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HERMITE INTERPOLATION AND INEQUALITIES INVOLVING

WEIGHTED AVERAGES OF n–CONVEX FUNCTIONS

JOSIP PEČARIĆ AND MARJAN PRALJAK

(Communicated by C. P. Niculescu)

Abstract. By using Hermite interpolation we obtain Popoviciu-type inequalities containing sums
∑m

i=1 pi f (xi) , where f is an n -convex function. We also give integral analogues of the results,
as well as bounds for integral remainders of identities associated with the obtained inequalities.

1. Introduction

Pečarić [5] proved the following result (see also [6, p. 262]):

PROPOSITION 1.1. The inequality

m

∑
i=1

pi f (xi) � 0 (1)

holds for all convex functions f if and only if the m-tuples x = (x1, . . . ,xm), p =
(p1, . . . , pm) ∈ R

m satisfy

m

∑
i=1

pi = 0 and
m

∑
i=1

pi|xi − xk| � 0 for k ∈ {1, . . . ,m}. (2)

Since
m

∑
i=1

pi|xi− xk| = 2
m

∑
i=1

pi(xi − xk)+ −
m

∑
i=1

pi(xi − xk),

where y+ = max(y,0) , it is easy to see that condition (2) is equivalent to

m

∑
i=1

pi = 0,
m

∑
i=1

pixi = 0 and
m

∑
i=1

pi(xi − xk)+ � 0 for k ∈ {1, . . . ,m−1}. (3)
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Let A denote the linear operator A( f ) = ∑m
i=1 pi f (xi) , let w(x,t) = (x− t)+ and

x(1) � x(2) � . . . � x(m) be the sequence x in ascending order. Notice that A(w(·,xk)) =
∑m

i=1 pi(xi − xk)+ . For t ∈ [x(k),x(k+1)] we have

A(w(·,t)) = A(w(·,x(k)))+ (x(k)− t) ∑
{i:xi>x(k)}

pi,

so the mapping t �→ A(w(·,t)) is linear on [x(k),x(k+1)] . Furthermore, A(w(·,x(m)) = 0,
so condition (3) is equivalent to

m

∑
i=1

pi = 0,
m

∑
i=1

pixi = 0 and
m

∑
i=1

pi(xi − t)+ � 0 for every t ∈ [x(1),x(m−1)]. (4)

It turns out that condition (4) is appropriate for extension of Proposition 1.1 to the
integral case and the more general class of n -convex functions.

DEFINITION 1.2. The n -th order divided difference of a function f : I → R ,
where I is an interval in R , at distinct points x0, ...,xn ∈ I is defined recursively (see
[6]) by

f [xi] = f (xi), (i = 0, . . . ,n)

and

f [x0, . . . ,xn] =
f [x1, . . . ,xn]− f [x0, . . . ,xn−1]

xn− x0
.

The function f is said to be n -convex on I , n � 0, if for all choices of (n+1) distinct
points in I, the n -th order divided difference of f satisfies

f [x0, ...,xn] � 0.

The value f [x0, . . . ,xn] is independent of the order of the points x0, . . . ,xn . If f (n)

exists, then f is n -convex if and only if f (n) � 0. For 1 � k � n−2, a function f is
n -convex if and only if f (k) exists and is (n− k)-convex.

The following result is due to Popoviciu [7, 8] (see [10, 6] also).

PROPOSITION 1.3. Let n � 2 . Inequality (1) holds for all n-convex functions
f : [a,b] → R if and only if the m-tuples x ∈ [a,b]m , p ∈ R

m satisfy

m

∑
i=1

pix
k
i = 0, for all k = 0,1, . . . ,n−1 (5)

m

∑
i=1

pi(xi − t)n−1
+ � 0, for every t ∈ [a,b]. (6)

In fact, Popoviciu proved a stronger result – it is enough to assume that (6) holds
for every t ∈ [x(1),x(m−n+1)] and then, due to (5), it is automatically satisfied for every
t ∈ [a,b] . The integral analogue (see [9, 6]) is given in the next proposition.
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PROPOSITION 1.4. Let n � 2 , p : [α,β ] → R and g : [α,β ] → [a,b] . Then, the
inequality ∫ β

