifying

v1(x0) = kv2(x0),

and
u1(x0)c(x0)v1(x0)e(x0) � kq(x0)−1u2(x0)c(x0)v2(x0)e(x0).

Which gives by hypothesis

u1(x0) � k
− e(x0)−q(x0)+1

c(x0) u2(x0).

But, the first inequality (3.1) gives that

k
(a(x0)−p(x0)+1)(e(x0)−q(x0)+1)−b(x0)c(x0)

c(x0)(a(x0)−p(x0)+1) � 1.

We get contradiction since k > 1 and (a(x)− p(x)+ 1)(e(x)− q(x)+ 1) > b(x)c(x),
for x ∈ Ω. That contradiction shows k � 1, that is, u1 � u2 and v1 � v2 in Ω.

Second, we consider the reversed inequalities

u1(x) � ku2(x), x ∈ Ω,

and

v1(x) � k
− c(x)

e(x)−q(x)+1 v2(x), x ∈ Ω.

Thus, by a similar argument, we prove that u1 � u2 and v1 � v2 in Ω. �

REMARK 1. Lemma 5 is also useful for obtaining an alternative proof of unique-
ness of positive solutions to the problem

(3.3)
{−Δr(x)w = g(x) f (w), x ∈ Ω,

w = λ , x ∈ ∂Ω,

when f and g are non decreasing continuous functions such that f (w)
wr(x)−1 decreasing

in w and λ > 0. Moreover, for fixed x , liminf
w→0+

f (w)
wr(x)−1 � c. Indeed, if w1 and w2 are
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positive solutions for (3.3), we can choose a large k > 1, such that w1 � kw2 in Ω.
Lemma 5 can be applied to give the existence of a point x0 ∈ Ω, such that

w1(x0) = kw2(x0) and f (kw2(x0)) � kr(x0)−1 f (w2(x0)).

It is incompatible with the monotonicity of f (w)
wr(x)−1 .

Thus, k � 1 and w1 � w2. The reversed argument gives w1 = w2.

3.3. Global estimates for solutions

In this section, we will obtain the boundary behavior of solutions using a blow-up
argument. For this, we need some rough estimates of all positive solutions. The present
proof is modeled on that of the semilinear case contained in [20].

LEMMA 6. Let (u,v) be a positive solution to (P) with a(x) > p(x)−1 , e(x) >
p(x)−1 and (a(x)− p(x)+1)(e(x)− p(x)+1)> b(x)c(x), such that

c(x) < a−− p+ +1, (3.4)

and
b(x) < e−− p+ +1, (3.5)

for x ∈ Ω. Then, there exist positive constants C1 , C2 such that

C1d(x)−α � u(x) � C2d(x)−α ,

and
C1d(x)−β � v(x) � C2d(x)−β .

Where

α =
p(x)(e(x)− p(x)+1−b(x))

(a(x)− p(x)+1)(e(x)− p(x)+1)−b(x)c(x)
,

and

β =
p(x)(a(x)− p(x)+1− c(x))

(a(x)− p(x)+1)(e(x)− p(x)+1)−b(x)c(x)
.

Proof. Let (u,v) be a positive solution to (P). Then, if u0 = sup
Ω

u > 0, we have

−div(|∇v|p(x)−2∇v) � uc(x)
0 ve(x) and Lemma 3 gives

v � u
− c(x)

e−−p++1
0 Ve,0 � u

− c(x)
e−−p++1

0 d(x)−β0(x)Be,0,

where β0(x) = p(x)
e(x)−q(x)+1 , for x ∈ Ω. We set a0 = u

− c(x)
e−−p++1

0 Be,0.

Using the first equation in (P) , we obtain

−div(|∇u|p(x)−2∇u) � (a0d(x)−β0)b(x)ua(x), x ∈ Ω.
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Thus, thanks to Lemma 3, we have

u � a
− b(x)

a+−p−+1
0 Ua(x)

a,β0b
� a

− b(x)
a+−p−+1

0 d(x)−α0(x)Aa,β0b,

where α0(x) = p(x)−β0(x)b(x)
a(x)−p(x)+1 , for x ∈ Ω.

