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Abstract. The aim of this paper is to characterize in broad classes of means the so-called Hardy
means, i.e., those means M :

⋃∞
n=1 R

n
+ → R+ that satisfy the inequality

∞

∑
n=1

M(x1 , . . . ,xn) � C
∞

∑
n=1

xn

for all positive sequences (xn) with some finite positive constant C . One of the main results
offers a characterization of Hardy means in the class of symmetric, increasing, Jensen concave
and repetition invariant means and also a formula for the best constant C satisfying the above
inequality.

1. Introduction

Hardy’s celebrated inequality (cf. [23], [24]) states that, for p > 1,

∞

∑
n=1

(x1 + · · ·+ xn

n

)p
�
( p

p−1

)p ∞

∑
n=1

xp
n , (1.1)

for all nonnegative sequences (xn) .
This inequality, in integral form was stated and proved in [23] but it was also

pointed out that this discrete form follows from the integral version. Hardy’s original
motivation was to get a simple proof of Hilbert’s celebrated inequality. About the enor-
mous literature concerning the history, generalizations and extensions of this inequality,
we recommend four recent books [30], [31], [44], and [46] for the interested readers.

In this paper, we follow the approach in generalizing Hardy’s inequality of the
paper [62]. The main idea is to rewrite (1.1) in terms of means.
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First, replacing xn by x1/p
n and p by 1/p , we get that

∞

∑
n=1

(xp
1 + · · ·+ xp

n

n

)1/p
�
( 1

1− p

)1/p ∞

∑
n=1

xn (1.2)

for 0 < p < 1. This inequality was also established for p < 0 by Knopp [28]. Taking
the limit p → 0, the so-called Carleman inequality (cf. [10]) can also be derived:

∞

∑
n=1

n
√

x1 · · ·xn � e
∞

∑
n=1

xn. (1.3)

It is also important to note that the constants of the right hand sides of the above in-
equalities are the smallest possible. For further developments and historical remarks
concerning inequality (1.3), we refer to the paper Pečarić–Stolarsky [49].

Now define for p ∈ R the p th power (or Hölder) mean of the positive numbers
x1, . . . ,xn by

Pp(x1, . . . ,xn) :=

⎧⎨
⎩
(xp

1 + · · ·+ xp
n

n

) 1
p

if p �= 0,

n
√

x1 · · ·xn if p = 0.

(1.4)

The power mean P1 is the arithmetic mean which will also be denoted by A in the
sequel.

Observe that all of the above inequalities are particular cases of the following one

∞

∑
n=1

M(x1, . . . ,xn) � C
∞

∑
n=1

xn, (1.5)

where M is a mean on R+ , that is, M is a real valued function defined on the set⋃∞
n=1 R

n
+ such that, for all n ∈ N , x1, . . . ,xn > 0,

min(x1, . . . ,xn) � M(x1, . . . ,xn) � max(x1, . . . ,xn).

In the sequel, a mean M will be called a Hardy mean if there exists a positive real
constant C such that (1.5) holds for all positive sequences x = (xn) . The smallest
possible extended real value C such that (1.5) is valid will be called the Hardy constant
of M and denoted by H∞(M) . Due to the Hardy, Carleman, and Knopp inequalities,
the p th power mean is a Hardy mean if p < 1. One can easily see that the arithmetic
mean is not a Hardy mean, therefore the following result holds.

THEOREM 1.1. Let p ∈ R . Then, the power mean Pp is a Hardy mean if and
only if p < 1 . In addition, for p < 1 ,

H∞(Pp) =

{(
1− p

)− 1
p if p �= 0,

e if p = 0.
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The notion of power means is generalized by the concept of quasi-arithmetic
means (cf. [24]): If I ⊆R is an interval and f : I →R is a continuous strictly monotonic
function then the quasi-arithmetic mean M f :

⋃∞
n=1 In → R is defined by

M f (x1, . . . ,xn) := f−1
(

f (x1)+ · · ·+ f (xn)
n

)
, x1, . . . ,xn ∈ I. (1.6)

By taking f as a power function or a logarithmic function on I = R+ , the resulting
quasi-arithmetic mean is a power mean. It is well-known that Hölder means are the
only homogeneous quasi-arithmetic means (cf. [24], [61], [48]).

The following result which completely characterizes the Hardy means among
quasi-arithmetic means is due to Mulholland [45].

THEOREM 1.2. Let f : R+ → R be a continuous strictly monotonic function.
Then, the quasi-arithmetic mean M f is a Hardy mean if and only if there exist con-
stants p < 1 and C > 0 such that, for all n ∈ N and x1, . . . ,xn > 0 ,

M f (x1, . . . ,xn) � CPp(x1, . . . ,xn).

