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GLOBAL TRUDINGER–MOSER INEQUALITY ON METRIC SPACES

ADIMURTHI AND PRZEMYSŁAW GÓRKA

(Communicated by J. Pečarić)

Abstract. We study Trudinger-Moser type inequalities on the entire metric measure spaces.
Moreover, we give the necessary and sufficient conditions under which the Trudinger-Moser
inequality holds.

1. Introduction

Morrey and Sobolev embedding theorems [1] play a major role in the existence
and regularity problems in PDE. Yudovich [16], Pohozaev [14] and Trudinger [15] ob-
tained the imbedding of Sobolev space W 1,p(Ω) into an Orlicz space in a bounded
domain Ω ⊂ R

n in the border line case when p = n . These type of embeddings,
called the Trudinger-Moser inequalities, play a crucial role in solving many problems
in Physics and Geometry. Recently there is a lot of interest in improving and extending
this inequality in different directions. One such is the extension of this in the entire
space (see [13]). Moreover, the Trudinger-Moser inequality was proved on complete
noncompact Riemannian manifolds [17], on the hyperbolic space [20] and on the en-
tire Heisenberg group [19]. More recently, this type of results have been extended to
the metrizable abelian groups [4] (see [7] and [3] for the definition of Sobolev spaces
on abelian groups). Furthermore the Sobolev space are generalized to metric measure
space and Trudinger imbedding has been obtained on balls in [10]. The main objective
of the paper is to prove the global version of the Trudinger-Moser inequality on metric
measure spaces.

The remainder of the paper is structured as follows. In Section 2, we introduce
the notations and recall the notion of Sobolev spaces on general metric measure spaces.
Our principal assertion, concerning the global Trudinger-Moser inequality is formu-
lated and proven in Section 3. We also give sufficient and necessary conditions for that
the Trudinger-Moser inequality holds.
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2. Preliminaries

Let (X ,ρ ,μ) be a metric measure space equipped with a metric ρ and the Borel
regular measure μ . We assume throughout the paper that the measure of every open
nonempty set is positive and that the measure of every bounded set is finite. In the most
part of the paper we shall assume that the metric measure space (X ,ρ ,μ) is Ahlfors
s-regular (we also say that (X ,ρ ,μ) is a metric measure space with s-regular measure
μ ). It means that there exists a constant b such that

1
b
rs � μ (B(x,r)) � brs

for all balls B(x,r) ⊂ X with r � diamX .
In particular, such kind of spaces are doubling, it means that, there exists a constant

Cd > 0 such that for every ball B(x,r) ,

μ (B(x,2r)) � Cdμ (B(x,r)) .

We are now in a position to recall the notion of Sobolev spaces on metric measure
spaces (see [8]). Let (X ,ρ ,μ) be a metric measure space. We say that a p -integrable
function f belongs to the Hajłasz-Sobolev space M1,p(X) if there exists non negative
g ∈ Lp(X) , called a generalized gradient or Hajłasz gradient of f , such that

| f (x)− f (y)| � ρ(x,y)(g(x)+g(y)) a.e. for x,y ∈ X .

We equip the space M1,p(X) with the norm

‖ f‖M1,p(X) = ‖ f‖Lp(X) + inf‖g‖Lp(X),

where the infimum is taken over all the generalized gradients. Then M1,p is a Banach
space. For the basic properties of this kind of spaces we refer to [8, 9, 10, 11, 12].

If f is locally integrable and A is a measurable set then by fA we denote the
integral average of the function f over the set A , that is

fA := −
∫

A
f dμ =

1
μ(A)

∫
A

f dμ .

3. Trudinger inequality

In this section, we show the Trudinger-Moser inequality on the entire metric mea-
sure spaces. We start with the following lemma.

LEMMA 1. Let (X ,ρ ,μ) is a connected metric measure space with s-regular
measure μ , where s > 1 . There exist C1,C2 depending on s and b, such that for
any u ∈ M1,s(X) the following inequality holds

−
∫

B
exp

⎛
⎝C

(
|u|

‖u‖Ls(X) +‖g‖Ls(X)

) s
s−1
⎞
⎠dμ � C2 exp

(
C1

diam(B)

) s
s−1

, (1)
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where C =
(

C1

2(2b)
1
s

) s
s−1

and g is a Hajłasz gradient of u .