We can iterate this argument to obtain that

v � and(x)−β0(x), (3.6)

u � an+1d(x)−αn(x), (3.7)

where for x ∈ Ω , we have

αn(x) =
p(x)−βn(x)b(x)
a(x)− p(x)+1

,

βn(x) =
p(x)−αn−1(x)c(x)

e(x)− p(x)+1
,

and

an+1(x) = a
c(x)b(x)

(a+−p−+1)(e−−p++1)
n B

− b(x)
a+−p−+1

e,αn−1c Aa,βnb. (3.8)

It is easily seen that

αn(x) =
p(x)(e(x)−p(x)+1−b(x))

(a(x)−p(x)+1)(e(x)−p(x)+1)
+

b(x)c(x)
(a(x)−p(x)+1)(e(x)−p(x)+1)

βn−1(x),

and that αn < αn−1, for n > 0. (αn) is a decreasing sequence of positive numbers.
Thus, (αn) has a limit, which is easily seen to be α(x). This entails that βn → β .

By the hypotheses in Theorem 1, we deduce that α,β > 0.
Moreover, the fact that α,β > 0 implies that αn−1(x)c(x) � p(x) and βn(x)b(x) �

p(x) , for x ∈ Ω and n > 0.
Thanks to Lemma 4, the quantities Aa,βnb and Be,αn−1c are bounded.
Hence, thanks to (3.8), there exists C > 0 such that an+1 � Ca−δ

n . Since the fact
that c(x) < a(x)− p(x)+1 and by (3.4), we have

δ (x) =
b(x)c(x)

(a+− p− +1)(e−− p+ +1)
< 1, for x ∈ Ω.

This gives, an+1 � C1+δ+...+δ n
a−δ n+1

0 and by passing to the limit, we obtain that

lim
n→∞

an+1 � C
1

1−δ .

Moreover, passing to the limit in (3.6) and (3.7) , we find that, there exist positive
constants C1,C2 such that

u � C1d(x)−α and v � C2d(x)−β .
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A symmetric argument with u0 = inf
Ω

u, proves the reversed inequalities since the fact

that b(x) < e(x)−q(x)+1 and by (3.5). Thus, we obtain, for x ∈ Ω

C1d(x)−α � u(x) � C2d(x)−α ,

and
C1d(x)−β � v(x) � C2d(x)−β . �

3.4. Nonexistence

This section is devoted to prove the nonexistence of positive solutions (u,v) to
(P) both for the boundary conditions (I), when the conditions in Theorem 1(ii) don’t
hold. We begin assuming that (u,v) is a positive solution to (P), satisfying u = v = +∞
on ∂Ω, with c(x) � a(x)− p(x)+ 1 and b(x) < e(x)− q(x)+ 1 and we will reach a
contradiction.

Notice that since (a(x)− p(x)+ 1)(e(x)− p(x)+ 1) > b(x)c(x) , for x ∈ Ω, both
conditions c(x) � a(x)− p(x)+ 1 and b(x) � e(x)− p(x)+ 1 cannot hold simultane-
ously. The second case c(x) < a(x)− p(x)+1 and b(x) � e(x)− p(x)+1, for x ∈ Ω
is treated in the same way.

Let u0 = inf
Ω

u > 0, then −div(|∇v|p(x)−2∇v) � uc(x)
0 ve(x).

Using Lemma 3 and by definition of Be,0 , we obtain

v � u
− c(x)

e+−p−+1
0 d(x)−α0(x)Be,0,

with α0(x) = p(x)
e(x)−q(x)+1 , for x ∈ Ω. Set a0 = u

− c(x)
e+−p−+1

0 Be,0.

Using this, in the first equation in (P) , we have

−div(|∇u|p(x)−2∇u) � (a0d(x)−α0(x))b(x)ua(x).

Lemma 3 gives,

u � a
− b(x)

a−−p++1
0 d(x)−β0(x)Aa,α0b,

where β0(x) = p(x)−α0(x)b(x)
a(x)−p(x)+1 , for x ∈ Ω.

Proceeding inductively, we obtain{
v � and(x)−αn(x),

u � an+1d(x)−βn(x).