In 1938 Gini introduced another extension of power means: For p,q∈R , the Gini
mean Gp,q of the variables x1, . . . ,xn > 0 is defined as follows:

Gp,q(x1, . . . ,xn) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
xp
1 + · · ·+ xp

n

xq
1 + · · ·+ xq

n

) 1
p−q

if p �= q,

exp

(
xp
1 ln(x1)+ · · ·+ xp

n ln(xn)
xp
1 + · · ·+ xp

n

)
if p = q.

(1.7)

Clearly, in the particular case q = 0, the mean Gp,q reduces to the p th Hölder mean
Pp . It is also obvious that Gp,q = Gq,p . A common generalization of quasi-arithmetic
means and Gini means can be obtained in terms of two arbitrary real functions. These
means were introduced by Bajraktarević [2], [3] in 1958. Let I ⊆ R be an interval
and let f ,g : I → R be continuous functions such that g is positive and f/g is strictly
monotone. Define the Bajraktarević mean B f ,g :

⋃∞
n=1 In → R by

B f ,g(x1, . . . ,xn) :=
( f

g

)−1
(

f (x1)+ · · ·+ f (xn)
g(x1)+ · · ·+g(xn)

)
, x1, . . . ,xn ∈ I.

One can check that B f ,g is a mean on I . In the particular case g ≡ 1, the mean B f ,g

reduces to M f , that is, the class of Bajraktarević means is more general than that of
the quasi-arithmetic means. By taking power functions, we can see that the Gini means
also belong to this class. It is a remarkable result of Aczél and Daróczy [1] that the
homogeneous means among the Bajraktarević means defined on I = R+ are exactly
the Gini means.

Finally, we recall the concept of the most general means considered in this paper,
the notion of the deviation means introduced by Daróczy [12] in 1972. A function
E : I × I → R is called a deviation function on I if E(x,x) = 0 for all x ∈ I and the
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function y �→ E(x,y) is continuous and strictly decreasing on I for each fixed x ∈ I .
The E -deviation mean or Daróczy mean of some values x1, . . . ,xn ∈ I is now defined
as the unique solution y of the equation

E(x1,y)+ · · ·+E(xn,y) = 0

and is denoted by DE(x1, . . . ,xn) . It is immediate to see that the arithmetic deviation
A(x,y) = x−y generates the arithmetic mean. More generally, if E : I× I →R is of the
form E(x,y) := f (x)−g(x)

( f
g

)
(y) for some continuous function f ,g : I →R such that

g is positive and f/g is strictly monotone then DE = B f ,g . Thus, Hölder means, quasi-
arithmetic means, Gini means and Bajraktarević means are particular Daróczy means.
The class of deviation means was slightly generalized to the class of quasi-deviation
means and this class was completely characterized by Páles in [51].

The following result, which gives necessary and also sufficient conditions for the
Hardy property of deviation means was established by Páles and Persson [62] in 2004.

THEOREM 1.3. Let E : R+ ×R+ → R be a deviation on R+ . If DE is a Hardy
mean, then there exists a positive constant C such that

DE(x1, . . . ,xn) � CA(x1, . . . ,xn)

holds for all n ∈ N and x1, . . . ,xn > 0 and there is no positive constant C∗ such that

C∗A(x1, . . . ,xn) � DE(x1, . . . ,xn)

be valid on the same domain. Conversely, if

DE(x1, . . . ,xn) � CPp(x1, . . . ,xn)

is satisfied with a parameter p < 1 and a positive constant C , then DE is a Hardy
mean.

As a corollary of the previous result, necessary and also sufficient conditions for
the Hardy property were established in the class of Gini means in the same paper.

THEOREM 1.4. Let p,q ∈ R . If Gp,q is a Hardy mean, then

min(p,q) � 0 and max(p,q) � 1.

Conversely, if
min(p,q) � 0 and max(p,q) < 1,

then Gp,q is a Hardy mean.

It has been an open problem since 2004 whether the second condition was a nec-
essary and sufficient condition for the Hardy property and also the best Hardy constant
was to be determined.

The necessary and sufficient condition for the Hardy property of Gini means was
finally found by Pasteczka [47] in 2015. The key was the following general necessary
condition for the Hardy property.
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LEMMA 1.5. Assume that M :
⋃∞

n=1 R
n
+ → R+ is a Hardy mean. Then, for all

positive non-�1 sequences (xn) ,

liminf
n→∞

x−1
n M(x1, . . . ,xn) < ∞.

Applying this necessary condition in the class of Gini means with the harmonic
sequence xn := 1

n , Pasteczka [47] obtained the following characterization of the Hardy
property for Gini means.

THEOREM 1.6. Let p,q ∈ R . Then Gp,q is a Hardy mean if and only if

min(p,q) � 0 and max(p,q) < 1.

There was no progress, however, in establishing the Hardy constant of the Gini
means. There was only an upper estimate obtained by Páles and Persson in [62].