Proof. First of all let us recall the local version of the Trudinger-Moser inequality
([10]). Namely, there exist C1 and C2 such that

−
∫

B
exp

(
C1μ(B)

1
s |u−uB|

diam(B)‖g‖Ls(6B)

) s
s−1

dμ � C2, (2)

where 6B is the ball with the same center as B and with radius six-time that of B . Since
the measure μ is s-regular, by the Hölder inequality we have

C1

2b
1
s

|u|
‖u‖Ls(X) +‖g‖Ls(X)

� C1μ(B)
1
s

diam(B)
|u−uB|

‖u‖Ls(X) +‖g‖Ls(X)
+

C1μ(B)
1
s

diam(B)
|uB|

‖u‖Ls(X) +‖g‖Ls(X)

� C1μ(B)
1
s

diam(B)
|u−uB|
‖g‖Ls(6B)

+
C1

diam(B)
.

Thus

(
C1

2(2b)
1
s

|u|
‖u‖Ls(X) +‖g‖Ls(X)

) s
s−1

�
(

C1μ(B)
1
s

diam(B)
|u−uB|
‖g‖Ls(6B)

) s
s−1

+
(

C1

diam(B)

) s
s−1

.

Finally, from inequality (2) the proof follows. �

Next, we state and prove our principal assertion.

THEOREM 1. Suppose (X ,ρ ,μ) is a connected metric measure space with s-
regular measure μ , where s > 1 .

i) If β < C , then there exists B such that1

sup
‖u‖M1,p�1

∫
X

(
eβ |u|

s
s−1 −

�s�−2

∑
k=0

β kuk s
s−1

k!

)
dμ < B. (3)

ii) For any β > 0 and for any u ∈ M1,p(X) we have

∫
X

(
eβ |u|

s
s−1 −

�s�−2

∑
k=0

β kuk s
s−1

k!

)
dμ < ∞.

1 �α�= min{k ∈ Z : k � α}
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The proof of the theorem relies on methods of Yang (see [17]).

Proof. i) We shall need the following lemma.

LEMMA 2. Let u ∈ M1,s(X) such that suppu,suppg ⊂ B(x0,r) , where x0 ∈ X
and r > 0 . If ∫

B(x0,r)
|u|sdμ +

∫
B(x0,r)

gsdμ � 1,

then

∫
B(x0,r)

(
eC |u|

s
s−1 −

�s�−2

∑
k=0

C kuk s
s−1

k!

)
dμ

� C2μ(B)exp

(
C1

diam(B)

) s
s−1
(∫

B(x0,r)
|u|sdμ +

∫
B(x0,r)

gsdμ
)

.

Proof. Let us introduce the following quantity

F(A, f ,h) =
(∫

A
| f |sdμ +

∫
A
hsdμ

) 1
s

.

Since F(B(x0,r),u,g) � 1 and �s� � s , we have

eC |u|
s

s−1 −
�s�−2

∑
k=0

C kuk s
s−1

k!
=

∞

∑
k=�s�−1

C kuk s
s−1

k!

�
(∫

B(x0,r)
|u|sdμ +

∫
B(x0,r)

gsdμ
) ∞

∑
k=�s�−1

C k
(

u
F(B(x0,r),u,g)

)k s
s−1

k!

�
(∫

B(x0,r)
|u|sdμ +

∫
B(x0,r)

gsdμ
)

expC

(
u

F(B(x0,r),u,g)

) s
s−1

.

This together with Lemma 1 completes the proof of Lemma 2. �

We are now in a position to continue the proof of Theorem 1. In order to show the
theorem we need to use the following Covering lemma (Lemma 2.1 in [2]).

LEMMA 3. (Covering lemma) Let (X ,ρ ,μ) be a metric measure space with dou-
bling measure and r > 0 . Then, there exists a sequence {xi} ⊂ X such that for any
δ > r :

a) X =
⋃

i B(xi,r);

b) For any x ∈ X , x belongs to at most C6
d

(
δ
r

)log2Cd
balls B(xi,δ ) .
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Let u ∈ M1,p(X) with the generalized gradient g such that

‖u‖Ls(X) +‖g‖Ls(X) � 1.