α
p(x) f (g(x))dx � 0 (7)

holds for all n-convex functions f : [a,b]→ R if and only if

∫ β

α
p(x)g(x)k dx = 0, for all k = 0,1, . . . ,n−1

∫ β

α
p(x)(g(x)− t)n−1

+ dx � 0, for every t ∈ [a,b].
(8)

In this paper we will derive inequalities of type (1) and (7) for n -convex functions
by making use of the Hermite interpolation. Let −∞ < a � a1 < a2 < · · ·< ar � b < ∞ ,
r � 2. The Hermite interpolation of a function f ∈Cn[a,b] is of the form

f (x) = PH(x)+ eH(x)

where PH is the unique polynomial of degree n− 1, called the Hermite interpolating
polynomial of f , satisfying

P(i)
H (a j) = f (i)(a j), 0 � i � k j, 1 � j � r,

r

∑
j=1

k j + r = n.

The associated error eH(x) can be represented in terms of the Green’s function
GH,n(x,s) for the multipoint boundary value problem

z(n)(x) = 0, z(i)(a j) = 0, 0 � i � k j, 1 � j � r,

that is, the following result holds (see [2]):

THEOREM 1.5. Let f ∈Cn[a,b] , and let PH be its Hermite interpolating polyno-
mial. Then

f (x) = PH(x)+ eH(x)

=
r

∑
j=1

k j

∑
i=0

Hi j(x) f (i)(a j)+
b∫

a

GH,n(x,s) f (n)(s)ds, (9)

where Hi j are the fundamental polynomials of the Hermite basis defined by

Hi j(x) =
1
i!

w(x)

(x−a j)
k j+1−i

k j−i

∑
k=0

1
k!

dk

dxk

((x−a j)k j+1

w(x)

)∣∣∣
x=a j

(x−a j)
k, (10)

where

w(x) =
r

∏
j=1

(x−a j)k j+1 (11)
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and GH,n is the Green’s function defined by

GH,n(x,s) =

⎧⎨
⎩

∑l
j=1 ∑

k j
i=0

(a j−s)n−i−1

(n−i−1)! Hi j(x), s � x,

−∑r
j=l+1 ∑

k j
i=0

(a j−s)n−i−1

(n−i−1)! Hi j(x), s � x
(12)

for all al � s � al+1 , l = 0,1, . . . ,r (a0 = a,ar+1 = b).

The following are some special cases of the Hermite interpolation of functions:
(i) (m,n−m) conditions: r = 2, a1 = a , a2 = b , 1 � m � n−1, k1 = m−1 and

k2 = n−m−1. In this case

f (x) =
m−1

∑
i=0

τi(x) f (i)(a)+
n−m−1

∑
i=0

ηi(x) f (i)(b)+
∫ b

a
Gm,n(x,s) f (n)(s)ds,

where

τi(x) =
1
i!

(x−a)i
( x−b

a−b

)n−m m−1−i

∑
k=0

(
n−m+ k−1

k

)( x−a
b−a

)k
, (13)

ηi(x) =
1
i!

(x−b)i
( x−a

b−a

)m n−m−1−i

∑
k=0

(
m+ k−1

k

)( x−b
a−b

)k

(14)

and the Green’s function Gm,n is of the form

Gm,n(x,s) =

⎧⎪⎨
⎪⎩

∑m−1
j=0

[
∑m−1− j

p=0

(n−m+p−1
p

)(
x−a
b−a

)p] (x−a) j(a−s)n− j−1

j!(n− j−1)!

(
b−x
b−a

)n−m
, s � x,

−∑n−m−1
i=0

[
∑n−m−1−i

q=0

(m+q−1
q

)(
b−x
b−a

)q] (x−b)i(b−s)n−i−1

i!(n−i−1)!