Where for x ∈ Ω , we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αn(x) = p(x)−βn−1c(x)
e(x)−p(x)+1 ,

βn(x) = p(x)−αnb(x)
a(x)−p(x)+1 ,

an+1(x) = a
c(x)b(x)

(a−−p++1)(e+−p−+1)
n B

− b(x)
a−−p++1

e,βn−1c
Aa,αnb.
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Let us see that the above quantities converge as n → +∞. Indeed, we have

αn(x) =
p(x)(a(x)−p(x)+1−c(x))

(a(x)−p(x)+1)(e(x)−p(x)+1)
+

b(x)c(x)
(a(x)−p(x)+1)(e(x)−p(x)+1)

αn−1(x),

and that αn � αn−1. Thus, we deduce that the sequence (αn) is decreasing. hence,
(αn) has a limit, which is

α(x) =
p(x)(a(x)− p(x)+1− c(x))

(a(x)− p(x)+1)(e(x)− p(x)+1)−b(x)c(x)
< 0.

So, βn → p(x)(e(x)−p(x)+1−b(x))
(a(x)−p(x)+1)(e(x)−p(x)+1)−b(x)c(x) as n → ∞.

Let n , the minimum positive integer such that βn(x)c(x) � q(x) , for x∈Ω. Hence,
v is bounded. Thus no solution can exist.

4. The critical case

Now, we turn to the critical case (a(x)− p(x)+ 1)(e(x)− q(x)+ 1) = b(x)c(x) ,
for x ∈ Ω . In this case, the solutions are not unique.

4.1. Existence of solutions

THEOREM 3. Let us assume that (a(x)− p(x)+ 1)(e(x)− q(x)+ 1) = b(x)c(x),
and p(x) � q(x), for x ∈ Ω.

(i) Problem (P) admits a positive solution (u,v) ∈ W 1,p(.)(Ω)×W 1,q(.)(Ω) with the
boundary condition (F).

(ii) Problem (P) admits a positive solution (u,v) ∈ W 1,p(.)(Ω)×W1,q(.)(Ω) with the
boundary condition (I), if and only if p(x) = q(x), c(x) = a(x)− p(x)+1 and b(x) =
e(x)−q(x)+1, for x ∈ Ω.

Moreover, for the problem

(4.1)
{−Δp(x)u = uavb, x ∈ Ω,
−Δq(x)v = ucve, x ∈ Ω ,

with p(x) < a + 1 and q(x) < e + 1, for x ∈ Ω. If (u,v) is a solution of (4.1) , then

(t
b

b+c u, t−
c

b+c v) is also a solution, for every t > 0. Thus, there are infinitely many posi-
tive solutions.

(iii) Problem (P) admits a positive solution (u,v) ∈W 1,p(.)(Ω)×W1,q(.)(Ω) with the
boundary condition (SF), if and only if b(x) < e(x)−q(x)+1, for x ∈ Ω.

Moreover, if (u,v) is a solution of (4.1) , then (t−δ u,tv) is also a solution with the
following boundary conditions (4.2) , for every t > 0 and thus at least a solution with
different boundary data λ , can be obtained from one of them, where p(x) = b−δa−δ

δ ,
for x ∈ Ω.

(4.2)
{

u = t−δ λ ,
v = +∞.
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EXAMPLE 2. We give an example illustrating the main assumptions of Theorem
3. For this, we define Ω ⊂ R

2 by

Ω = {x = (x1,x2) ∈ R
2
+ : x2

1 + x2
2 < 1}.

There exists ε � 1 such that, for x ∈ Ω,⎧⎨
⎩

p(x) = x1 + x2 +1, q(x) = x1 + x2 + ε,
a(x) = 2x1 +3x2, e(x) = x1 +2x2 + ε,

b(x) = x1 +2x2, c(x) = x2 +1.

By the hypothesis of the constant ε , it is easy to see that the functions p,q,a,b,c and
e satisfy the assumptions of Theorem 3.

Proof. (i) The finite case, boundary condition (F) is easy to handle. We will use
the method of subsolutions and supersolutions. For this, we take (u,v) = (0,m) and
(u, v) = (M,0) as a subsolution and a supersolution respectively, for the small positive
constant m and for the large positive constant M.