Motivated by all these preliminaries, the purpose of this paper is twofold:
— To find (in terms of easy-to-check properties) a large subclass of Hardy means.
— To obtain a formula for the Hardy constant in that subclass of means.

2. Means and their basic properties

For investigating the Hardy property of means, we recall several relevant notions.
Let I ⊆ R be an interval and let M :

⋃∞
n=1 In → I be an arbitrary mean.

We say that M is symmetric, (strictly) increasing, and Jensen convex (concave)
if, for all n ∈ N , the n -variable restriction M|In is a symmetric, (strictly) increasing in
each of its variables, and Jensen convex (concave) on In , respectively. If I = R+ , we
can analogously define the notion of homogeneity of M .

The mean M is called repetition invariant if, for all n,m∈N and (x1, . . . ,xn)∈ In ,
the following identity is satisfied

M(x1, . . . ,x1︸ ︷︷ ︸
m-times

, . . . ,xn, . . . ,xn︸ ︷︷ ︸
m-times

) = M(x1, . . . ,xn).

The mean M is strict if for any n � 2 and any non-constant vector (x1, . . . ,xn) ∈
In ,

min(x1, . . . ,xn) < M(x1, . . . ,xn) < max(x1, . . . ,xn).

The mean M is said to be min -diminishing if, for any n � 2 and any non-nonstant
vector (x1, . . . ,xn) ∈ In ,

M(x1, . . . ,xn,min(x1, . . . ,xn)) < M(x1, . . . ,xn).

It is easy to check that quasi-arithmetic means are symmetric, strictly increasing, repe-
tition invariant, strict and min-diminishing. More generally, deviation means are sym-
metric, repetition invariant, strict and min-diminishing (cf. [51]). The increasingness
of a deviation mean DE is equivalent to the increasingness of the deviation E in its
first variable. The Jensen concavity/convexity of quasi-arithmetic and also of deviation



1146 Z. PÁLES AND P. PASTECZKA

means can be characterized by the concavity/convexity conditions on the generating
functions. All these characterizations are consequences of the general results obtained
in a series of papers by Losonczi [33, 34, 36, 35, 37, 38] (for Bajraktarević means) and
by Daróczy [14, 11, 12, 15, 16] and Páles [50, 52, 53, 54, 55, 56, 57, 58, 59, 60] (for
(quasi-)deviation means).

2.1. Kedlaya means

The notion of a Kedlaya mean that we introduce below turns out to be indispens-
able for the investigation of Hardy means. A mean M :

⋃∞
n=1 In → I is called a Kedlaya

mean if, for all n ∈ N and (x1, . . . ,xn) ∈ In ,

M(x1)+M(x1,x2)+ · · ·+M(x1, . . . ,xn)
n

� M

(
x1,

x1 + x2

2
, . . . ,

x1 + · · ·+ xn

n

)
. (2.1)

The motivation for the above terminology comes from the papers [26, 27] by Kedlaya,
where he proved that the geometric mean satisfies the inequality (2.1), i.e., it is a Ked-
laya mean. The next result provides a sufficient condition in order that a mean be a
Kedlaya mean.

THEOREM 2.1. Every symmetric, Jensen concave and repetition invariant mean
is a Kedlaya mean.

Proof. Let M :
⋃∞

n=1 In → I be a symmetric, Jensen concave and repetition in-
variant mean. Fix n ∈ N and (x1, . . . ,xn) ∈ In . Adopting Kedlaya’s original proof, for
(i, j,k) ∈ {1, . . . ,n}3 , we define

ak(i, j) : = (n−1)! ·
(

n− i
j− k

)(
i−1
k−1

)/(
n−1
j−1

)

=
(n− i)!(n− j)!(i−1)!( j−1)!

(n− i− j + k)!(i− k)!( j− k)!(k−1)!
.

To provide the corectness of this definition we assume that m! = ∞ for negative integers
m (it is a natural extension of gamma function). Then, according to [26], we have the
following properties:

(1) ak(i, j) � 0 for all i, j, k ;

(2) ak(i, j) ∈ N∪{0} for all i, j, k ;

(3) ak(i, j) = 0 for k > min(i, j) ;

(4) ak(i, j) = ak( j, i) for all i, j, k ;

(5) ∑n
k=1 ak(i, j) = (n−1)! for all i, j ;

(6) ∑n
i=1 ak(i, j) =

{
n!/ j for k � j,

0 for k > j.
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Let us construct a matrix A of size n!×n! divided into n2 blocks (Ai, j)i, j∈{1,...,n}
of size (n−1)!× (n−1)! .

The first row of each block Ai, j contains the number k exactly ak(i, j) times for
k ∈ {1, . . . ,n} ; this could be done by (5). The subsequent rows are all cyclic permuta-
tions of the first one. In this way each row and each column of Ai, j contains the number
k exactly ak(i, j) times.

