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Abstract. Jensen, Hölder, Minkowski, Jensen-Steffensen and Slater-Pečarić type inequalities de-
rived by the properties of γ -quasiconvex functions that we deal with here, can be seen as analog
to these for superquadratic functions and refinements of these for convex functions.

1. Introduction

We deal here with inequalities satisfied by one of the many variants of convex
functions. These functions are called γ -quasiconvex functions and have already been
dealt with by S. Abramovich, L.-E. Persson and N. Samko. The basic facts on γ -
quasiconvexity and superquadracity on which this paper is built, can be found in [4],
[6], and [7].

The importance of convex functions is obvious and widely acknowledged. Nu-
merous publications deal with convex functions, their properties and applications. In
particular we refer to the classical 1964 book “Inequalities” by Hardy, Littlewood and
Polya [9], the 1992 book “Convex functions, partial ordering and statistical applica-
tions” by Pecaric, Proschan and Tong [15] and to the 2006 book “Convex functions and
their applications – a contemporary approach” by Niculescu and Persson [13]. Out of
dealing with the classical convex functions evolved many generalizations and refine-
ments of this notion, see in particular Capter 2 in [13].

Among the many types of refinements and generalizations of convex functions are
the usual quasiconvexity,Morrey-convexity,Reitz-convexity, h-convexity, superquadrac-
ity and many others.

The subject of variants of convex functions and the comparison between them de-
serves at least every decade a large updated suvey which is out of the scope of this
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paper. We compare here results obtained through the use of γ -quasiconvexity and su-
perquadracity as these notions are the subjects of this paper, see Remark 1 and Theo-
rem 4.

The notion of γ -quasiconvexity with which we deal here is related but is not a
special case of any of the cases mentioned above. Therefore it is reasonable to assume
that our new and natural notion of γ -quasiconvexity will bring about new results and
applications.

Currently the following is already known: The original Hardy’s inequality has a
“turning point” (the point where the inequality is reversed) at p = 1. This inequality
can be proved directly by the properties of convex functions. (The proof can be found
in [16] and its references.) But by using the γ -quasiconvexity we get a refined variant
of the original Hardy’s inequality where the turning point is any p > 1 (see [6] and [7]).

It is known that most of the classical inequalities can be obtained by the properties
of convex functions, therefore it is reasonable to assume that using the properties of
γ -quasiconvexity will bring about proofs of generalizationd and refinements of more
classical inequalities.

We know that if f := R
+ → R

+ is a concave function then f (x)
x is not increasing

(see for instance [11, page 142] and [17]). This is one of the reasons it is natural to
deal with quasi-monotone functions, that is with γ -quasidecreasing functions. About
the importance of this notion especially to theories related to approximation and inter-
polations see [11].

The notion of a γ -quasiconvex function is analog to a quasimonotone function
(that is to γ -quasiincreasing functions). Therefore we hope to get in future publications
analog results to those we know about quasimonotone functions, in addition to those
mentioned above related to Hardy’s inequalities and to those dealt with in this paper
which are related in particular to Jensen, Hölder and Slater Pečarić inequalities.

γ -quasiconvex functions and superquadratic functions are closely related and there-
fore it is interesting to show side by side results related to these two sets.

We start with a definition of and lemmas about γ -quasiconvexity.

DEFINITION 1. Let γ be a real number. A real-valued function f defined on an
interval [0,b) with 0 < b � ∞ is called γ -quasiconvex if it can be represented as the
product of a comvex function and the power function xγ .

A convex function ϕ on [0,b) , 0 < b � ∞ is characterized by the inequality

ϕ(y)−ϕ(x) � Cϕ (x) (y− x), ∀x,y ∈ (0,b], Cϕ ∈ R, (1.1)

from which we establish easily the following lemmas:

LEMMA 1. [6, Lemma1] Let ψγ (x) = xγ ϕ (x) , γ ∈ R, where ϕ is convex on
[0,b) , that is, ψγ is a γ -quasiconvex function. Then

ψγ (y)−ψγ (x) � ϕ (x) (yγ − xγ)+Cϕ (x)yγ (y− x) , (1.2)

holds for all x ∈ [0,b) , y ∈ [0,b) , where Cϕ (x) is defined by (1.1).



INEQUALITIES DERIVED FROM N -QUASICONVEXITY 1205

The following is derived by some computation on the right handside of (1.2), see
also [7, Lemma 2]:

LEMMA 2. [7] Let ϕ be convex differentiable function and let ψk (x) = xkϕ (x) ,
k = 0,1, ...,N, then the function ψN (x) = xNϕ (x) , satisfies for x,y ∈ [a,b) , a � 0

ψN (y)−ψN (x) (1.3)

� (ψN (x))′ (y− x)+ (y− x)2
N

∑
k=1

yk−1 (ψN−k (x))′

= (ψN (x))′ (y− x)+ (y− x)2
∂
∂x

(
xN − yN

x− y
ϕ (x)

)
.

Now we quote a definition and some basic properties of superquadratic functions.

DEFINITION 2. [4, Definition 2.1] A function ϕ : [0,∞) → R is superquadratic
provided that for all x � 0 there exists a constant C(x) ∈ R such that

ϕ (y)−ϕ (x)−ϕ (|y− x|) � C (x)(y− x) (1.4)

for all y � 0.

From this definition we get that when ϕ is a superquadratic function, if ϕ � 0,
then ϕ is convex and ϕ(0) = ϕ ′(0) = 0, see [4].