(
x−a
b−a

)m
, s � x

(15)
(ii) Taylor’s two-point condition: m ∈ N , n = 2m , r = 2, a1 = a , a2 = b and

k1 = k2 = m−1. In this case

f (x) =
m−1

∑
i=0

m−i−1

∑
k=0

(
m+ k−1

k

)[ (x−a)i

i!

( x−b
a−b

)m( x−a
b−a

)k
f (i)(a)

+
(x−b)i

i!

( x−a
b−a

)m( x−b
a−b

)k

f (i)(b)
]
+
∫ b

a
G2T,m(x,s) f (2m)(s)ds,

where the Green’s function G2T,m is of the form

G2T,m(x,s) =
(−1)m

(2m−1)!

⎧⎨
⎩

pm(x,s)∑m−1
k=0

(m+k−1
k

)
(x− s)m−1−kqk(x,s), s � x,

qm(x,s)∑m−1
k=0

(m+k−1
k

)
(s− x)m−1−k pk(x,s), x � s,

where p(x,s) = (s−a)(b−x)
(b−a) and q(x,s) = p(s,x).

The following lemma yields the sign of the Green’s function (12) on certain inter-
vals (see Lemma 2.3.3, page 75, in [2]).
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LEMMA 1.6. The Green’s function GH,n given by (12) and w given by (11) satisfy

GH,n(x,s)
w(x)

> 0, for a1 � x � ar, a1 < s < ar.

Integration by parts easily yields that for any function f ∈C2[a,b] the following
holds

f (x) =
b− x
b−a

f (a)+
x−a
b−a

f (b)+
∫ b

a
G(x,s) f ′′(s)ds, (16)

where the function G : [a,b]× [a,b]→ R is the Green’s function of the boundary value
problem

z′′(x) = 0, z(a) = z(b) = 0

and is given by

G(x,s) =

⎧⎨
⎩

(x−b)(s−a)
b−a , for a � s � x,

(s−b)(x−a)
b−a , for x � s � b.

(17)

The function G is continuous, symmetric and convexwith respect to both variables
x and s .

2. Main results

We will start this section with several identities.

THEOREM 2.1. Let −∞ < a � a1 < a2 < · · · < ar � b < ∞ , r � 2 , ∑r
j=1 k j + r =

n, f ∈Cn[a,b] , x ∈ [a,b]m , p ∈ R
m and let Hi j and GH,n be given by (10) and (12).

Then

m

∑
k=1

pk f (xk) =
r

∑
j=1

k j

∑
i=0

m

∑
k=1

pkHi j(xk) f (i)(a j) +
∫ b

a

m

∑
k=1

pkGH,n(xk,s) f (n)(s)ds. (18)

Proof. By applying identity (9) at xk , multiplying it by pk and summing up we
obtained the required identity. �

The integral version of the previous theorem is the following:

THEOREM 2.2. Let −∞ < a � a1 < a2 < · · · < ar � b < ∞ , r � 2 , ∑r
j=1 k j + r =

n, f ∈ Cn[a,b] , g : [α,β ] → [a,b] , p : [α,β ] → R and let Hi j and GH,n be given by
(10) and (12). Then

∫ β

α
p(x) f (g(x))dx =

r

∑
j=1

k j

∑
i=0

f (i)(a j)
∫ β

α
p(x)Hi j(x)dx

+
∫ b

a

(∫ β

α
p(x)GH,n(g(x),s)dx

)
f (n)(s)ds.
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THEOREM 2.3. Let −∞ < a � a1 < a2 < · · · < ar � b < ∞ , r � 2 , ∑r
j=1 k j + r =

n−2 , f ∈Cn[a,b] , x ∈ [a,b]m , p ∈ R
m and let Hi j and GH,n−2 be given by (10) and

(12). Then

m

∑
k=1

pk f (xk) =
f (b)− f (a)

b−a

m

∑
k=1

pkxk +
b f (a)−a f (b)

b−a

m

∑
k=1

pk

+
r

∑
j=1

k j

∑
i=0

f (i+2)(a j)
∫ b

a

m

∑
k=1

pkG(xk,s)Hi j(s)ds

+
∫ b

a

∫ b

a

m

∑
k=1

pkG(xk,s)GH,n−2(s,t) f (n)(t)dt ds. (19)

Proof. Applying identity (16) at xk , multiplying it by pk and summing up we
obtain
m

∑
k=1

pk f (xk)=
f (b)− f (a)

b−a

m

∑
k=1

pkxk+
b f (a)−a f (b)

b−a

m

∑
k=1

pk +
∫ b

a

m

∑
k=1

pkG(xk,s) f ′′(s)ds.