Theorem 4 guarantees the existence of a positive solution.
(ii) First, we prove that c(x) = a(x)− p(x)+1 and b(x) = e(x)−q(x)+1 are nec-

essary conditions, for the existence of positive solutions. we will proceed by absurdity.
Assuming that c(x) > a(x)− p(x)+1 and thus b(x) < e(x)−q(x)+1.

Notice that since (a(x)− p(x)+ 1)(e(x)− q(x)+ 1) = b(x)c(x), both conditions
c(x) > a(x)− p(x)+1 and b(x) > e(x)−q(x)+1 cannot hold simultaneously.

The remaining case c(x) < a(x)− p(x)+ 1 and b(x) > e(x)− q(x)+ 1 is treated
in the same way.

Let (u,v) be a positive solution. Let u0 = inf
Ω

u > 0, we have −div(|∇v|q(x)−2∇v)�

uc(x)
0 ve(x) , Lemma 3 gives

v � u
− c(x)

e+−q−+1
0 Ve,0.

By the definition of Be,0 , we have v � u
− c(x)

e+−q−+1
0 d(x)−α0(x)Be,0.

For x ∈ Ω , we note α0(x) = q(x)
e(x)−q(x)+1 , for x ∈ Ω. We set a0 = u

− c(x)
e+−q−+1

0 Be,0,

using this in the first equation in (P) , we have

−div(|∇u|p(x)−2∇u) � (a0d(x)−α0(x))b(x)ua(x), x ∈ Ω.

Using Lemma 3 again and by the definition of Aa,α0b, we obtain

u � a
− b(x)

a−−p++1
0 d(x)−β0(x)Aa,α0b,

where β0(x) = p(x)−α0(x)b(x)
a(x)−p(x)+1 , for x ∈ Ω.

Proceeding inductively, we obtain

v(x) � and(x)−αn(x). (4.3)
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u(x) � an+1d(x)−βn(x). (4.4)

Where for x ∈ Ω , we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αn(x) = q(x)−βn−1(x)c(x)
e(x)−q(x)+1 ,

βn(x) = p(x)−αn(x)b(x)
a(x)−p(x)+1 ,

an+1(x) = a
c(x)b(x)

(a−−p++1)(e+−q−+1)
n B

− b(x)
a−−p++1

e,βn−1c
Aa,αnb.

Now, let us see that all these quantities converge as n → +∞. It is a simple calculation
to check that, for x ∈ Ω

αn(x) =
q(x)(a(x)− p(x)+1)− c(x)p(x)
(a(x)− p(x)+1)(e(x)−q(x)+1)

+ αn−1(x).

Hence αn < αn−1, for all n > 0. Thus, αn →−∞ and βn → +∞ as n → +∞.
We have by (4.4) that

−div(|∇v|q(x)−2∇v) = uc(x)ve(x) � ac(x)
n+1d(x)−c(x)βn(x)ve(x).

Thus, by Lemma 3, we obtain

v � a
− c(x)

e+−q−+1
n+1 d(x)−αn+1(x)Be,βnc.

Moreover, let n the minimum positive integer such that βn(x)c(x) � q(x), for x ∈ Ω.
We conclude that v is bounded. Hence, there is no solutions. Thus, c(x) = a(x)−
p(x)+1 and b(x) = e(x)−q(x)+1.

Next, we consider the boundary condition (I) , since p(x) = q(x) for x ∈ Ω, it
is easily to see that (U,U) is a solution to (P). Using Lemma 2, with a(x)+ e(x)−
q(x)+1 > p(x)−1, we find that U satisfies

{−Δp(x)U = Ua(x)+e(x)−q(x)+1, x ∈ Ω,
U = +∞, x ∈ ∂Ω.

Thus, u = v = Ua+e−q+1,0.

Moreover, it is easily to see that (u,v)= (t
b

b+cUa+e−q+1,0,t
− c

b+cUa+e−q+1,0) is also
a positive solution to (4.1), for t > 0. Indeed,

−div(|∇u|p(x)−2∇u) = t
b(p(x)−1)

b+c Ua+e−q(x)+1
a+e−q+1,0

= t
bc−b(a−p(x)+1)

b+c uavb.