Now, let cp(k) denote the occurrence of the number k appearing in the p th row
of A . Then, by (4), cp(k) is equal to the number of occurrences of k in the p th column
of A .

We are going to calculate cp(k) . The p th row has a nonempty intersection with
the block Ai, j if

i =
⌊

p−1
(n−1)!

⌋
+1 =: b(p).

Whence, applying property (6), we get

cp(k) =
n

∑
i=1

ak(i,b(p)) =

⎧⎨
⎩n!/b(p) for k � b(p),

0 for k > b(p).

Now, let us consider the matrix A′ obtained from A by replacing k �→ xk for k ∈
{1, . . . ,n} . We will calculate the mean value of the elements of A′ in two different
ways. First, we calculate the mean M of each column of A′ . By the Jensen concavity
of M , the arithmetic mean of the results so obtained does not exceed the result of calcu-
lating arithmetic mean of each row of A′ and then taking the M mean of the resulting
vector of length n! . Whence, using the symmetry and the repetition invariance of M ,
we obtain

1
n!

(
(n−1)!M(x1)+ (n−1)!M(x1,x2)+ · · ·+(n−1)!M(x1,x2, . . . ,xn)

)
� M

(
x1,

x1 + x2

2
, . . . ,

x1 + x2 + · · ·+ xn

n

)
which simplifies to the inequality (2.1) to be proved. �

COROLLARY 2.2. If, in addition to the assumptions of Theorem 2.1, M is also
increasing and I = R+ , then

M(x1)+M(x1,x2)+ · · ·+M(x1, . . . ,xn)

� n ·M
(

x1 + · · ·+ xn,
x1 + · · ·+ xn

2
, . . . ,

x1 + · · ·+ xn

n

)
.

2.2. Gaussian product

The Gaussian product of means is a broad extension of Gauss’ idea of the arith-
metic-geometric mean. In 1800 (this year is due to [64]) he proposed the following
two-term recursion:

xn+1 =
xn + yn

2
, yn+1 =

√
xnyn, n = 0,1, . . . ,
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where x0 and y0 are positive numbers. Gauss [20, p. 370] proved that both (xn)∞
n=1 and

(yn)∞
n=1 converge to a common limit, which is called arithmetic-geometric mean of the

initial values x0 and y0 . J. M. Borwein and P. B. Borwein [9] extended some earlier
ideas [19, 32, 63] and generalized this iteration to a vector of continuous, strict means of
an arbitrary length. For several recent results about Gaussian product of means see the
papers by Baják and Páles [4, 5, 6, 7], by Daróczy and Páles [13, 17, 18], by Głazowska
[21, 22], by Matkowski [39, 40, 41, 42], and by Matkowski and Páles [43].

Given N ∈ N and a vector (M1, . . . ,MN) of means defined on a common interval I
and having values in I (i.e. Mi :

⋃∞
n=1 In → I for every i ∈ {1, . . . ,N} ), let us introduce

the mapping M :
⋃∞

n=1 In → IN by

M(v) := (M1(v),M2(v), . . . ,MN(v)), v ∈
∞⋃

n=1

In.

Whenever, for every i ∈ {1, . . . ,N} and every v ∈ ⋃∞
n=1 In , the limit limk→∞[Mk(v)]i

exists and does not depend on i , then the value of this limit will be called the Gaussian
product of (M1, . . . ,MN) evaluated at v . We will denote this limit by M⊗(v) . It is
well-known that the Gaussian product can equivalently be defined as a unique function
satisfying the following two properties:

(i) M⊗ ◦M(v) = M⊗(v) for all v ∈⋃∞
n=1 In ,

(ii) min(v) � M⊗(v) � max(v) for all v ∈⋃∞
n=1 In .

Frequently, whenever each of the means Mi , i ∈ {1, . . . ,N} has a certain property,
then M⊗ inherits this property. The lemma below (in view of Theorem 2.1) is its very
useful exemplification.

LEMMA 2.3. Let I be an interval, N ∈ N , and let (M1, . . . ,MN) :
⋃∞

n=1 In → IN .
If, for each i ∈ {1, . . . ,N} , Mi is symmetric/homogeneous/repetition invariant/increas-
ing and Jensen concave/convex, then so is their Gaussian product M⊗ .

Proof. The first four properties are naturally inherited by all of the functions
[Mk]i , for k ∈ N , i ∈ {1, . . . ,N} and, finally, by their pointwise limit. The verifica-
tion of the statement about the Jensen concavity is just a little bit more sophisticated.
In fact, the idea presented below could also be adapted to the remaining properties.

Assume that M1, . . . ,MN are increasing and Jensen concave. We will prove that
M⊗ is Jensen concave. Let x(0) , y(0) be the equidimensional vectors and m(0) =
1
2(x(0) + y(0)) . Let

x(k+1) = M(x(k)), y(k+1) = M(y(k)), m(k+1) = M(m(k)), k ∈ N.

