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GENERALIZATIONS OF SHERMAN’S INEQUALITY

BY HERMITE’S INTERPOLATING POLYNOMIAL

M. ADIL KHAN, S. IVELIĆ BRADANOVIĆ AND J. PEČARIĆ

(Communicated by K. Nikodem)

Abstract. Generalizations of Sherman’s inequality for convex functions of higher order are ob-
tained by applying Hermite’s interpolating polynomials. The results for particular cases, namely,
Lagrange, (m,n−m) and two-point Taylor interpolating polynomials are also cosidered. The
Grüss and Ostrowski type inequalities related to these generalizations are given.

1. Introduction

We start with the concept of majorization which is exactly a partial ordering of
vectors and determines the degree of similarity between the vector elements.

For fixed m � 2, let x = (x1, ...,xm) and y = (y1, ...,ym) denote two m-tuples. Let
x[1] � x[2] � ... � x[m] and y[1] � y[2] � ... � y[m] be their ordered components. We say
that x majorizes y or y is majorized by x and write y ≺ x if

k

∑
i=1

y[i] �
k

∑
i=1

x[i], k = 1, ....,m−1, and
m

∑
i=1

yi =
m

∑
i=1

xi. (1)

A notation from real vectors may be extended to real matrices. Let Mml(R) de-
notes the space of m× l real matrices . A matrix A = (ai j) ∈ Mml(R) is called row
stochastic if all of its entries are greater than or equal to zero and the sum of the en-
tries in each row is equal to 1. A square matrix A = (ai j) ∈ Mll(R) is called double
stochastic if all of its entries are greater than or equal to zero and the sum of the entries
in each column and each row is equal to 1.

The majorization theorem, due to Hardy et al (1929 [6]), gives connections with
matrix theory (see also [8, p. 333]).

THEOREM 1. Let x, y ∈ R
m. Then the following statements are equivalent:

(i) y ≺ x ;
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(ii) There is a doubly stochastic matrix A such that y = xA;

(iii) The inequality ∑m
i=1 φ(yi) � ∑m

i=1 φ(xi) holds for each convex function φ : R →
R .

S. Sherman [10] obtained the following general result.

THEOREM 2. Let [α,β ] ⊂ R and for fixed l,m ∈ N, l,m � 2, let x ∈ [α,β ]l ,
y ∈ [α,β ]m, u ∈ [0,∞)l, v ∈ [0,∞)m and

y = xAT and u = vA (2)

for some row stochastic matrix A ∈ Mml(R). Then for every convex function φ :
[α,β ] → R we have

m

∑
q=1

vqφ(yq) �
l

∑
p=1

upφ(xp). (3)

Sherman obtained this useful generalization replacing the classical concept of ma-
jorization y ≺ x by the notion of weighted majorization (2) for two pairs (x,u) and
(y,v), where x = (x1, ...,xl) and y = (y1, ...,ym) are real vectors and u = (u1, ...,ul)
and v = (v1, ...,vm) are corresponding nonnegative weights. Here AT denotes the
transpose of a matrix A. In particular, if m = l and up = vq for all p,q = 1, ...,m ,
the condition u = vA assures the stochasticity on columns, so in that case we deal with
doubly stochastic matrices. Then, as a special case of Sherman’s inequality, we get the
weighted version of majorization’s inequality:

m

∑
p=1

upφ(yp) �
m

∑
p=1

upφ(xp).

Denoting Um = ∑m
p=1 up and putting y1 = y2 = ... = ym = 1

Um
∑m

p=1 upxp, we obtain
Jensen’s inequality in the form

φ

(
1

Um

m

∑
p=1

upxp

)
� 1

Um

m

∑
p=1

upφ(xp).

In this paper, we recall generalizations of Sherman’s result for convex functions
of the higher order. Moreover, we obtain extension to real, not necessary nonnegative
weights u , v and matrix A . For some related results see also [1], [2], [7].