For xi ∈ X and r > 0 we define the following Lipschitz cut-off function

φxi ,r(x) :=

⎧⎨
⎩

1
r (2r−ρ(x,xi)) if x ∈ B(xi,2r)\B(xi,r)
1 if x ∈ B(xi,r)
0 if x ∈ X \B(xi,2r) ,

where the Lipschitz constant Lr = 1
r does not depend on xi .

Then φxi ,ru ∈ M1,p(X) . Indeed, taking

gxi(x) = (|u(x)|Lr +g(x))χB(xi,2r),

one can easily check that gxi is the Hajłasz gradient of φxi ,ru . Furthermore, the Minkowski
inequality together with the elementary inequality (a+b)δ � aδ +bδ with 0 < δ < 1
lead to

(∫
B(xi,2r)

|φxi ,ru|sdμ +
∫

B(xi,2r)
gs

xi
dμ
) 1

s

�
(∫

B(xi,2r)
|u|sdμ

) 1
s

+
(∫

B(xi,2r)

(
1
r
|u|+g

)s

dμ
) 1

s

�
(

1+
1
r

)(‖u‖Ls(X) +‖g‖Ls(X)
)
.

Thus, taking

φb
xi,r =

φxi,r(
1+ 1

r

)
we have that φb

xi,ru ∈ M1,p(X) and

∫
B(xi,2r)

|φb
xi,ru|sdμ +

∫
B(xi,2r)

(
gb

xi

)s
dμ � 1.

Subsequently, by the Covering Lemma we get

∫
X

(
eβ |u|

s
s−1 −

�s�−2

∑
k=0

β kuk s
s−1

k!

)
dμ �

∞

∑
i=1

∫
B(xi,r)

(
eβ |u|

s
s−1 −

�s�−2

∑
k=0

β kuk s
s−1

k!

)
dμ

=
∞

∑
i=1

∫
B(xi,r)

⎛
⎜⎝eβ(1+ 1

r )
s

s−1 |φb
xi,r

u|
s

s−1 −
�s�−2

∑
k=0

(
β
(
1+ 1

r

) s
s−1
)k |φb

xi,ru|k
s

s−1

k!

⎞
⎟⎠dμ .
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Next, since β < C , we can take r large such that β
(
1+ 1

r

) s
s−1 � C and using Lemma

2, we have

∫
X

(
eβ |u|

s
s−1 −

�s�−2

∑
k=0

β k|u|k s
s−1

k!

)
dμ

� C2brs exp

(
C1

2r

) s
s−1 ∞

∑
i=1

(∫
B(xi,2r)

|φb
xi ,ru|sdμ +

∫
B(xi,2r)

(
gb

xi

)s
dμ
)

� C2brs exp

(
C1

2r

) s
s−1
(

1+
2s−1

rs

) ∞

∑
i=1

(∫
B(xi,2r)

|u|sdμ +
∫

B(xi,2r)
gsdμ

)

� C2brs exp

(
C1

2r

) s
s−1
(

1+
2s−1

rs

)
(b22s)7

(∫
X
|u|sdμ +

∫
X

gsdμ
)

,

where in the last line we applied the Covering lemma. This completes the proof of i).
ii) First of all, let us define the subset of Lipschitz function on X with support on

bunded sets
Lip0(X) := {φ ∈ Lip(X) : suppφ is bounded} .

We shall need the following density lemma.

LEMMA 4. Let 1 < p < ∞ , then the set Lip0(X) is dense in M1,p(X) .

Proof. Since the set Lip(X)∩M1,p(X) is dense in M1,p(X) (see Theorem 5 in
[8]), it is enough to show that Lip0(X) is dense in Lip(X)∩M1,p(X) . Thus, let us fix
u ∈ Lip(X)∩M1,p(X) and denote by g ∈ Lp(X) a Hajłasz gradient of u . For ε > 0
there exists Rε > 1 such that∫

X\B(x0,Rε)
(|u|p +gp)dμ � ε.