(20)
By Theorem 1.5, f ′′(s) can be expressed as

f ′′(s) =
r

∑
j=1

k j

∑
i=0

Hi j(s) f (i+2)(a j)+
b∫

a

GH,n−2(s,t) f (n)(t)dt. (21)

Inserting (21) in (20) we get (19). �
We also state the integral version of the previous theorem.

THEOREM 2.4. Let −∞ < a � a1 < a2 < · · · < ar � b < ∞ , r � 2 , ∑r
j=1 k j + r =

n−2 , f ∈Cn[a,b] , g : [α,β ]→ [a,b] , p : [α,β ]→ R and let Hi j and GH,n−2 be given
by (10) and (12). Then

∫ β

α
p(x) f (g(x))dx =

f (b)− f (a)
b−a

∫ β

α
p(x)g(x)dx+

b f (a)−a f (b)
b−a

∫ β

α
p(x)dx

+
r

∑
j=1

k j

∑
i=0

f (i+2)(a j)
∫ b

a

(∫ β

α
p(x)G(g(x),s)dx

)
Hi j(s)ds

+
∫ b

a

∫ b

a

(∫ β

α
p(x)G(g(x),s)dx

)
GH,n−2(s,t) f (n)(t)dt ds.

Next we will use the identities proven above to derive inequalities.

THEOREM 2.5. Let −∞ < a � a1 < a2 < · · · < ar � b < ∞ , r � 2 , ∑r
j=1 k j + r =

n, x∈ [a,b]m , p∈R
m and let Hi j and GH,n be given by (10) and (12). If f : [a,b]→R

is n-convex and
m

∑
k=1

pkGH,n(xk,s) � 0 for all s ∈ [a,b], (22)
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then
m

∑
k=1

pk f (xk) �
r

∑
j=1

k j

∑
i=0

m

∑
k=1

pkHi j(xk) f (i)(a j). (23)

If the inequality in (22) is reversed, then the inequality in (23) is reversed also.

Proof. If (22) holds, then the second term on the right hand side (18) is nonnega-
tive. �

THEOREM 2.6. Let −∞ < a � a1 < a2 < · · · < ar � b < ∞ , r � 2 , ∑r
j=1 k j + r =

n, x ∈ [a,b]m , p : [α,β ] → R and let Hi j and GH,n be given by (10) and (12). If
f : [a,b] → R is n-convex and∫ β

α
p(x)GH,n(g(x),s)dx � 0 for all s ∈ [a,b], (24)

then ∫ β

α
p(x) f (g(x))dx �

r

∑
j=1

k j

∑
i=0

f (i)(a j)
∫ β

α
p(x)Hi j(x)dx. (25)

If the inequality in (24) is reversed, then the inequality in (25) is reversed also.

THEOREM 2.7. Let −∞ < a = a1 < a2 < · · · < ar = b < ∞ , r � 2 , ∑r
j=1 k j + r =

n− 2 , x ∈ [a,b]m , p ∈ R
m and let Hi j and GH,n−2 be given by (10) and (12). Let

f : [a,b] → R be n-convex and

m

∑
k=1

pkG(xk,s) � 0 for all s ∈ [a,b], (26)

and consider the inequality

m

∑
k=1

pk f (xk) � f (b)− f (a)
b−a

m

∑
k=1

pkxk +
b f (a)−a f (b)

b−a

m

∑
k=1

pk

+
r

∑
j=1

k j

∑
i=0

f (i+2)(a j)
∫ b

a

m

∑
k=1

pkG(xk,s)Hi j(s)ds. (27)

(i) If k j for j = 2, . . . ,r are odd, then (27) holds.