When ϕ : [0,b)→R is differentiable non-negative, incresing convex and ϕ(0) = 0
the function ψN (x) = xNϕ (x) is not only N -quasiconvex where N is a non-negative
integer but also superquadratic. In particular the power functions f (x) = xp, p � 2,
x � 0 are superquadratic functions as well as 1-quasiconvex functions. The power
functions f (x) = xp, p � N +1, N � 1, x � 0, are also N -quasiconvex functions.

In Section 2 we deal with Jensen’s type and Slater-Pečarić type inequalities when
the coefficients αi � 0, i = 1, ...,n. In Section 5 we deal with inequalities for which
the coefficients are not always non-negative. We call these coefficients Steffensen’s
coefficients. For such coefficients and for a function ϕ we get:

LEMMA 3. Let ϕ : [0,∞) → R be a given function, let xxxxx be a nonnegative mono-
tonic n-tuple in R

n, and ρρρρρ a real n-tuple satisfying Steffensen’s coefficients, that is

0 � Pj � Pn, j = 1, ...,n, Pn > 0, (1.5)

Pj =
j

∑
i=1

ρi, Pj =
n

∑
i= j

ρi, j = 1, ...,n

Then

n

∑
i=1

ρiϕ (xi) =
k−1

∑
j=1

Pj
(
ϕ (x j)−ϕ

(
x j+1

))
+Pkϕ (xk) (1.6)

+Pk+1ϕ (xk+1)+
n

∑
j=k+2

Pj
(
ϕ (x j)−ϕ

(
x j−1

))
.
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Identity (1.6) is used in the proofs in Section 5 related to N -quasiconvex functions
in a similar way as they are used in [15] and [1] for convex functions, in [2] for su-
perquadratic functions and in [7] for 1-quasiconvex functions.

By using the results stated in Section 2 we get in Section 3 Hölder’s type inequal-
ities which are of the type

∫
f gdν ≶

(∫
gqdν

)1/q(∫
f pdν

)1/p

H ( f ,g)

that lately are widely discussed (see for instance [10], [12], [14], [19] and their refer-
ences).

In Section 4 we prove Minkowski type inequalities by using again the results stated
in Section 2.

In Section 5 we get more inequalities which are derived from the results from
Section 2.

In Section 6 we get inequalities related to differences of “Jensen’s gap” motivated
by the work of Dragomir in [8]. The results in this section are analog to the results in
[3].

2. Jensen and Slater-Pečarić type inequalities for N -quasiconvex functions

We quote first extensions of Jensen and of Slater-Pečarić inequalities for super-
quadratic functions which are proved in [4] and stated in Lemma A and in Theorem
B.

LEMMA A. [4, Lemma 2.3] Supppose that ψ is superquadratic on [0,b) then

∫
Ω

ψ ( f (s))dμ (s)−ψ
(∫

Ω
f (s)dμ (s)

)
�
∫

Ω
ψ
(∣∣∣∣ f (s)−

∫
Ω

f (σ)dμ (σ)
∣∣∣∣
)

dμ (s) ,

(2.1)
where f is any non-negative μ -integrable function on a probability measure space
(Ω,μ) and

∫
Ω f (s)dμ (s) > 0 .

The discrete version of (2.1) is:
Suppose that ψ is superquadratic on [0,b) . Let 0 � xi < b, i = 1, ...,n and let

x = ∑n
i=1 αixi where αi � 0 and ∑n

i=1 αi = 1. Then

n

∑
i=1

αiψ (xi)−ψ (x) �
n

∑
i=1

αiψ (|xi − x|) . (2.2)

LEMMA B. [4, Theorem 2.4] Suppose that ψ is superquadratic and that C ( f (s))
is given as in Definition 2. If μ is a probability measure, f is any non-negative μ -
measurable function,

∫
C ( f (s))dμ (s) �= 0, and m and M as defined by

m =
∫

f (s)dμ (s) and M =
∫

f (s)C ( f (s))dμ (s)∫
C ( f (s))dμ (s)

.
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then

ψ (m)+
∫

ψ (| f (s)−m|)dμ (s)

�
∫

ψ ( f (s))dμ (s)

� ψ (M)−
∫

ψ (| f (s)−M|)dμ (s) .

The discrete version is: Suppose that ψ is superquadratic and C is as in Definition
2. Let xi � 0, i = 1, ...,n and let αi � 0 , ∑n

i=1 αi = 1. If ∑n
i=1 αiC (xi) �= 0 we define

M = ∑n
i=1 αixiC(xi)

∑n
i=1 αiC(xi)

. Then

n

∑
i=1

αiψ (xi) � ψ (M)−
n

∑
i=1

αiψ (|xi−M|) ,

The following Theorem 1 may be considered an analog of lemmas A and B. In
it we get refinements of Jensen’s inequality and Slater-Pečarić inequality (see [1] and
[15]). The refinements are obtained just by using (1.3) in Lemma 2 for each i and then
summing up for i = 1, ...,n .

THEOREM 1. Let ϕ : [a,b) → R, a � 0 be convex differentiable function, and
let ψk (x) be ψk (x) = xkϕ (x) , k = 0,1, ...,N, where ψ0 = ϕ . Let αi � 0, xi ∈ [a,b) ,
i = 1, ...,n, ∑n

i=1 αi = 1 . Then:
1) A Jensen’s type inequality holds where x = ∑n

i=1 αixi :

n

∑
i=1

αiψN (xi)−ψN (x) (2.3)

�
n

∑
i=1

αiϕ (x)
(
xN
i − xN)+ n

∑
i=1

αiϕ
′
(x)xN

i (xi − x)

=
n

∑
i=1

N

∑
k=1

αi (xi − x)2 xk−1
i (ψN−k (x))′

=
n

∑
i=1

αi (xi − x)2 ∂
∂x

(
xN − xN

i

x− xi
ϕ (x)

)
.