But p(x) = a− c+1, for x ∈ Ω.
Thus, −div(|∇u|p(x)−2∇u) = uavb,−div(|∇v|q(x)−2∇v) = ucve.
(iii) We will easily show that the condition b(x) < e(x)−q(x)+1 is necessary.
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Moreover, if (u,v) is a solution to the problem (4.1){−Δp(x)(t−δ u) = t−δ (p(x)−1)uavb = tδ (a−p(x)+1)−b(t−δ u)a(tv)b,

−Δq(x)(tv) = tq(x)−1uavb = tcδ−(e−q(x)+1)(t−δ u)c(tv)e.

Due to the fact that, for x ∈ Ω, p(x) = a− b
δ +1 and thus q(x) = e− cδ +1, thanks to

the subcriticality condition. We obtain{−Δp(x)(t−δ u) = (t−δ u)a(tv)b,

−Δq(x)(tv) = (t−δ u)c(tv)e.

Thus, (t−δ u, tv) is also a solution for (P), with the boundary condition (SF).
We can easily obtain the solution (t−δ u,tv), with the following conditions{

t−δ u = t−δ λ ,
tv = +∞.

For every t > 0, t−δ λ can obtain any positive number. Thus, a solution with different
boundary λ can be obtained, from one of them.

Fix ε > 0, such as c < a+ ε − (p(x)−1), for x ∈ Ω. We consider the following
problem with the boundary condition (SF)

(4.5)

⎧⎨
⎩

−Δp(x)u = ua+εvb, x ∈ Ω,
−Δq(x)v = ucve, x ∈ Ω,
u = λ , v = +∞, x ∈ ∂Ω.

Since (a + ε − (p(x)− 1))(e− q(x) + 1) > bc, for x ∈ Ω. The system (4.5) has a
solution (uλ ,vλ ), by Theorem 1(iii) .

We can choose λ large enough, so that inf
Ω

uλ � 1.

On the one hand, one has

−Δp(x)uλ = ua+ε
λ vb

λ � ua
λ vb

λ ,

and
−Δq(x)vλ = uc

λ ve
λ � uc

λ ve
λ .

Hence (uλ ,vλ ) is a supersolution to (4.5).
On another hand, it is not hard to show that (u,v) = (λ ,λ− c

e−q−+1Ue,0) is a subso-
lution. Indeed, we have

−Δq(x)v = λ− c(q(x)−1)
e−q−+1 Ue

e,0 = λ
c(e−q(x)+1)−c(e−q−+1)

e−q−+1 λ cve

� λ
c(e−q(x)+1−e+q(x)−1)

e−q−+1 ucve � ucve,

and
−div(|∇λ |p(x)−2∇λ ) = 0 � λ avb.

Hence, by Theorem 6 in Appendix, (4.5) has a solution (u,v) with u = λ , v = +∞
on ∂Ω, for every λ > 0. �
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4.2. Nonexistence

We will now take in the consideration the nonexistence of positive solutions to
(P), with the boundary conditions (I) . Assuming that c(x) < a(x)− p(x)+1 and thus
b(x) > e(x)− q(x) + 1, since (a(x)− p(x) + 1)(e(x)− q(x) + 1) = b(x)c(x) and let
(u,v) be a positive solution. By means of iterative procedure in section 3 (Theorem
2(ii)), we obtain

u � and(x)−αn(x)Aa,βnb and v � an+1d(x)−βn(x),

where, for x ∈ Ω

αn(x) =
p(x)(e(x)−q(x)+1)−q(x)b(x)

(a(x)− p(x)+1)(e(x)−q(x)+1)
+ αn−1(x).

Hence, αn →−∞ and βn → +∞ as n → +∞.
We deduce that

−div(|∇u|p(x)−2∇u) � ab(x)
n+1d(x)−βn(x)b(x)ua(x), x ∈ Ω,

and it follows as in Lemma 3 that, u � a
− b(x)

a+−p−+1
n+1 d(x)−αn+1(x)Aa,βnc.