In sequel, we always assume that [α,β ] ⊂ R without having to be emphasized.
The notion of n -convexity was defined in terms of divided differences by Popovi-

ciu [9]. A function φ : [α,β ] → R is n -convex, n � 0, if its n th order divided differ-
ences [x0, ...,xn;φ ] are nonnegative for all choices of (n+1) distinct points xi ∈ [α,β ],
i = 0, ...,n. Thus, a 0-convex function is nonnegative, a 1-convex function is nonde-
creasing and a 2-convex function is convex in the usual sense. If φ (n) exists then φ is
n -convex iff φ (n) � 0 (see [8]).
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2. Preliminaries

Let α � a1 < a2 < .. . < ar � β , (r � 2) be the given points. For φ ∈Cn([α,β ])
(n � r ) a unique polynomial ρH(s) of degree (n−1) exists, such that Hermite condi-
tions hold:

ρ (i)
H (a j) = φ (i)(a j), 0 � i � k j, 1 � j � r, (H)

where
r
∑
j=1

k j + r = n.

In particular, for r = n, k j = 0 for all j, we have Lagrange conditions:

ρL(a j) = φ(a j), 1 � j � n.

For r = 2, 1 � m � n− 1, k1 = m− 1, k2 = n−m− 1, we have Type (m,n−m)
conditions:

ρ (i)
(m,n)(α) = φ (i)(α), 0 � i � m−1,

ρ (i)
(m,n)(β ) = φ (i)(β ), 0 � i � n−m−1.

For n = 2m, r = 2 and k1 = k2 = m−1, we have Two-point Taylor conditions:

ρ (i)
2T (α) = φ (i)(α), ρ (i)

2T (β ) = φ (i)(β ), 0 � i � m−1.

The following theorem and remark can be found in [3].

THEOREM 3. Let α � a1 < a2 < .. . < ar � β , (r � 2 ), be the given points and
φ ∈Cn([α,β ]), (n � r ) . Let ρH(s) be the Hermite inrepolating polynomial. Then

φ(t) = ρH(t)+RH,n(φ ,t) (4)

=
r

∑
j=1

k j

∑
i=0

Hi j(t)φ (i)(a j)+
∫ β

α
GH,n(t,s)φ (n)(s)ds,

where Hi j are fundamental polynomials of the Hermite basis defined by

Hi j(t) =
1
i!

ω(t)

(t−a j)
k j+1−i

k j−i

∑
k=0

1
k!

dk

dtk

(
(t −a j)

k j+1

ω(t)

)∣∣∣∣∣
t=a j

(t −a j)k, (5)

where

ω(t) =
r

∏
j=1

(t−a j)
k j+1,

and GH,n(t,s) is defined by

GH,n(t,s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l
∑
j=1

k j

∑
i=0

(a j−s)n−i−1

(n−i−1)! Hi j(t); s � t,

− r
∑

j=l+1

k j

∑
i=0

(a j−s)n−i−1

(n−i−1)! Hi j(t); s � t,

(6)

for all al � s � al+1 ; l = 0, . . . ,r with a0 = α and ar+1 = β .
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REMARK 1. For Lagrange conditions, from Theorem 3 we have

φ(t) = ρL(t)+RL(φ ,t)

where ρL(t) is the Lagrange interpolating polynomial i.e.

ρL(t) =
n

∑
j=1

n

∏
k=1
k �= j

(
t−ak

a j −ak

)
φ(a j)

and the remainder RL(φ ,t) is given by

RL(φ ,t) =
∫ β

α
GL(t,s)φ (n)(s)ds

with

GL(t,s) =
1

(n−1)!

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l
∑
j=1

(a j − s)n−1
n
∏
k=1
k �= j

(
t−ak
a j−ak

)
, s � t

−
n
∑

j=l+1
(a j − s)n−1

n
∏
k=1
k �= j

(
t−ak
a j−ak

)
, s � t

(7)

al � s � al+1, l = 1,2, ...,n−1 with a1 = α and an = β .
For type (m,n−m) conditions, from Theorem 3 we have

φ(t) = ρ(m,n)(t)+R(m,n)(φ , t)

where ρ(m,n)(t) is (m,n−m) interpolating polynomial, i.e.

ρ(m,n)(t) =
m−1

∑
i=0

τi(t)φ (i)(α)+
n−m−1

∑
i=0

ηi(t)φ (i)(β ),

with

τi(t) =
1
i!

(t−α)i
(

t−β
α −β

)n−m m−1−i

∑
k=0

(
n−m+ k−1

k

)(
t−α
β −α

)k

(8)

and

ηi(t) =
1
i!