We are going to prove that

[m(k)]i � 1
2 [x(k) + y(k)]i for any i ∈ {1, . . . ,N} and k ∈ N. (2.2)
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Obviously, this holds for k = 0. Let us assume that (2.2) holds for some k ∈ N and any
i . Then, by the increasingness and Jensen concavity of Mi ,

[m(k+1)]i = Mi(m(k)) � Mi

(
1
2(x(k) + y(k))

)
� 1

2

(
Mi(x(k))+Mi(y(k))

)
= 1

2

(
[x(k+1)]i +[y(k+1)]i

)
= 1

2 [x(k+1) + y(k+1)]i.

Upon taking the limit k → ∞ , one gets

M⊗

(
x(0) + y(0)

2

)
= M⊗(m(0)) � 1

2

(
M⊗(x(0))+M⊗(y(0))

)
,

which proves that M⊗ is Jensen concave, indeed. �

3. Main Results

In the sequel, let I ⊆ R be a nondegenerate interval such that inf I = 0. We will
denote by �1(I) the collection of all sequences x = (xn)∞

n=1 such that, for all n ∈ N ,
xn ∈ I and ‖x‖1 := ∑∞

n=1 xn is convergent, i.e., x ∈ �1 .
Recall (slightly extending the definition) that, for a given mean M :

⋃∞
n=1 In → I ,

the constant H∞(M) is the smallest nonnegative extended real number, called the Hardy
constant of M , such that

∞

∑
n=1

M(x1, . . . ,xn) � H∞(M)
∞

∑
n=1

xn, (xn)∞
n=1 ∈ �1(I). (3.1)

If H∞(M) is finite, then we say that M is a Hardy mean. Given also n ∈ N , we define
Hn(M) to be the smallest nonnegative number such that

M(x1)+ . . .+M(x1, . . . ,xn) � Hn(M)(x1 + · · ·+ xn), (x1, . . . ,xn) ∈ In. (3.2)

Due to the mean value property of M , for n∈N , we easily obtain that 1 � Hn(M) � n .
The sequence

(
Hn(M)

)∞
n=1 will be called the Hardy sequence of M .

Several estimates of the Hardy sequences for power means were given during the
years. For example Kaluza and Szegő [25] proved Hn(Pp) � 1

n(exp(1/n)−1) ·H∞(Pp)

for p ∈ [0,1) and n∈ N . Moreover it is known [24, p.267] that Hn(P0) � (1+ 1
n )n for

all n ∈ N .
The basic properties of the Hardy sequence are established in the following

PROPOSITION 3.1. For every mean M :
⋃∞

n=1 In → I , its Hardy sequence is non-
decreasing and

lim
n→∞

Hn(M) = H∞(M). (3.3)

Proof. To verify the nondecreasingness of the Hardy sequence of M , let (x1, . . . ,xn)
in In and ε ∈ I be arbitrary. Applying inequality (3.2) to the sequence (x1, . . . ,xn,ε) ∈
In+1, we obtain

M(x1)+ · · ·+M(x1, . . . ,xn) � M(x1)+ · · ·+M(x1, . . . ,xn)+M(x1, . . . ,xn,ε)
� Hn+1(M)(x1 + · · ·+ xn + ε).
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Upon taking the limit ε → 0, it follows that

M(x1)+ · · ·+M(x1, . . . ,xn) � Hn+1(M)(x1 + · · ·+ xn)

for all (x1, . . . ,xn) ∈ In . Hence Hn(M) � Hn+1(M) .
To prove (3.3), we will show first that Hn(M)� H∞(M) for all n∈N . If H∞(M)=

∞ then this inequality is obvious, hence we may assume that M is a Hardy mean. Fix
n∈N and (x1, . . . ,xn)∈ In and choose ε ∈ I arbitrarily. Applying (3.1) to the sequence
(x1, . . . ,xn,

ε
2 , ε

4 , ε
8 , . . .) ∈ �1(I) , one gets

M(x1)+ · · ·+M(x1, . . . ,xn)
� M(x1)+ · · ·+M(x1, . . . ,xn)+M(x1, . . . ,xn,

ε
2 )+M(x1, . . . ,xn,

ε
2 , ε

4 )+ · · ·
� H∞(M)(x1 + · · ·+ xn + ε

2 + ε
4 + · · ·)

= H∞(M)(x1 + · · ·+ xn + ε).

Upon passing the limit ε → 0, we get

M(x1)+ · · ·+M(x1, . . . ,xn) � H∞(M)(x1 + · · ·+ xn),

which implies Hn(M) � H∞(M) . Using this inequality, we have also proved that in
(3.3) � holds instead of equality.