If ϕ is also non-negative and increasing then for N = 2, ..., the above inequality refines
Jensen’s inequality. For N = 1 we get for ψ1 (x) = xϕ (x)

n

∑
i=1

αiψ1 (xi)−ψ1 (x) �
n

∑
i=1

αiϕ
′
(x)xi (xi − x) =

n

∑
i=1

αiϕ
′
(x) (xi − x)2 . (2.4)

If ϕ is increasing and convex (and not necessarily non-negative) then again (2.4) is a
refinement of Jensen’s inequality.
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2) For a fixed C ∈ [a,b) we get when αi � 0, i = 1, ...,n, ∑n
i=1 αi = 1 that

CNϕ (C)−
n

∑
i=1

αix
N
i ϕ (xi)

= ψN (C)−
n

∑
i=1

αiψN (xi)

�
n

∑
i=1

αi
(
xN
i ϕ (xi)

)′
(C− xi)+

n

∑
i=1

αi (C− xi)
2

N

∑
k=1

Ck−1 (ψN−k (xi))
′

=
n

∑
i=1

αi
(
xN
i ϕ (xi)

)′
(C− xi)+

n

∑
i=1

αi (C− xi)
2 ∂

∂xi

(
xN
i −CN

xi−C
ϕ (xi)

)
.

3) Especially if ∑n
i=1 αiψ ′

N (xi) > 0, and if C = MψN = ∑n
i=1 αixiψ ′

N (xi)
∑n

i=1 αiψ ′
N(xi)

∈ [a,b) , then

by using ∑n
i=1 αiψ ′

N (xi)
(
MψN − xi

)
= 0 we get a Slater-Pečarić type inequality

ψN
(
MψN

)− n

∑
i=1

αiψN (xi)

�
n

∑
i=1

N

∑
k=1

αi
(
MψN − xi

)2
Mk−1

ψN
(ψN−k (xi))

′

=
n

∑
i=1

αi
(
MψN − xi

)2 ∂
∂xi

(
MN

ψN
− xN

i

MψN − xi
ϕ (xi)

)
.

If ϕ is also non-negative and increasing then for N = 1, ... the above inequality is a
refinement of Slater Pečarić inequality.

Theorem 1 Case 1 appears in [5, Corollary 1].
We get in [7, Theorem 1] the integral form of Jensen’s type inequality for γ -

quasiconvex functions and the special case when γ = 1 is:

LEMMA C. [7] Let f be a non-negative function. Let f and ϕ ◦ f be μ -
integrable functions on the probability measure space (Ω,μ) and

∫
Ω f (s)dμ (s) > 0.

Let also ψ (x) = xϕ (x) . If ϕ is a differentiable convex on [0,b) , 0 < b � ∞
∫

Ω
ψ ( f (s))dμ (s)−ψ

(∫
Ω

f (s)dμ (s)
)

�
∫

Ω
ϕ ′
(∫

Ω
f (σ)dμ (σ)

)(
f (s)−

∫
Ω

f (σ)dμ (σ)
)2

dμ (s) .

hold. If ϕ is also increasing we get a refinement of Jensen’s inequality.

EXAMPLE 1. Let ϕ (x) = ex3
, ψ (x) = xex3

then from the convexity of ψ we get

that
∫ 1
0 ψ (x)dx � e

1
8
2 and from the 1-quasiconvexitywe get the better result

∫ 1
0 ψ (x)dx

� 5e
1
8

8 .
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REMARK 1. In [7, Proposition 5] it is proved that: Let f be a non-negative func-
tion. Let f and ϕ ◦ f be μ -integrable functions on the probability measure space
(Ω,μ) and

∫
Ω f (s)dμ (s) > 0. Let also ψ (x) = xϕ (x) . If ϕ is a differentiable non-

negative convex increasing on [0,b) , 0 < b � ∞ and ϕ (0) = lim
z→0+

zϕ ′
(z) = 0 then ψ

is also superquadratic and the inequalities∫
Ω

ψ ( f (s))dμ (s)−ψ
(∫

Ω
f (s)dμ (s)

)

�
∫

Ω
ϕ ′
(∫

Ω
f (σ)dμ (σ)

)(
f (s)−

∫
Ω

f (σ)dμ (σ)
)2

dμ (s)

�
∫

Ω
ψ
(∣∣∣∣ f (s)−

∫
Ω

f (σ)dμ (σ)
∣∣∣∣
)

dμ (s) ,

hold when 0 < f (s) � 2
∫

Ω f (σ)dμ (σ) for every s ∈ Ω, in particular when 0 < a �
f (s) � 2a, s ∈ Ω.

The discrete form says there that: when 0< xi � 2x, i = 1, ...,n and ψ (x) = xϕ (x)
where ϕ (x) is non-negative increasing differentiable and convex then Inequality (2.4)
is better than (2.2) when ϕ (0) = lim

z→0+
zϕ ′

(z) = 0.

3. Hölder type inequalities derived from γ -quasiconvexity and superquadracity

In this section we use Jensen’s type inequalities to prove new Hölder type inequal-
ities and reversed Hölder type inequalities. We use in particular Lemma A, Lemma C
and the following lemmas D and E to get refinements for p � 2 of Hölder inequality,
lower bounds for 1 < p � 2 and upper bounds when 0 < p < 1.

LEMMA D. [7, Corollary 1] Let 0 < p � 1, and let f be a μ -measurable and
positive function on the probability measure space (μ ,Ω) and x =

∫
Ω f (s)dμ (s) > 0.