(t−β )i
(

t −α
β −α

)m n−m−1−i

∑
k=0

(
m+ k−1

k

)(
t−β
α −β

)k

. (9)

and the remainder R(m,n)(φ ,t) is given by

R(m,n)(φ ,t) =
∫ β

α
G(m,n)(t,s)φ (n)(s)ds

with

G(m,n)(t,s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m−1
∑
j=0

[
m−1− j

∑
p=0

(n−m+p−1
p

)(
t−α
β−α

)p
]

(t−α) j(α−s)n− j−1

j!(n− j−1)!

(
β−t
β−α

)n−m
, s � t

-
n−m−1

∑
i=0

[
n−m−i−1

∑
q=0

(m+q−1
q

)( β−t
β−α

)q (t−β )i(β−s)n−i−1

i!(n−i−1)!

](
t−α
β−α

)m
, t � s.

(10)
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For Type Two-point Taylor conditions, from Theorem 3 we have

φ(t) = ρ2T (t)+R2T (φ ,t)

where ρ2T (t) is the two-point Taylor interpolating polynomial i.e,

ρ2T (t) =
m−1

∑
i=0

m−1−i

∑
k=0

(m+k−1
k

)[
φ (i)(α) (t−α)i

i!

(
t−β
α−β

)m(
t−α
β−α

)k
(11)

+φ (i)(β ) (t−β )i
i!

(
t−α
β−α

)m( t−β
α−β

)k
]

and the remainder R2T (φ ,t) is given by

R2T (φ ,t) =
∫ β

α
G2T (t,s)φ (n)(s)ds

with

G2T (t,s) =

⎧⎪⎪⎨
⎪⎪⎩

(−1)m

(2m−1)! p
m(t,s)

m−1
∑
j=0

(m−1+ j
j

)
(t − s)m−1− jq j(t,s), s � t;

(−1)m

(2m−1)!q
m(t,s)

m−1
∑
j=0

(m−1+ j
j

)
(s− t)m−1− j p j(t,s), s � t;

(12)

where p(t,s) = (s−α)(β−t)
β−α , q(t,s) = p(s,t),∀t,s ∈ [α,β ].

3. Generalizations of Sherman’s inequality

Applying Hermite’s interpolating polynomial we obtain a generalization of Sher-
man’s theorem which holds for real, not necessary nonnegative weights u , v and a
matrix A and without assumption (2).

THEOREM 4. Let α � a1 < a2 < .. . < ar � β (r � 2 ) be the given points, k j �
0, j = 1, ...,r, with

r
∑
j=1

k j + r = n. Let φ ∈ Cn([α,β ]) be n-convex and x ∈ [α,β ]l ,

y ∈ [α,β ]m, u ∈ R
l and v ∈ R

m. If

l

∑
p=1

upGH,n(xp,s)−
m

∑
q=1

vqGH,n(yq,s) � 0, s ∈ [α,β ], (13)

then

l

∑
p=1

upφ(xp)−
m

∑
q=1

vqφ(yq) (14)

�
l

∑
p=1

up

r

∑
j=1

k j

∑
i=0

φ (i)(a j)Hi j(xp)−
m

∑
q=1

vq

r

∑
j=1

k j

∑
i=0

φ (i)(a j)Hi j(yq),

where GH,n and Hi j are defined as in (6) and (5), respectively.
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Proof. Since φ ∈Cn([α,β ]), applying Theorem 3 on
l
∑

p=1
upφ(xp)−

m
∑

q=1
vqφ(yq),

we get the identity

l

∑
p=1

upφ(xp)−
m

∑
q=1

vqφ(yq) =
r

∑
j=1

k j

∑
i=0

φ (i)(a j)

[
l

∑
p=1

upHi j(xp)−
m

∑
q=1

vqHi j(yq)

]
(15)

+
∫ β

α

[
l

∑
p=1

upGH,n(xp,s)−
m

∑
q=1

vqGH,n(yq,s)

]
φ (n)(s)ds.

Since φ is n -convex on [α,β ], then we have φ (n) � 0 on [α,β ] . Moreover, the in-
equality (14) holds. �

Under Sherman’s assumptions the following generalizations hold.