To prove the reversed inequality in (3.3), let (xn)∞
n=1 ∈ �1(I) be arbitrary. Then,

for all n � k , we have that

M(x1)+ · · ·+M(x1, . . . ,xn) � Hn(M)(x1 + · · ·+ xn) � Hk(M)(x1 + · · ·+ xn)

Now taking the limit as k → ∞ , we obtain that

M(x1)+ · · ·+M(x1, . . . ,xn) � lim
k→∞

Hk(M) · (x1 + · · ·+ xn)

holds for all n ∈ N . Finally taking the limit as n → ∞ , it follows that M satisfies

∞

∑
n=1

M(x1, . . . ,xn) � lim
k→∞

Hk(M)
∞

∑
n=1

xn

which yields that the reversed inequality in (3.3) is also true. �

In what follows, we show that the inequality (3.1) is strict in a broad class of
means.

PROPOSITION 3.2. Let I ⊆R+ and M :
⋃∞

n=1 In → I . If M is a min-diminishing,
increasing and repetition invariant Hardy mean, then

∞

∑
n=1

M(x1, . . . ,xn) < H∞(M)
∞

∑
n=1

xn, (xn)∞
n=1 ∈ �1(I).
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Proof. Let x = (xn)∞
n=1 ∈ �1(I) be arbitrary. If xl < xk for some l < k then, for

the sequence

x′n =

⎧⎪⎨
⎪⎩

xn n /∈ {k, l},
xk n = l,

xl n = k,

we have
M(x1, . . . ,xn) = M(x′1, . . . ,x

′
n) for n < l or n � k,

M(x1, . . . ,xn) � M(x′1, . . . ,x
′
n) for n ∈ {l, . . . ,k−1}.

Therefore

M(x1)+ · · ·+M(x1, . . . ,xn)+ · · · � M(x′1)+ . . .+M(x′1, . . . ,x
′
n)+ · · · .

Whence we may assume that x is non-increasing.
Let x̂ = (x1,x1, . . . ,xn,xn, . . .) . Then, by the repetition invariance and the min-

diminishing property of M , we get

M(x1, . . . ,xn) = M(x̂1, . . . , x̂2n),
M(x1, . . . ,xn) = M(x̂1, . . . , x̂2n−1) if x1 = xn,

M(x1, . . . ,xn) < M(x̂1, . . . , x̂2n−1) if x1 �= xn.

Since xn → 0 as n → ∞ , hence x1 �= xn holds for some n . Therefore

2 ·
∞

∑
n=1

M(x1, . . . ,xn) <
∞

∑
n=1

M(x̂1, . . . , x̂n) � H∞(M)
∞

∑
n=1

x̂n = 2H∞(M)
∞

∑
n=1

xn.

This completes the proof of the proposition. �
The next result offers a fundamental lower estimate for the Hardy constant of a

mean.

THEOREM 3.3. Let M :
⋃∞

n=1 In → I be a mean. Then, for all sequences (xn)∞
n=1

in I that does not belong to �1 ,

liminf
n→∞

x−1
n M(x1, . . . ,xn) � H∞(M). (3.4)

Proof. Assume, on the contrary, that

H∞(M) < liminf
n→∞

x−1
n M(x1, . . . ,xn).

Then, there exists ε > 0 and n0 such that, for all n � n0 ,

(1+ ε)H∞(M)xn < M(x1, . . . ,xn). (3.5)

Choose n1 > n0 such that
n0

∑
n=1

xn � ε
n1

∑
n=n0+1

xn (3.6)
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Thus, using (3.5), Proposition 3.1, and finally (3.6), we obtain

n1

∑
n=n0+1

(1+ ε)H∞(M)xn <
n1

∑
n=n0+1

M(x1, . . . ,xn) �
n1

∑
n=1

M(x1, . . . ,xn)

� Hn1(M)
n1

∑
n=1

xn � H∞(M)
n1

∑
n=1

xn � (1+ ε)H∞(M)
n1

∑
n=n0+1

xn.

This contradiction validates (3.4). �
The main result of our paper is contained in the following theorem.

THEOREM 3.4. Let M :
⋃∞

n=1 R
n
+ → R+ be an increasing, symmetric, repetition

invariant, and Jensen concave mean. Then

H∞(M) = sup
y>0

liminf
n→∞

n
y
·M
( y

1
,
y
2
, . . . ,

y
n

)
. (3.7)

As a trivial consequence of the above result, M is a Hardy mean if and only if the
number H∞(M) given in (3.7) is finite.

Proof. For the proof of the theorem, denote

C := sup
y>0

liminf
n→∞

n
y
·M
( y

1
,
y
2
, . . . ,

y
n

)
.

The inequality H∞(M) � C is simply a consequence of Theorem 3.3.
To show the reversed inequality, we may assume that C is finite. Fix x ∈ �1(R+)

and denote y := ‖x‖1 . Then there exists a sequence (nk) , nk → ∞ such that

nk ·M
( y

1
,
y
2
, . . . ,

y
nk

)
� (C+ 1

k )y, k ∈ N.