Then

−I1 +
(∫

Ω
f (s)dμ (s)

)p

�
∫

Ω
( f (s))p dμ (s) �

(∫
Ω

f (s)dμ (s)
)p

,

where

I1 = p

(∫
Ω

f (s)dμ (s)
)p(

1−
∫

Ω
f (s)dμ (s)

∫
Ω

( f (s))−1 dμ (s)
)

> 0.

LEMMA E. [7, Corollary 2] Let 0 < p � 1, let f be a non-negative μ -measurable
function on the probability measure space (Ω,μ) and x =

∫
Ω f (s)dμ (s) > 0. Then

− I2 +
(∫

Ω
f (s)dμ (s)

)p

�
∫

Ω
( f (s))p dμ (s) �

(∫
Ω

f (s)dμ (s)
)p

, (3.1)

where

I2 = p

(∫
Ω

f (s)dμ (s)
)p−1 ∫

Ω

( f (s)− x)2

f (s)
dμ (s) . (3.2)
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As the power functions ϕ (x) = xp, x � 0 are superquadratic when p � 2 and
subquadratic when 1 � p � 2, we get from Lemma A that for p � 2

∫
Ω

( f (s))p dμ (s)−
(∫

Ω
f (s)dμ (s)

)p

�
∫

Ω

(∣∣∣∣ f (s)−
∫

Ω
f (σ)dμ (σ)

∣∣∣∣
)p

dμ (s) ,

(3.3)
holds, where f is any non-negative μ -integrable function on a probability measure
space (Ω,μ) and

∫
Ω f (s)dμ (s) > 0.

In [18, Theorem 1.4] a refinement of Hölder’s inequality is proved:

THEOREM 2. For p � 2 and for any two non-negative ν -measurable functions f
and g and for 1

p + 1
q = 1 we get a refinement of Hölder inequality

∫
Ω

f gdν �
(∫

Ω
f pdν −

∫
Ω

∣∣∣∣ f −gq−1
∫

Ω f gdν∫
Ω gqdν

∣∣∣∣
p

dν
) 1

p
(∫

Ω
gqdν

) 1
q

=
(∫

Ω
f pdν −

∫
Ω

∣∣∣∣ f g1−q−
∫

Ω f gdν∫
Ω gqdν

∣∣∣∣
p

gqdν
) 1

p
(∫

Ω
gqdν

) 1
q

.

In the case 1 < p � 2 we get for any two non-negative ν -measurable functions f and

g when
∫

Ω f pdν �
∫

Ω

∣∣∣ f −gq−1
∫

Ω f gdν∫
Ω gqdν

∣∣∣p dν, that

(∫
Ω

f pdν
) 1

p
(∫

Ω
gqdν

) 1
q

�
∫

Ω
f gdν �

(∫
Ω

f pdν −
∫

Ω

∣∣∣∣ f −gq−1
∫

Ω f gdν∫
Ω gqdν

∣∣∣∣
p

dν
) 1

p
(∫

Ω
gqdν

) 1
q

.

From Lemma C we get that for the 1-quasiconvex functions ϕ (x) = xp, x � 0,
p � 2 the inequality

∫
Ω

( f (s))p dμ (s)−
(∫

Ω
f (s)dμ (s)

)p

(3.4)

� (p−1)
(∫

Ω
f (s)dμ (s)

)p−2∫
Ω

(
f (s)−

∫
Ω

f (s)dμ (s)
)2

dμ (s)

holds.
Theorem 3, which is another refinement of Hölder inequality, follows in the same

way that Hölder’s inequality follows from Jensen’s inequality by fixing a non-negative
ν -measurable functions f and g and applying (3.4) with f g1−q in place of f and

gqdν∫
Ω gqdν in place of dμ where 1

p + 1
q = 1:
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THEOREM 3. Let p � 2 and define q by 1
p + 1

q = 1 . Then for any two nonnegative
ν -measurable functions f and g∫

Ω
f gdν (3.5)

�
(∫

Ω
f pdν − (p−1)

(∫
Ω f gdν∫
Ω gqdν

)p−2∫
Ω

(
f g(1−q)−

∫
Ω f gdν∫
Ω gqdν

)2

gqdν

) 1
p

×
(∫

Ω
gqdν

) 1
q

.

If 1 < p � 2 we get when
∫

Ω f pdν � (p−1)
(∫

Ω f gdν∫
Ω gqdν

)p−2 ∫
Ω

(
f g(1−q)−

∫
Ω f gdν∫
Ω gqdν

)2
gqdν,

that

(∫
Ω

f pdν
) 1

p
(∫

Ω
gqdν

) 1
q

(3.6)

�
∫

Ω
f gdν

�
(∫

Ω
f pdν − (p−1)

(∫
Ω f gdν∫
Ω gqdν

)p−2∫
Ω

(
f g(1−q)−

∫
Ω f gdν∫
Ω gqdν

)2

gqdν

) 1
p

×
(∫

Ω
gqdν

) 1
q

.

The last inequalities emphasize that through the 1 -quasiconvexity and 1 -quasiconcavity
notions we get refined Hölder inequality for p � 2 in (3.5) and a lower bound in (3.6)
for 1 < p � 2.