THEOREM 5. Let all the assumptions of Theorem 4 be satisfied. Additionally, let
vectors u, v be nonnegative and let (2) holds for some row stochastic matrix A ∈
Mml(R). If (14) holds and the function

F(·) =
r

∑
j=1

k j

∑
i=0

φ (i)(a j)Hi j(·) (16)

is convex on [α,β ] then the inequality (3) holds.

Proof. If (14) holds, the right hand side of (14) can be written in the form

l

∑
p=1

upF(xp)−
m

∑
q=1

vqF(yq),

where F is defined by (16). If F is convex, then by Sherman’s theorem we have

l

∑
p=1

upF(xp)−
m

∑
q=1

vqF(yq) � 0,

i.e. the right-hand side of (14) is nonnegative, so (3) immediately follows. �
By using Lagrange conditions we get the following generalization of Sherman’s

theorem.

COROLLARY 1. Let α � a1 < a2 < .. . < an � β (n � 2 ) be the given points and
φ ∈Cn([α,β ]) be n-convex. Let x ∈ [α,β ]l, y ∈ [α,β ]w, u ∈ [0,∞)l and v ∈ [0,∞)w

be such that (2) holds for some row stochastic matrix A ∈ Mwl(R).

(i) If
l

∑
p=1

upGL(xp,s)−
w

∑
q=1

vqGL(yq,s) � 0, s ∈ [α,β ],
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then

l

∑
p=1

upφ(xp)−
w

∑
q=1

vqφ(yq) (17)

�
l

∑
p=1

up

n

∑
j=1

φ(a j)
n

∏
u=1
u �= j

(
xp−au

a j −au

)
−

w

∑
q=1

vq

n

∑
j=1

φ(a j)
n

∏
u=1
u �= j

(
yq −au

a j −au

)
,

where GL is defined as in (7).

(ii) If (17) holds and the function

F̃(·) =
n

∑
j=1

φ(a j)
n

∏
u=1
u �= j

( ·−au

a j −au

)

is convex on [α,β ] then

w

∑
q=1

vqφ(yq) �
l

∑
p=1

upφ(xp).

By using type (m,n−m) conditions we can give the following result.

COROLLARY 2. Let n � 2, 1 � m � n−1 and φ ∈Cn([α,β ]) be n-convex. Let
x∈ [α,β ]l, y∈ [α,β ]w, u∈ [0,∞)l and v∈ [0,∞)w be such that (2) holds for some row
stochastic matrix A ∈ Mwl(R).

(i) If
l

∑
p=1

upG(m,n)(xp,s)−
w

∑
q=1

vqG(m,n)(yq,s) � 0, s ∈ [α,β ],

then

l

∑
p=1

upφ(xp)−
w

∑
q=1

vqφ(yq) �
l

∑
p=1

up

(
m−1

∑
i=0

τi(xp)φ (i)(α)+
n−m−1

∑
i=0

ηi(xp)φ (i)(β )

)

−
w

∑
q=1

vq

(
m−1

∑
i=0

τi(yq)φ i(α)+
n−m−1

∑
i=0

ηi(yq)φ (i)(β )

)
,

(18)

where τi, ηi and G(m,n) are defined as in (8), (9) and (10), respectively.

(ii) If (18) holds and the function

F̂(·) =
m−1

∑
i=0

τi(·)φ (i)(α)+
n−m−1

∑
i=0

ηi(·)φ (i)(β )
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is convex on [α,β ] then

u

∑
q=1

vqφ(yq) �
w

∑
p=1

upφ(xp).

By using Two-point Taylor conditions we can give the following result.

COROLLARY 3. Let m � 1 and φ ∈C2m([α,β ]) be 2m-convex. Let x ∈ [α,β ]l ,
y ∈ [α,β ]w, u ∈ [0,∞)l and v ∈ [0,∞)w be such that (2) holds for some row stochastic
matrix A ∈ Mwl(R).

(i) If
l

∑
p=1

upG2T (xp,s)−
w

∑
q=1

vqG2T (yq,s) � 0, s ∈ [α,β ],

then
l

∑
p=1

upφ(xp)−
w

∑
q=1

vqφ(yq) �
l

∑
p=1

upρ2T (xp)−
w

∑
q=1

vqρ2T (yq), (19)

where ρ2T and G2T are defined as in (11) and (12), respectively.