If n is the minimum positive integer such that βn(x)c(x) � p(x) , for x ∈ Ω. Thus,
u is bounded.

Thus, there is no solutions.

5. Appendix

In this part, we recall two results related to the method of subsolutions and super-
solutions [10], for the following system

(P)
{ −Δp(x)u = ua(x)vb(x), x ∈ Ω,

−Δq(x)v = uc(x)ve(x), x ∈ Ω,

where a(x) > p(x)−1, e(x) > q(x)−1 and b(x),c(x) > 0, for x ∈ Ω .
We start by giving the following definition.

DEFINITION 1. (see [10]) Let u, u ∈W 1,p(.)(Ω) and v, v ∈W 1,q(.)(Ω) four pos-
itive functions, such as u � u and v � v a.e. in Ω. The couple (u, v) and (u ,v) are
said to be supersolutions and subsolutions pairs respectively to (P) , if the following
inequalities are satisfied in the distribution case:

−Δp(x)u � a(x)uα1vβ1 , x ∈ Ω , for any v ∈ [v, v] ,

−Δq(x)v � b(x)uα2 vβ2 , x ∈ Ω , for any u ∈ [u, u] ,

−Δp(x)u � a(x)uα1vβ1 , x ∈ Ω , for any v ∈ [v, v] ,

−Δq(x)v � b(x)uα2vβ2 , x ∈ Ω , for any u ∈ [u, u] .
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We begin by considering the system (P), with finite boundary conditions u = λ ,
v = μ with λ ,μ > 0.

THEOREM 4. Let us assume that (u,v) is a subsolution and (u, v) is a superso-
lution to (P) with u � λ � u , v � μ � v on ∂Ω .

Then, the problem (P) admits at least a weak solution (u,v) ∈ W 1,p(.)(Ω) ×
W 1,q(.)(Ω) with u � u � u , v � v � v in Ω and u = λ , v = μ on ∂Ω .

Proof. Denote by u1 the unique positive solution to the problem (5.1) (see [1]
and the Remark 1)

(5.1)
{−Δp(x)u = vb(x)ua(x), x ∈ Ω,

u = λ , x ∈ ∂Ω.

Due to the fact that u, u are subsolution and supersolution of (P), respectively. Thus,
u, u are also subsolution and supersolution of (5.1) . By uniqueness of solution, we
have u � u1 � u in Ω .

Now, we consider v1 to be the unique solution to the problem

(5.2)

{
−Δq(x)v = uc(x)

1 ve(x), x ∈ Ω,
v = μ , x ∈ ∂Ω.

It follows similarly that v � v1 � v . Thus, in this way, we define un to be the unique
solution to (5.1), with v replaced by vn−1, such that un = λ on ∂Ω and we define the
unique solution vn to (5.2), with u1 replaced by un, such that vn = μ on ∂Ω .

We obtain two increasing sequences (un)n and (vn)n such that u � un � u and
v � vn � v.

Indeed, we have for ϕ ∈W 1,p(.)(Ω)∫
Ω

(|∇u1|p(x)−2 ∇u1∇ϕ − vb(x)ua(x)
1 ϕ) dx �

∫
Ω

(|∇u2|p(x)−2 ∇u2∇ϕ − vb(x)ua(x)
2 ϕ) dx,

and u1 = u2 = λ on ∂Ω . By the principe of the comparison [13], u1 � u2 in Ω . Thus,
u � u1 � u2 � ... � un−1 � un � ... � u and with the same argument, we obtain that
v � v1 � v2 � ... � vn−1 � vn � ... � v .

According to the above result, we have un → u , vn → v as n→+∞, for a.e x∈ Ω.
Moreover, by the regularity result in [9] and [25], we have (un)n,(vn)n ⊂C1,α(Ω).

Thus, by Ascoli-Arzela Theorem, we obtain that

un → u in C1(Ω) and vn → v in C1(Ω) as n → +∞.

Thus, by the dominate convergence Theorem, we obtain that (u,v) is a weak solution
for (P) . Moreover, u = λ , v = μ on ∂Ω and u � u � u , v � v � v in Ω . �

Now, we prove a version of the method, which is directly applicable to the problem
with infinite boundary conditions.
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THEOREM 5. Let us assume that (u,v) and (u, v) are subsolutions and superso-
lutions to (P) respectively with u = u = v = v = +∞ on ∂Ω and u � u , v � v in
Ω .