(ii) If k j for j = 2, . . . ,r−1 are odd and kr is even, then the reverse of (27) holds.

Proof. (i) Assume first that f ∈ Cn[a,b] . Due to the assumptions w given by
(11) satisfies w(x) � 0 for all x and, hence, by Lemma 1.6, GH,n−2(s, t) � 0 for all
s,t ∈ [a,b] . Therefore, the last term on the right hand side of (19) is nonnegative,
so inequality (27) holds. The inequality for general f follows since every n -convex
function can be obtained, by making use of the Bernstein polynomials, as a uniform
limit of n -convex functions with a continuous n -th derivative (see [6]).

(ii) Under these assumptions w(x) � 0, so GH,n−2(s,t) � 0. The rest of the proof
is the same as in (i) . �
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THEOREM 2.8. Let −∞ < a = a1 < a2 < · · · < ar = b < ∞ , r � 2 , ∑r
j=1 k j + r =

n−2 , g : [α,β ] → R , p : [α,β ] → R and let Hi j be given by (10). Let f : [a,b] → R

be n-convex and ∫ β

α
p(x)G(g(x),s)dx � 0 for all s ∈ [a,b],

and consider the inequality

∫ β

α
p(x) f (g(x))dx � f (b)− f (a)

b−a

∫ β

α
p(x)g(x)dx+

b f (a)−a f (b)
b−a

∫ β

α
p(x)dx

+
r

∑
j=1

k j

∑
i=0

f (i+2)(a j)
∫ b

a

(∫ β

α
p(x)G(g(x),s)dx

)
Hi j(s)ds. (28)

(i) If k j for j = 2, . . . ,r are odd, then (28) holds.

(ii) If k j for j = 2, . . . ,r−1 are odd and kr is even, then the reverse of (28) holds.

In the case of the (m,n−m) conditions we have the following corollary.

COROLLARY 2.9. Let τi and ηi be given by (13) and (14) and let x ∈ [a,b]m

and p ∈ R
m be such that (26) holds. Let f : [a,b] → R be n-convex and consider the

inequality

m

∑
k=1

pk f (xk) � f (b)− f (a)
b−a

m

∑
k=1

pkxk +
b f (a)−a f (b)

b−a

m

∑
k=1

pk

+
∫ b

a

(
m

∑
k=1

pkG(xk,s)

)(
l−1

∑
i=0

τi(s) f (i+2)(a)+
n−l−1

∑
i=0

ηi(s) f (i+2)(b)

)
ds. (29)

(i) If n− l is even, then (29) holds.

(ii) If n− l is odd, then the reverse of (29) holds.

In the case of Taylor’s two point conditions we have the following corollary.

COROLLARY 2.10. Let x ∈ [a,b]m and p ∈ R
m be such that (26) holds. Let f :

[a,b]→ R be n-convex and consider the inequality

m

∑
k=1

pk f (xk) � f (b)− f (a)
b−a

m

∑
k=1

pkxk +
b f (a)−a f (b)

b−a

m

∑
k=1

pk +
∫ b

a

(
m

∑
k=1

pkG(xk,s)

)

×
(

l−1

∑
i=0

l−i−1

∑
k=0

(
l + k−1

k

)[ (s−a)i

i!

( s−b
a−b

)l( s−a
b−a

)k
f (i+2)(a)

+
(s−b)i

i!

( s−a
b−a

)l( s−b
a−b

)k

f (i+2)(b)
])

ds. (30)
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(i) If l is even, then (30) holds.

(ii) If l is odd, then the reverse of (30) holds.