From Remark 1 it follows that:

THEOREM 4. Under the same conditions as in Theorems 2 and 3 we get that the
refinement of Hölder inequality derived from the 1-quasiconvexity of xp , x � 0 , p � 2 is

better that the refinement derived from its superquadracity when 0 � f g(1−q) � 2
∫

Ω f gdν∫
Ω gqdν

that is we get that

∫
Ω

f gdν �
(∫

Ω
f pdν −Δ1

) 1
p
(∫

Ω
gqdν

) 1
q

�
(∫

Ω
f pdν −Δ2

) 1
p
(∫

Ω
gqdν

) 1
q

,

where

Δ1 = (p−1)
(∫

Ω f gdν∫
Ω gqdν

)p−2∫
Ω

(
f g(1−q)−

∫
Ω f gdν∫
Ω gqdν

)2

gqdν
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and

Δ2 =
∫

Ω

∣∣∣∣ f g(1−q)−
∫

Ω f gdν∫
Ω gqdν

∣∣∣∣
p

gqdν.

From Lemma E we get a two sided Hölder type inequality:

THEOREM 5. Let 0 < p � 1 , f and g be non-negative μ -measurable functions
on the probability measure space (Ω,ν) then

(∫
Ω

f pdν
) 1

p
(∫

Ω
gqdν

) 1
q

(3.7)

�
∫

Ω
f gdν

�
(∫

Ω
f pdν + p

(∫
Ω f gdν∫
Ω gqdν

)p−1∫
Ω

(
f g(1−q)−

∫
Ω f gdν∫
Ω gqdν

)2 g2q−1

f
dν

) 1
p

×
(∫

Ω
gqdν

) 1
q

.

Proof. To get a refinement of Hölder inequality, from Lemma E we fix as before a
non-negative ν -measurable functions f and g and apply (3.1) and (3.2) with f g1−q in
place of f and gqdν∫

Ω gqdν in place of dμ where 1
p + 1

q = 1 and get the right side of (3.7)
by a simple computation, and together with Hölder inequality for 0 < p � 1 which says
that (∫

Ω
f pdν

) 1
p
(∫

Ω
gqdν

) 1
q

�
∫

Ω
f gdν

(3.7) is obtained. �
Similarly we get from Lemma D that

THEOREM 6. Let 0 < p � 1, f and g be non-negative μ -measurable functions
on the probability measure space (Ω,ν) , then

∫
Ω

f gdν

�
(∫

Ω
f pdν + p

(∫
Ω f gdν∫
Ω gqdν

)p(∫
Ω

gqdν −
∫

Ω f gdν∫
Ω gqdν

∫
Ω

g2q−1

f
dν
)) 1

p

×
(∫

Ω
gqdν

) 1
q

.

Hölder type inequality for 0 < p � 1
2 and for 1

2 � p < 1 which we get now are
derived again from the theorems related to 1-quasiconvex functions but are obtained
by different substitutions that those employed up to now.
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THEOREM 7. Let 0 < p � 1
2 and define 1

p + 1
q = 1. then for any positive ν -

measurable function f and g

∫
Ω

f gdν �
(∫

Ω
f pdν

) 1
p
(∫

Ω
gqdν

) 1
q

(3.8)

×
[
1+
(

1
p
−1

)∫
Ω

(
f p ∫

Ω gqdν −gq ∫
Ω f pdν∫

Ω f pdν

)2 g−q∫
Ω gqdν

dν

]

is derived, which is a refinement of Hölder inequality.
For 1

2 � p < 1, we get the reverse of inequality (3.8) and together with Hölder
inequality for 0 < p < 1

(∫
Ω

gqdν
) 1

q
(∫

Ω
f pdν

) 1
p

(3.9)

�
∫

Ω
f gdν

�
(∫

Ω
gqdν

) 1
q
(∫

Ω
f pdν

) 1
p

×
[
1+
(

1
p
−1

)∫
Ω

(
f p ∫

Ω gqdν −gq ∫
Ω f pdν∫

Ω f pdν

)2 g−q∫
Ω gqdν

dν

]

is derived.

Proof. For simplicity we denote
∫

Ω as
∫

. For 1
p � 2 we use the inequality for the

1-quasiconvex function x
1
p

∫
f

1
p dμ �

(∫
f dμ

) 1
p
(

1+
(

1
p
−1

)∫ (
f − ∫ f dμ∫

f dμ

)2

dμ

)
. (3.10)

We fix now non-negative ν measurable functions f and g and apply (3.10) with f pg−q

in place of f and dμ = gqdν∫
gqdν . Therefore

∫
f dμ is replaced by

∫
f pdν∫
gqdν ,

∫
f

1
p dμ is

replaced by
∫

f gdν∫
gqdν , and apply (3.10) and get

∫
f gdν∫
gqdν

�
(∫

f pdν∫
gqdν

) 1
p

⎡
⎢⎣1+

(
1
p
−1

)∫ ⎛⎝ f pg−q−
∫

f pdν∫
gqdν∫

f pdν∫
gqdν

⎞
⎠

2

gq∫
gqdν

dν

⎤
⎥⎦ . (3.11)

from which (3.8) is obtained.

The proof of (3.9) is similar using the 1-quasiconcavity of x
1
p , 1

2 � p < 1. �

Similarly, using the superquadracity of x
1
p , x � 0, 1

p � 2 and the subquadracity

of x
1
p , 1 � 1

p � 2 and under the same condition as in 7 we get in a similar way when
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0 < p � 1
2 the inequality

∫
f gdν �

(∫
f pdν

) 1
p
(∫

gpdν
) 1

q

×
[
1+

∫ ∣∣∣∣ f p ∫ gqdν −gq ∫ f pdν∫
f pdν

∣∣∣∣
1
p gdv∫

gpdν

]

and the reverse inequality holds when 1
2 � p < 1, and together with Hölder inequality

for 0 < p < 1 we get

(∫
f pdν

) 1
p
(∫

gpdν
) 1

q

�
∫

f gdν

�
(∫

f pdν
) 1

p
(∫

gpdν
) 1

q

×
[
1+

∫ ∣∣∣∣ f p ∫ gqdν −gq ∫ f pdν∫
f pdν

∣∣∣∣
1
p gdv∫

gpdν

]