By the increasingness of M and by the obvious inequality x1 + · · ·+ xnk � y , the previ-
ous inequality yields

nk ·M
(

x1 + · · ·+ xnk ,
x1 + · · ·+ xnk

2
, . . . ,

x1 + · · ·+ xnk

nk

)
�
(
C+ 1

k

)
y, k ∈ N.

Therefore, in view of Corollary 2.2, we obtain

M(x1)+M(x1,x2)+ · · ·+M(x1, . . . ,xnk) � (C+ 1
k )y, k ∈ N.

Upon passing the limit k → ∞ , one gets

∞

∑
n=1

M(x1, . . . ,xn) � Cy = C‖x‖1 .

This completes the proof of inequality H∞(M) � C . �



CHARACTERIZATION OF THE HARDY PROPERTY OF MEANS 1153

COROLLARY 3.5. If, in addition to the assumptions of Theorem 3.4, M is also
homogeneous, then

H∞(M) = lim
n→∞

n ·M(1, 1
2 , . . . , 1

n

)
.

Proof. In view of the previous theorem we only need to prove that the limit of the
sequence (pn) exists (possible infinite), where

pn := n ·M(1, 1
2 , . . . , 1

n

)
.

For, it suffices to show that this sequence is nondecreasing. Fix n ∈ N . Let us consider
the two vectors u,v of dimension n(n+1) defined by

u := (n, . . . ,n︸ ︷︷ ︸
n+1

, n
2 , . . . , n

2︸ ︷︷ ︸
n+1

, . . . , n
n−1 , . . . , n

n−1︸ ︷︷ ︸
n+1

,1, . . . ,1︸ ︷︷ ︸
n+1

);

v := (n+1, . . . ,n+1︸ ︷︷ ︸
n

, n+1
2 , . . . , n+1

2︸ ︷︷ ︸
n

, . . . , n+1
n , . . . , n+1

n︸ ︷︷ ︸
n

,1, . . . ,1︸ ︷︷ ︸
n

).

By the homogeneity and repetition invariance of M , we have that M(u) = pn and
M(v) = pn+1 . Divide vectors u and v into n+1 parts of dimension n :

u(i) := ( n
i , . . . ,

n
i︸ ︷︷ ︸

i

, n
i+1 , . . . , n

i+1︸ ︷︷ ︸
n−i

), i = 0, . . . ,n;

v(i) := ( n+1
i+1 , . . . , n+1

i+1︸ ︷︷ ︸
n

), i = 0, . . . ,n.

For i � 1, each element n
i appears (n− i+1) times in u(i−1) and i times in u(i) , that

is, (n+1) times altogether. Therefore, the arithmetic mean of u(i) , denoted by A(u(i)) ,
is equal to n+1

i+1 for i = 1, . . . ,n and A(u(0)) = n .

Let u(i)
k , for k = 1, . . . ,n! and i = 0, . . . ,n , denote the vectors that are obtained

from all possible permutations of the components of u(i) . Observe that

(u(0),v(1), . . . ,v(n)) =
1
n!

n!

∑
k=1

(u(0)
k , . . . ,u(n)

k ).

Then, by the increasingness, Jensen concavity and symmetry of the mean M , we obtain

pn+1 = M(v) = M(v(0),v(1), . . . ,v(n)) � M(u(0),v(1), . . . ,v(n))

� 1
n!

n!

∑
k=1

M(u(0)
k , . . . ,u(n)

k ) = M(u(0), . . . ,u(n)) = M(u) = pn.

This proves that (pn) is non-deceasing and, therefore it has a (possibly infinite) limit. �
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4. Applications

In this section we demonstrate the consequences of our results for Gini means and
also for the Gaussian product of symmetric, homogeneous, increasing, Jensen concave
and repetition invariant means, in particular, the Gaussian product of Hölder means.

4.1. Gini means

Gini means are symmetric and repetition invariant and min-diminishing (first two
properties are simple while the third one was proved in [51]). Moreover, by the results
of Losonczi [34, 35], the Gini mean Gp,q is increasing and Jensen concave if and only
if pq � 0 and min(p,q) � 0 � max(p,q) � 1, respectively. In particular it implies that
Hölder mean Pp is Jensen concave if and only if p � 1.

In view of Theorem 1.6, we have the characterization of pairs (p,q) such that
Gp,q is a Hardy mean. In order to calculate the Hardy constant of Gini means using
Corollary 3.5, we need to establish the following result.

LEMMA 4.1. Let p,q ∈ (−∞,1) . Then

lim
n→∞

n ·Gp,q
(
1, 1

2 , . . . , 1
n

)
=

⎧⎪⎪⎨
⎪⎪⎩
( 1−q

1− p

) 1
p−q

if p �= q,

e
1

1−p if p = q.