THEOREM 2.11. Let −∞ < a = a1 < a2 < · · ·< ar = b < ∞ , r � 2 , ∑r
j=1 k j +r =

n−2 , let x ∈ [a,b]m and p ∈ R
m satisfy (2), and let Hi j and GH,n−2 be given by (10)

and (12). Let f : [a,b]→ R be n-convex and consider the inequality

m

∑
k=1

pk f (xk) �
r

∑
j=1

k j

∑
i=0

f (i+2)(a j)
∫ b

a

m

∑
k=1

pkG(xk,s)Hi j(s)ds (31)

and the function

F(x) =
r

∑
j=1

k j

∑
i=0

f (i+2)(a j)
∫ b

a
G(x,s)Hi j(s)ds. (32)

(i) If k j for j = 2, . . . ,r are odd, then (31) holds. Furthermore, if the function F is
convex, then inequality (1) holds.

(ii) If k j for j = 2, . . . ,r− 1 are odd and kr is even, then the reverse of (31) holds.
Furthermore, if the function F is concave, then the reverse of inequality (1)
holds.

Proof. The function G(x,s) is convex in the first variable, so assumption (26) is
satisfied by Proposition 1.1. Now, the claims of the theorem follow from Theorem 2.7
and Proposition 1.1. �

THEOREM 2.12. Let −∞ < a = a1 < a2 < · · ·< ar = b < ∞ , r � 2 , ∑r
j=1 k j +r =

n−2 , let g : [α,β ]→R and p : [α,β ]→R satisfy (8), and let Hi j and GH,n−2 be given
by (10) and (12). Let f : [a,b] → R be n-convex and consider the inequality

∫ β

α
p(x) f (x)dx �

r

∑
j=1

k j

∑
i=0

f (i+2)(a j)
∫ b

a

(∫ β

α
p(x)G(g(x),s)dx

)
Hi j(s)ds (33)

and the function F given by (32).

(i) If k j for j = 2, . . . ,r are odd, then (33) holds. Furthermore, if the function F is
convex, then inequality (7) holds.

(ii) If k j for j = 2, . . . ,r− 1 are odd and kr is even, then the reverse of (33) holds.
Furthermore, if the function F is concave, then the reverse of inequality (7)
holds.
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3. Bounds for identities related to the Popoviciu-type inequalities

Let f ,h : [a,b] → R be two Lebesgue integrable functions. We consider the
Čebyšev functional

T ( f ,h) =
1

b−a

∫ b

a
f (x)h(x)dx−

(
1

b−a

∫ b

a
f (x)dx

)(
1

b−a

∫ b

a
h(x)dx

)
.

The following results can be found in [4].

PROPOSITION 3.1. Let f : [a,b] → R be a Lebesgue integrable function and h :
[a,b]→ R be an absolutely continuous function with (·−a)(b−·)[h′]2 ∈ L[a,b] . Then
we have the inequality

|T ( f ,h)| � 1√
2

(
1

b−a
|T ( f , f )|

∫ b

a
(x−a)(b− x)[h′(x)]2 dx

) 1
2

. (34)

The constant 1√
2

in (34) is the best possible.

PROPOSITION 3.2. Let h : [a,b]→R be a monotonic nondecreasing function and
let f : [a,b] → R be an absolutely continuous function such that f ′ ∈ L∞[a,b] . Then
we have the inequality

|T ( f ,h)| � 1
2(b−a)

‖ f ′‖∞

∫ b

a
(x−a)(b− x)dh(x). (35)

The constant 1
2 in (35) is the best possible.

For m-tuples p = (p1, . . . , pm) ∈ R
m , x = (x1, . . . ,xm) ∈ [a,b]m and the functions

G and GH,n given by (17) and (12) denote

δ1(t) =
m

∑
k=1

pkGH,n(xk,t), for t ∈ [a,b]. (36)

δ2(t) =
∫ b

a

m

∑
k=1

pkG(xk,s)GH,n−2(s,t)ds, for t ∈ [a,b]. (37)

Now, we are ready to state the main results of this section.