4. Minkowski type inequalities using 1 -quasiconvexity

By using Theorem 3 we get Minkowski type inequalities:

THEOREM 8. Let p � 2 and let 1
q = 1− 1

p . Then for any two non-negative ν -
measurable functions f and g

(∫
( f +g)p dν

) 1
p

�
(∫

f pdν −D

(∫
f ( f +g)p−1 dν

)p−2
) 1

p

(4.1)

+

(∫
gpdν −D

(∫
g( f +g)p−1 dν

)p−2
) 1

p

where

D = (p−1)

⎛
⎜⎝∫

⎛
⎜⎝
(
g
∫

f ( f +g)p−1 dν − f
∫

g( f +g)p−1 dν
)2

( f +g)p−2

(
∫

( f +g)p dν)p

⎞
⎟⎠dν

⎞
⎟⎠ .

(4.2)

Proof. Inequality (4.1) follows from inequality (3.5) in the same way that Min-
kowski’s inequality follows from Hölder’s and as Minkowski’s inequality for super-
quadratic functions xp, p � 2, x � 0 follows from Hölder’s inequality for superquad-
ratic functions (see [18]).
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Let p � 2 and apply (3.5) with g replaced by ( f +g)p−1 and we get

∫
f ( f +g)p−1 dν �

(∫
( f +g)p dν

) 1
q

×
⎡
⎣∫ f pdν − (p−1)

(∫
f ( f +g)p−1 dν∫

( f +g)p dν

)p−2

×
∫ (

f
f +g

−
∫

f ( f +g)p−1 dν∫
( f +g)p dν

)2

( f +g)p dν

⎤
⎦

1
p

.

Interchanging the roles of f and g yields

∫
g( f +g)p−1 dν �

(∫
( f +g)p dν

) 1
q

⎡
⎣∫ gpdν − (p−1)

(∫
g( f +g)p−1 dν∫

( f +g)p dν

)p−2

×
∫ (

g
f +g

−
∫

g( f +g)p−1 dν∫
( f +g)p dν

)2

( f +g)p dν

⎤
⎦

1
p

.

Adding the last two inequalities gives after simple computation Inequality (4.1). �
The following Theorem 9 follows from inequality (3.6) by a similar argument as

Theorem 8 follows from inequality (3.5).

THEOREM 9. Let 1 < p � 2 and let 1
q = 1− 1

p . Then for any two non-negative
ν -measurable functions f and g

(∫
f pdν

) 1
p

+
(∫

gpdν
) 1

p

�
(∫

( f +g)p dν
) 1

p

(4.3)

�
(∫

f pdν −D

(∫
f ( f +g)p−1 dν

)p−2
) 1

p

+

(∫
gpdν −D

(∫
g( f +g)p−1 dν

)p−2
) 1

p

where

D = (p−1)

⎛
⎜⎝∫

⎛
⎜⎝
(
g
∫

f ( f +g)p−1 dν − f
∫

g( f +g)p−1 dν
)2

( f +g)p−2

(
∫

( f +g)p dν)p

⎞
⎟⎠dν

⎞
⎟⎠ .

(4.4)

and
∫

f pdν � D
(∫

f ( f +g)p−1 dν
)p−2

,
∫

gpdν � D
(∫

g( f +g)p−1 dν
)p−2

.



1216 S. ABRAMOVICH

Now we get Minkowski’s type inequalities when 0 < p � 1
2 and when 1

2 � p < 1.

THEOREM 10. Let 0 < p � 1
2 and define 1

p + 1
q = 1. Then for any two non-

negative ν -measurable functions f and g

(∫
( f +g)p dν

) 1
p

(4.5)

�
(∫

f pdν
) 1

p

×
[
1+
(

1
p
−1

)∫ ( ( f +g)p ∫ f pdν − f p ∫ ( f +g)p dν∫
f pdν

)2 ( f +g)−p∫
( f +g)p dν

dν

]

+
(∫

gpdν
) 1

p

×
[
1+
(

1
p
−1

)∫ ( ( f +g)p ∫ gpdν −gp ∫ ( f +g)p dν∫
gpdν

)2 ( f +g)−p∫
( f +g)p dν

dν

]
.

When 1
2 � p < 1 we get

(∫
f pdν

) 1
p

+
(∫

gpdν
) 1

p

(4.6)

�
(∫

( f +g)p dν
) 1

p

�
(∫

f pdν
) 1

p

×
[
1+
(

1
p
−1

)∫ ( ( f +g)p ∫ f pdν − f p ∫ ( f +g)p dν∫
f pdν

)2 ( f +g)−p∫
( f +g)p dν

dν

]

+
(∫

gpdν
) 1

p

×
[
1+
(

1
p
−1

)∫ ( ( f +g)p ∫ gpdν −gp ∫ ( f +g)p dν∫
gpdν

)2 ( f +g)−p∫
( f +g)p dν

dν

]
.

Proof. We use inequality (3.10) for 1
p > 2 to get (4.5). We fix non-negative ν -

measurable functions f and g and apply (3.10) with
(

f
f+g

)p
in place of f and

dμ = ( f+g)pdν∫
( f+g)pdν . Therefore

∫
f pdν∫

( f+g)pdν is in place of
∫

f dμ , f
f+g is in place of f

1
p ,
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∫
f ( f+g)p−1dν∫
( f+g)pdν is in place of

∫
f

1
p dμ and get

∫
f ( f +g)p−1 dν∫

( f +g)p dν
(4.7)

�
( ∫

f pdν∫
( f +g)p dν

) 1
p

×
⎡
⎣1+

(
1
p
−1

)∫ ( ( f +g)−p f p − ∫ f p (
∫

( f +g)p dν)−1∫
f pdν (

∫
( f +g)p dν)−1

)2
( f +g)p∫
( f +g)p dν

dν

⎤
⎦ .