Then, the problem (P) admits at least a weak solution (u,v) ∈ W 1,p(.)(Ω) ×
W 1,q(.)(Ω) with u � u � u , v � v � v in Ω and u = v = +∞ on ∂Ω.

Proof. Let n > 0, we consider the problem

(5.3)

⎧⎨
⎩

−Δp(x)u = ua(x)vb(x), x ∈ Ωn,

−Δq(x)v = uc(x)ve(x), x ∈ Ωn,
u = λn, v = μn, x ∈ ∂Ωn,

where Ωn = {x ∈ Ω : d(x) > n} and λn,μn > 0, for all n > 0, with u � λn � u and
v � μn � v on ∂Ωn.

By Theorem 4, there exists a solution (un,vn) ∈ W 1,p(.)(Ωn)×W 1,q(.)(Ωn) of
(5.3), such that u � un � u , v � vn � v in Ωn and un = λn , vn = μn on ∂Ωn .

Thus, we construct two decreasing sequences (un)n ⊂ W 1,p(.)(Ωn) and (vn)n ⊂
W 1,q(.)(Ωn). According to the above result, we have for a.e. x ∈ Ω, un → u and vn → v
as n → 0.

However, using the regularity result in [9] and [25], we get that (un) is bounded
in C1,α(Ωn).

Thus, by the Ascoli-Arzela Theorem, (un) is relatively compact in C1(Ωn). Thus,
there exists a subsequence (unk) such as unk → u as k → 0 in C1(Ωn).

The same argument gives that vnk → v in C1(Ωn) as k → 0.

Thus, (u,v) is a weak solution to (P) verifying in addition that, u � u � u and
v � v � v in Ω. In particular, u = v = +∞ on ∂Ω. �

THEOREM 6. Let us assume that (u,v) and (u, v) are subsolutions and superso-
lutions to (P) respectively with u � λ � u , v = v = +∞ on ∂Ω and u � u , v � v in
Ω .

Then, the problem (P) admits at least a weak solution (u,v) ∈ W 1,p(.)(Ω) ×
W 1,q(.)(Ω) with u � u � u , v � v � v in Ω and u = λ , v = +∞ on ∂Ω.

Proof. The problem

(5.4)
{−Δp(x)u = vb(x)ua(x), x ∈ Ω,

u = λ , x ∈ ∂Ω,

has a unique positive solution denoting u1 , which exists thanks to [10] (see also the
Remark 1).

Moreover, since u and u are subsolution and supersolution for (P) respectively,
we have −Δp(x)u � vb(x)ua(x) and −Δp(x)u � vb(x)ua(x) . Thus, u and u are subsolution
and supersolution for (5.4) such that u � u1 � u.
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We now define v1 as the unique solution to

(5.5)

{
−Δq(x)v = uc(x)

1 ve(x), x ∈ Ω,
v = +∞, x ∈ ∂Ω.

It follows similarly that v � v1 � v.
We continue this procedure and define u2 as the unique solution to

(5.4)′
{
−Δp(x)u = vb(x)

1 ua(x), x ∈ Ω,
u = λ , x ∈ ∂Ω.

Then, it follows as previously that u � u2 � u in Ω. In addition, by the principle
of comparison, we obtain that u1 � u2. We can recursively define un as the unique
solution to (5.4)′, replacing v1 by vn−1 with un = λ on ∂Ω and we define the unique
solution vn to (5.5), replacing u1 by un−1 with vn = +∞ on ∂Ω .

In this way, we obtain two increasing sequences (un)n and (vn)n such that u �
un � u and v � vn � v in Ω, for all n > 0.

With the same process in the Theorem 4, we conclude that there exists a subse-
quence (labeled again by (un) and (vn)) such that un → u in C1(Ω) and vn → v in
C1(Ω) , where (u,v) is a solution to (P) and u � u � u , v � v � v in Ω.

As a consequence, u = λ and v = +∞ on ∂Ω. �
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