Proof. For every s ∈ (−1,∞) , one has

lim
n→∞

1
n

n

∑
i=1

( i
n

)s
=
∫ 1

0
xsdx =

1
1+ s

.

Using this equality, for p, q < 1, p �= q , we simply obtain

lim
n→∞

n·Gp,q
(
1, 1

2 , . . . , 1
n

)
= lim

n→∞
n ·
(

1+2−p +3−p + · · ·+n−p

1+2−q +3−q + · · ·+n−q

) 1
p−q

= lim
n→∞

⎛
⎝ 1

n

[(
1
n

)−p +
(

2
n

)−p +
(

3
n

)−p + · · ·+ (n−1
n

)−p +1
]

1
n

[(
1
n

)−q +
(

2
n

)−q +
(

3
n

)−q + · · ·+ (n−1
n

)−q +1
]
⎞
⎠

1
p−q

=
(

1−q
1− p

) 1
p−q

.

The proof for the case p = q < 1 is analogous. �
Using this lemma and the properties that are mentioned just before, we obtain the

following
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COROLLARY 4.2. Let p,q ∈ R , min(p,q) � 0 � max(p,q) < 1 . Then

H∞(Gp,q) =

⎧⎪⎨
⎪⎩
(

1−q
1− p

) 1
p−q

p �= q,

e p = q = 0.

Proof. Due to the assumption min(p,q) � 0 � max(p,q) < 1 and in view of the
results of Losonczi [34, 35], the Gini mean Gp,q is increasing and Jensen concave.
Furthermore, Gp,q is symmetric, homogeneous, and repetition invariant. Therefore, by
Corollary 3.5 and Lemma 4.1, we have

H∞(Gp,q) = lim
n→∞

n ·Gp,q
(
1, 1

2 , . . . , 1
n

)
=

⎧⎪⎨
⎪⎩
(

1−q
1− p

) 1
p−q

p �= q,

e p = q = 0,

which was to be proved. �

4.2. Gaussian product

PROPOSITION 4.3. Let N ∈ N and let M1, . . . ,MN :
⋃∞

n=1 R
n
+ → R+ be symmet-

ric, homogeneous, increasing, Jensen concave and repetition invariant means. If Mi is
Hardy for each i ∈ {1, . . . ,N} , then so is their Gaussian product M⊗ and

H∞ (M⊗) = M⊗
(
H∞(M1), . . . ,H∞(MN)

)
. (4.1)

Proof. In view of Lemma 2.3, the Gaussian product M⊗ is a symmetric, homoge-
neous, increasing, Jensen concave and repetition invariant mean. The Jensen concavity
and the local boundedness by the Bernstein–Doetsch Theorem implies that M⊗ is con-
cave and therefore it is also continuous (see [8], [29]). Thus, by Corollary 3.5, we
have

H∞(M⊗) = lim
n→∞

n ·M⊗
(
1, 1

2 , . . . , 1
n

)
= lim

n→∞
n ·M⊗

(
M1(1, 1

2 , . . . , 1
n), . . . ,MN(1, 1

2 , . . . , 1
n )
)

= lim
n→∞

M⊗
(
nM1(1, 1

2 , . . . , 1
n), . . . ,nMN(1, 1

2 , . . . , 1
n)
)

= M⊗
(

lim
n→∞

nM1(1, 1
2 , . . . , 1

n ), . . . , lim
n→∞

nMN(1, 1
2 , . . . , 1

n)
)

= M⊗ (H∞(M1), . . . ,H∞(MN)) ,

which proves formula (4.1). �

COROLLARY 4.4. Let N ∈ N and (λ1, . . . ,λN) ∈ R
N then the Gaussian product

P⊗ of the Hölder means Pλ1
, . . . ,PλN

is a Hardy mean if and only if max1�k�N λk < 1 .
Furthermore, in this case,

H∞ (P⊗) = P⊗
(
H∞(Pλ1

), . . . ,H∞(PλN
)
)
. (4.2)
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Proof. The first part of the statement of the above Corollary was proved in [47] by
Pasteczka. If λk < 1, then Pλk

is a Jensen concave mean, therefore (4.2) is a particular
case of (4.1). �

For example, for the geometric-harmonic mean P−1 ⊗P0 , i.e., for the Gaussian
product of the harmonic mean P−1 and the geometric mean P0 , we get

H∞(P−1⊗P0) = (P−1⊗P0)(H∞(P−1),H∞(P0)) = (P−1⊗P0)(2,e) ≈ 2,318.
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ersytet Śląski, Warszawa–Kraków–Katowice, 1985. 2nd edn. (ed. by A. Gilányi), Birkhäuser, Basel,
2009.

[30] A. KUFNER, L. MALIGRANDA, AND L. E. PERSSON, The Hardy Inequality: About Its History and
Some Related Results, Vydavatelskỳ servis, 2007.
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