THEOREM 3.3. Let −∞ < a � a1 < a2 < · · ·< ar � b < ∞ , r � 2 , let f : [a,b]→
R be such that f (n) is an absolutely continuous function with (·−a)(b−·)[ f (n+1)]2 ∈
L[a,b] , x ∈ [a,b]m , p ∈ R

m and let Hi j , δ1 and δ2 be given by (10), (36) and (37).
(i) If ∑r

j=1 k j + r = n, then

m

∑
k=1

pk f (xk) =
r

∑
j=1

k j

∑
i=0

m

∑
k=1

pkHi j(xk) f (i)(a j)

+
f (n−1)(b)− f (n−1)(a)

b−a

∫ b

a
δ1(s)ds+R1

n( f ;a,b), (38)
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where the remainder R1
n( f ;a,b) satisfies the estimation

|R1
n( f ;a,b)| �

(
b−a

2
|T (δ1,δ1)|

∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2 ds

) 1
2

. (39)

(ii) If ∑r
j=1 k j + r = n−2 , then

m

∑
k=1

pk f (xk) =
f (b)− f (a)

b−a

m

∑
k=1

pkxk +
b f (a)−a f (b)

b−a

m

∑
k=1

pk

+
r

∑
j=1

k j

∑
i=0

f (i+2)(a j)
∫ b

a

m

∑
k=1

pkG(xk,s)Hi j(s)ds

+
f (n−1)(b)− f (n−1)(a)

b−a

∫ b

a
δ2(s)ds+R2

n( f ;a,b), (40)

where the remainder R2
n( f ;a,b) satisfies the estimation

|R2
n( f ;a,b)| �

(
b−a

2
|T (δ2,δ2)|

∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2 ds

) 1
2

.

Proof. (i) Applying Proposition 3.1 with f → δ1 and h → f (n) we get

∣∣∣∣
∫ b

a
δ1(s) f (n)(s)ds− 1

b−a

∫ b

a
δ1(s)ds

∫ b

a
f (n)(s)ds

∣∣∣∣
�
(

b−a
2

|T (δ1,δ1)|
∫ b

a
(s−a)(b− s)[ f (n+1)(s)]2 ds

) 1
2

. (41)

From identities (18) and (38) we obtain

∫ b

a
δ1(s) f (n)(s)ds =

f (n−1)(b)− f (n−1)(a)
b−a

∫ b

a
δ1(s)ds+R1

n( f ;a,b),

where the estimate (39) follows from (41).
(ii) Analogous as in (i) . �
By using Proposition 3.2 we obtain the following Grüss type inequality.

THEOREM 3.4. Let −∞ < a � a1 < a2 < · · · < ar � b < ∞ , r � 2 , let x , p ,
Hi j , δ1 , δ2 and n be as in Theorem 3.3 and let f : [a,b] → R be such that f (n) is
an absolutely continuous function with f (n+1) � 0 . Then representations (38) and (40)
hold with the remainders Ri

n( f ;a,b) , i = 1,2 , satisfying the bounds

|Ri
n( f ;a,b)|�‖δ ′

i ‖∞

[
b−a
2

(
f (n−1)(b)+ f (n−1)(a)

)
− f (2n−2)(b)+ f (2n−2)(a)

]
. (42)
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Proof. If we apply Proposition 3.2 with f → δi and h → f (n) we obtain∣∣∣∣
∫ b

a
δi(s) f (n)(s)ds− 1

b−a

∫ b

a
δi(s)ds

∫ b

a
f (n)(s)ds

∣∣∣∣�1
2
‖δ ′

i ‖∞

∫ b

a
(s−a)(b−s) f (n+1)(s)ds.

Since∫ b

a
(s−a)(b− s) f (n+1)(s)ds =

∫ b

a
(2s−a−b) f (n)(s)ds

= (b−a)
[
f (n−1)(b)+ f (n−1)(a)

]
−2
[
f (n−2)(b)− f (n−2)(a)

]
, (43)

using (43) and identities (18) or (19) we deduce (42). �

REMARK 3.5. We can construct linear functionals by taking differences of the
left and right hand sides of the inequalities from Theorems 2.5, 2.6, 2.7 and 2.8. By
using similar methods as in [1, 3] we can prove mean value results for these functionals,
as well as construct new families of exponentially convex functions and Cauchy-type
means. Then, by using some known properties of exponentially convex functions, we
can derive new inequalities and prove monotonicity of the obtained Cauchy-type means
analogously as in [1, 3].
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