Next, let us define

φε(x) :=

⎧⎨
⎩

1
Rε

(2Rε −ρ(x,x0)) if x ∈ B(x0,2Rε)\B(x0,Rε)
1 if x ∈ B(x0,Rε)
0 if x ∈ X \B(x0,2Rε) ,

and uε = uφε ∈ Lip0(X) . Next, we show that uε → u in M1,p(X)∫
X
|uε −u|pdμ =

∫
X\B(x0,Rε )

|u|p|1−φε |pdμ �
∫

X\B(x0,Rε )
|u|pdμ � ε,

this yields ‖u−uε‖Lp(X) → 0 as ε → 0. Moreover, by a direct calculations we get that
the function

gε = (|u|+g)χX\B(x0,Rε )

satisfies
|(uε −u)(x)− (uε −u)(y)|� ρ(x,y)(gε(x)+gε(y))
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for almost every x,y ∈ X . We have∫
X

gp
ε dμ � 2p−1

∫
X\B(x0,Rε )

(|u|p +gp)dμ � 2pε,

and thus we get that ‖uε −u‖M1,p(X) → 0 as ε → 0. This completes the proof. �
We are now in a position to continue the proof of the theorem. Let us take u ∈

M1,p(X) , then by virtue of the above lemma for any ε > 0 there exists uε ∈ Lip0(X)
such that ‖u−uε‖M1,p(X) � ε . Thus taking into account Lemma 2.2 form [18] we get

eβ |u|
s

s−1 −
�s�−2

∑
k=0

β kuk s
s−1

k!
=

∞

∑
�s�−1

β k|u|k s
s−1

k!

�
∞

∑
�s�−1

β k

k!

(
2

1
s−1 |u−uε | s

s−1 +2
1

s−1 |uε | s
s−1

)k

� 1
2

∞

∑
�s�−1

β k

k!

⎛
⎝2

1
s−1 ε

s
s−1

(
|u−uε |

‖u−uε‖M1,p(X)

) s
s−1
⎞
⎠

k

+
1
2

∞

∑
�s�−1

β k

k!

(
2

1
s−1 |uε | s

s−1

)k

= I1 + I2.

Let us fix ε > 0 such that 1
2s−1 ε

s
s−1 < C , then from i) we get that

∫
X

I1dμ < 2B.

Furthermore, since uε ∈ Lip0(X) , we have∫
X

I2dμ < ∞.

The proof is complete. �
Finally, we give the following characterization of metric spaces on which the

Trudinger-Moser inequality holds.

THEOREM 2. Let (X ,ρ ,μ) be a connected metric measure space with doubling
measure μ . Let Cd > 2 be a doubling constant and s = log2Cd , then the following
conditions are equivalent

i) There exist β and B such that

sup
‖u‖M1,s�1

∫
X

(
eβ |u|

s
s−1 −

�s�−2

∑
k=0

β kuk s
s−1

k!

)
dμ < B. (4)

ii) There exists θ > 0 such that for any x ∈ X , the following inequality holds

μ(B(x,1)) � θ .
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Proof. Let us assume that inequality (4) holds. Hence, for u ∈ M1,s(X) from (4)
we get the following inequality

∫
X

∞

∑
k=�s�−1

β k
(

u
‖u‖

M1,p

)k s
s−1

k!
dμ < B.

Thus, for any k � �s�−1 we have

(∫
X
|u| s

s−1 kdμ
) s−1

sk

�
(

k!
β k B

) s−1
sk

‖u‖M1,s(X).

Hence, by the interpolation inequality we get that for any q � s we get

M1,s(X) ↪→ Lq(X).

In view of Theorem 3.2 from [2], we conclude

μ(B(x,r)) � b(δ )rδ ,

where 1
δ = 1

s − 1
q and r � 1. In particular, we have that there exists θ > 0 such that

for any x ∈ X , the following estimate holds μ(B(x,1)) � θ .
Now, if we assume that the measure is doubling such that μ(B(x,1)) � θ , we get

for any r � 1
μ(B(x,r)) � θC−2

d rs.

Hence, we get a version of inequality (1) for balls with diam(B) � 1
2 . Next, we can

proceed analogously to the proof of Theorem 1 and we obtain inequality (4). The details
are left to the reader. Thus, the whole proof of Theorem 2 is complete. �

REMARK 1. To get necessary conditions under which the Trudinger-Moser in-
equality holds we do not need assume that the metric space is connected.

REMARK 2. Condition ii) appears in natural way in the characterization of rela-
tively compact sets in Lebesgue space (see [5, 6]).
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[4] P. GÓRKA, T. KOSTRZEWA, Sobolev Spaces on Metrizable Groups, Ann. Acad. Sci. Fenn. 40 (2015),

837–849.
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