Interchanging the roles of f and g yields

∫
g( f +g)p−1 dν∫

( f +g)p dν
(4.8)

�
( ∫

gpdν∫
( f +g)p dν

) 1
p

×
⎡
⎣1+

(
1
p
−1

)∫ ⎛⎝
(

( f+g)−p gp−∫ gp (
∫

( f+g)p dν)−1∫
gpdν (

∫
( f+g)p dν)−1

)2
( f+g)p∫
( f+g)p dν

⎞
⎠dν

⎤
⎦ .

Adding the last two inequalities gives (4.5). Similarly together with Minkowski’s in-
equality for 0 < p < 1 we get (4.6) for 1

2 � p < 1. �

5. Jensen and Slater-Pečarić type inequalities for Steffensen’s coefficients

In Section 2 we dealt with Jensen’s type and Slater-Pečarić type inequalities when
the coefficients αi � 0, i = 1, ...,n.

We prove now a Jensen-Steffensen type inequality and a Slater-Pečarić type in-
equality for N -quasiconvex functions, when N is an integer, and the coefficients are
not necessarily non-negative.

An extension of Jensen Steffensen inequality is proved in [2] for a non-negative
superquadratic function which is therefore also increasing and convex:

THEOREM 11. Let ψ : [0,∞)→R be differentiable superquadratic and nonnega-
tive. Let xxxxx be a nonnegative monotonic n-tuple in R

n, and ρρρρρ a real n-tuple satisfying
Steffensen’s coefficients. Let x be defined by x = 1

Pn
∑n

i=1 ρixi. Then

n

∑
i=1

ρiψ (xi)−Pnψ (x) �
k−1

∑
j=1

Pjψ
(∣∣x j − x j+1

∣∣)+Pkψ (|xk − x|)

+Pk+1ψ (|xk+1− x|)+
n

∑
j=k+2

Pjψ
(∣∣x j − x j−1

∣∣)
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�
(

k

∑
i=1

Pi +
n

∑
i=k+1

Pi

)
ψ

(
∑n

i=1 ρi (|xi − x|)
∑k

i=1 Pi + ∑n
i=k+1 Pi

)

� ((n−1)Pn)ψ
(

∑n
i=1 ρi (|xi − x|)
(n−1)Pn

)

holds where k ∈ {1, ...,n−1} satisfies xk � x � xk+1 , unless one of the following two
cases occurs:

(1) either x = x1 or x = xn ,

(2) there exists k ∈ {3, ...,n−2} such that x = xk and Pj
(
x j − x j+1

)
= 0, j =

1, ...,k−1 , P j
(
x j − x j−1

)
= 0, j = k+1, ...,n.

In these two cases ∑n
i=1 ρiψ (xi)−Pnψ (x) = 0.

An extension of Slater-Pečarić inequality is proved in [2], for a non-negative su-
perquadratic function which is therefore also increasing and convex:

THEOREM 12. [2] Let ψ : [0,∞)→R be a differentiable nonnegative superquad-
ratic function. Let ρρρρρ = (ρ1, ...,ρn) be Jensen-Steffensen coefficients and xxxxx=(x1, ...,xn)
be a non-negative increasing n-tuple. If ∑n

i=1 ρiψ ′ (xi) �= 0 we define M = ∑n
i=1 ρixiψ ′(xi)

∑n
i=1 ρiψ ′(xi)

.

Then:
Case A: for s satisfying xs � M � xs+1, s+1 � n,

n

∑
i=1

ρiψ (xi)

� Pnψ(M)−
(

s−1

∑
j=1

Pjψ(x j+1−x j)+Psψ(M−xs)+Ps+1ψ(xs+1−M)+
n

∑
j=s+2

Pjψ(x j−x j−1)

)

� Pnψ (M)−
(

s

∑
j=1

Pj +
n

∑
j=s+1

Pj

)
ψ

(
∑n

i=1 ρi |xi −M|
∑s

j=1 Pj + ∑n
j=s+1 Pj

)

� Pnψ (M)− ((n−1)Pn)ψ
(

∑n
i=1 ρi |xi −M|
(n−1)Pn

)

holds, unless one of the following two cases occurs:

(1) either x = x1 or x = xn ,

(2) there exists k ∈ {3, ...,n−2} such that x = xk and Pj
(
x j − x j+1

)
= 0, j =

1, ...,s−1 ,Pj
(
x j − x j−1

)
= 0, j = s+1, ...,n. In these two cases ∑n

i=1 ρiψ (xi)
−Pnψ

(
MψN

)
= 0.

Case B: for M > xn : ∑n
i=1 ρiψ (xi) � Pnψ (M)− (nPn)ψ

(
∑n

i=1 ρi|xi−M|
nPn

)
.