(ii) Moreover, if the function ρ2T is convex on [α,β ] , then

w

∑
q=1

vqφ(yq) �
l

∑
p=1

upφ(xp).

REMARK 2. Motivated by the inequality (14), under the assumptions of Theorem
4, we define the linear functional A : Cn([α,β ]) → R by

A(φ) =
l

∑
p=1

upφ(xp)−
m

∑
q=1

vqφ(yq) (20)

−
r

∑
j=1

k j

∑
i=0

φ (i)(a j)

[
l

∑
p=1

upHi j(xp)−
m

∑
q=1

vqHi j(yq)

]
.

Then for every n -convex functions φ ∈Cn([α,β ]) we have A(φ) � 0. Using the linear-
ity and positivity of this functional we may derive corresponding mean-value theorems
applying the same method as given in [2]. Moreover, we could produce new classes of
exponentially convex functions and as outcome we get new means of the Cauchy type.
Here we also refer to [7] with related results.

4. Grüss and Ostrowski type inequalities

P. L. Chebyshev [5] obtained the following inequality

|T ( f ,g)| � 1
12

(b−a)2
∥∥ f ′
∥∥

∞

∥∥g′∥∥∞
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where f ,g : [α,β ] → R are absolutely continuous functions whose derivatives f ′ and
g′ are bounded and T ( f ,g) is so-called Chebyshev functional defined as

T ( f ,g) :=
1

β −α

∫ β

α
f (t)g(t)dt− 1

β −α

∫ β

α
f (t)dt · 1

β −α

∫ β

α
g(t)dt. (21)

Here ‖·‖∞ denotes the norm in L∞[α,β ], the space of essentially bounded functions
on [α,β ] , defined by ‖ f‖∞ = esssup

t∈[α ,β ]
| f (t)|. We also use notation ‖·‖p , p � 1, for Lp

norm.
P. Cerone and S. S. Dragomir [4], considering the Chebyshev functional (21), ob-

tained the following two related results.

THEOREM 6. Let f : [α,β ] → R be Lebesgue integrable and g : [α,β ] → R be
absolutely continuous with (·−α)(β −·)(g′)2 ∈ L1[α,β ]. Then

|T ( f ,g)| � 1√
2
[T ( f , f )]

1
2

1√
β −α

(∫ β

α
(x−α)(β − x)[g′(x)]2dx

) 1
2

. (22)

The constant 1√
2

in (22) is the best possible.

THEOREM 7. Let g : [α,β ]→ R be monotonic nondecreasing and f : [α,β ]→R

be absolutely continuous with f ′ ∈ L∞[α,β ]. Then

|T ( f ,g)| � 1
2(β −α)

∥∥ f ′
∥∥

∞

∫ β

α
(x−α)(β − x)dg(x). (23)

The constant 1
2 in (23) is the best possible.

In following results we consider the function B : [α,β ] → R , defined under as-
sumptions of Theorem 4, by

B(s) =
l

∑
p=1

upGH,n(xp,s)−
m

∑
q=1

vqGH,n(yq,s), (24)

where x ∈ [α,β ]l , y ∈ [α,β ]m, u ∈ R
l, v ∈ R

m and GH,n is defined as in (6).

THEOREM 8. Let α � a1 < a2 < .. . < ar � β (r � 2 ) be the given points, k j � 0,

j = 1, ...,r, with
r
∑
j=1

k j + r = n. Let φ : [α,β ] → R be such that φ (n) is an absolutely

continuous on [α,β ] with (· −α)(β − ·)(φ (n+1))2 ∈ L1[α,β ]. Let x ∈ [α,β ]l , y ∈
[α,β ]m, u ∈ R

l , v ∈ R
m and Hi j and B be defined as in (5) and (24), respectively.
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Then the remainder R(φ ;α,β ) defined by

R(φ ;α,β ) =
l

∑
p=1

upφ(xp)−
m

∑
q=1

vqφ(yq)

−
r

∑
j=1

k j

∑
i=0

φ (i)(a j)

[
l

∑
p=1

upHi j(xp)−
m

∑
q=1

vqHi j(yq)

]

− φ (n−1)(β )−φ (n−1)(α)
β −α

∫ β

α
B(s)ds (25)

satisfies the estimation

|R(φ ;α,β )| �
√

β −α√
2

[T (B,B)]
1
2

(∫ β

α
(s−α)(β − s)[φ (n+1)(s)]2ds

) 1
2

. (26)

Proof. Comparing (15) and (25) we have

R(φ ;α,β ) =
∫ β

α
B(s)φ (n)(s)ds− φ (n−1)(β )−φ (n−1)(α)

β −α

∫ β

α
B(s)ds

=
∫ β

α
B(s)φ (n)(s)ds− 1

β −α

∫ β

α
φ (n)ds

∫ β

α
B(s)ds = (β −α)T (B,φ (n)).

Applying Theorem 6 on the functions B and φ (n) we obtain (26). �

Using Theorem 7 we obtain the Grüss type inequality.

THEOREM 9. Let α � a1 < a2 < .. . < ar � β (r � 2 ) be the given points, k j � 0,

j = 1, ...,r, with
r
∑
j=1

k j + r = n. Let φ ∈Cn([α,β ]) be such that φ (n+1) � 0 on [α,β ]

and x ∈ [α,β ]l , y ∈ [α,β ]m, u ∈ R
l, v ∈ R

m and Hi j and B be defined as in (5)
and (24), respectively. Then the remainder R(φ ;α,β ) defined by (25) satisfies the
estimation

|R(φ ;α,β )| � ‖B′‖∞

[
φ (n−1)(β )+ φ (n−1)(α)

2
− φ (n−2)(β )−φ (n−2)(α)

β −α

]
. (27)

Proof. Since R(φ ;α,β ) = (β −α)T (B,φ (n)) , applying Theorem 7 on the func-
tions B and φ (n) we obtain (27). �

We present the Ostrowski type inequality related to generalizations of Sherman’s
inequality.
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THEOREM 10. Let α � a1 < a2 < .. . < ar � β (r � 2 ) be the given points, k j �
0, j = 1, ...,r, with

r
∑
j=1

k j + r = n. Let φ ∈ Cn([α,β ]) and x ∈ [α,β ]l, y ∈ [α,β ]m,

u ∈ R
l and v ∈ R

m. Let 1 � p,q � ∞ , 1/p+1/q = 1 and
∣∣∣φ (n)

∣∣∣p ∈ Lp [α,β ] . Then

∣∣∣∣∣
l

∑
p=1

upφ(xp)−
m

∑
q=1

vqφ(yq)−
r

∑
j=1

k j

∑
i=0

φ (i)(a j)

[
l

∑
p=1

upHi j(xp)−
m

∑
q=1

vqHi j(yq)

]∣∣∣∣∣
�
∥∥∥φ (n)

∥∥∥
p
‖B‖q , (28)

where Hi j and B are defined as in (5) and (24), respectively.
The constant ‖B‖q is sharp for 1 < p � ∞ and the best possible for p = 1 .

Proof. Under ussumption of theorem the identity (15) holds. Applying the well-
known Hölder inequality to (15), we have∣∣∣∣∣

l

∑
p=1

upφ(xp)−
m

∑
q=1

vqφ(yq)−
r

∑
j=1

k j

∑
i=0

φ (i)(a j)

[
l

∑
p=1

upHi j(xp)−
m

∑
q=1

vqHi j(yq)

]∣∣∣∣∣
=

∣∣∣∣∣
∫ β

α

[
l

∑
p=1

upGH,n(xp,s)−
m

∑
q=1

vqGH,n(yq,s)

]
φ (n)(s)ds

∣∣∣∣∣
=
∣∣∣∣
∫ β

α
B(s)φ (n)(s)ds

∣∣∣∣� ∥∥∥φ (n)
∥∥∥

p

(∫ β

α
|B(s)|qds

) 1
q

The proof of the sharpness is analog to one in proof of Theorem 11 in [2]. �
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applications, J. Math. Inequal., 8, 1 (2014), 159–170.

[5] P. L. CHEBYSHEV, Sur les expressions approximatives des integrales definies par les autres prises
entre les mémes limites, Proc. Math. Soc. Charkov, 2, (1882) 93–98.
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