For 1-quasiconvex function ψ we present a Jensen’s type inequality obtained in
[7, Theorem 3]:
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THEOREM 13. Let ρ1, ...,ρn be Jensen-Steffensen coefficients, that is, 0 � Pk =
∑k

i=1 ρi � Pn, Pk = ∑n
i=k ρi � 0, Pn > 0, k = 1, ...,n, and let x = (x1, ...,xn) > 0 satisfy

0 < x1 � ... � xn . Let ϕ be non-negative, increasing differentiable convex function
defined on x � 0, and let ψ (x) = xϕ (x) . Let x = ∑n

i=1
ρixi
Pn

. Let s be the integer that
satisfies 0 < xs � x � xs+1 � xn . Then we get

n

∑
i=1

ρiψ (xi)−Pnψ (x)

� ϕ ′ (x1)

(
s

∑
j=1

Pj + ∑
j=s+1

Pj

)(
∑n

i=1 ρi |xi − x|
∑s

j=1 Pi + ∑n
j=s+1 Pj

)2

� ϕ ′ (x1)Pn max{s,n− s}
(

∑n
i=1 ρi |xi − x|

Pn max{s,n− s}
)2

� ϕ ′ (x1)(n−1)Pn

(
∑n

i=1 ρi |xi − x|
(n−1)Pn

)2

� 0.

We state now a Jensen-Steffensen type inequality and Slater Pečarić type inequal-
ity for N -quasiconvex functions, when N is an integer. The proof of this theorem uses
(1.3) and some of the techniques used in [2]. This is done using identity (1.6) for the
convex function ψN .

THEOREM 14. Let ρ1, ...,ρn be Jensen-Steffensen coefficients, and let x= (x1, ...,
xn) satisfy 0 < x1 � ... � xn . Let ϕ be non-negative, increasing differentiable convex
function defined on x � 0, and let ψN (x) = xNϕ (x) where N is an integer . Let x =
∑n

i=1
ρixi
Pn

. Let s be the integer that satisfies 0 < xs � x � xs+1 � xn . Then

n

∑
i=1

ρiψN (xi)−PnψN (x) (5.1)

�
N

∑
k=1

xk−1
1 ψ ′

N−k (x1)

(
s

∑
j=1

Pj + ∑
j=s+1

Pj

)(
∑n

j=1 ρ j
∣∣x j − x

∣∣
∑s

j=1 Pj + ∑n
j=s+1 Pj

)2

=

(
s

∑
j=1

Pj + ∑
j=s+1

Pj

)(
∑n

j=1 ρ j
∣∣x j − x

∣∣
∑s

j=1 Pj + ∑n
j=s+1 Pj

)2
∂
∂x

(
xN − xN

1

x− x1
ϕ (x)

)
/x=x1

� (Pn max{s,n− s})−1

(
n

∑
i=1

ρi |xi − x|
)2

∂
∂x

(
xN − xN

1

x− x1
ϕ (x)

)
/x=x1

� ((n−1)Pn)
−1

(
n

∑
i=1

ρi |xi − x|
)2

∂
∂x

(
xN − xN

1

x− x1
ϕ (x)

)
/x=x1 � 0

holds, unless one of the following two cases occurs:

(1) either x = x1 or x = xn ,
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(2) there exists k ∈ {3, ...,n−2} such that x = xk and Pj
(
x j − x j+1

)
= 0, j =

1, ...,k−1 , P j
(
x j − x j−1

)
= 0, j = k+1, ...,n.

In these two cases ∑n
i=1 ρiψ (xi)−Pnψ (x) = 0.

A refinement of Slater-Pečarić inequality in case that ψN is N -quasiconvex func-
tions uses the same techniques as in Theorem 12 and in the proof of Theorem 13 is as
follows:

THEOREM 15. Under the same conditions as in Theorem 14 on (ρ1, ...,ρn) , on
(x1, ...,xn) and on ψk (x) = xkϕ (x) , k = 0,1, ...,N, if ∑n

i=1 ρiψ ′
N (xi) �= 0, we define

MψN = ∑n
i=1 ρixiψ ′

N (xi)
∑n

i=1 ρiψ ′
N (xi)

. Then,

Case A: for s satisfying xs � MψN � xs+1, s+1 � n,

n

∑
i=1

ρiψN (xi)−PnψN
(
MψN

)
(5.2)

� −
N

∑
k=1

xk−1
1 ψ ′

N−k (x1)

(
s

∑
j=1

Pj + ∑
j=s+1

Pj

)(
∑n

j=1 ρ j
∣∣x j − x

∣∣
∑s

j=1 Pj + ∑n
j=s+1 Pj

)2

= −
(

s

∑
j=1

Pj + ∑
j=s+1

Pj

)−1( n

∑
j=1

ρ j
∣∣x j − x

∣∣)2
∂
∂x

(
xN − xN

1

x− x1
ϕ (x)

)
/x=x1

� −(Pn max{s,n− s})−1

(
n

∑
i=1

ρi |xi − x|
)2

∂
∂x

(
xN − xN

1

x− x1
ϕ (x)

)
/x=x1

� −((n−1)Pn)−1

(
n

∑
i=1

ρi |xi − x|
)2

∂
∂x

(
xN − xN

1

x− x1
ϕ (x)

)
/x=x1 � 0

holds, unless one of the following two cases occurs:

(1) either x = x1 or x = xn ,

(2) there exists k ∈ {3, ...,n−2} such that x = xk and Pj
(
x j − x j+1

)
= 0, j =

1, ...,s−1 , P j
(
x j − x j−1

)
= 0, j = s+1, ...,n.

In these two cases ∑n
i=1 ρiψ (xi)−Pnψ

(
MψN

)
= 0.

Case B: for MψN > xn ,

n

∑
i=1

ρiψN (xi)−PnψN
(
MψN

)

� −(nPn)
−1

(
n

∑
i=1

ρi
∣∣xi−MψN

∣∣)2
∂
∂x

(
xN − xN

1

x− x1
ϕ (x)

)
/x = x1.
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Proof (of Theorem 14). The proof follows step by step the proof of [7, Theorem 3].

Here we only replace ϕ ′
(x1) with ∂

∂x

(
xN−xN

1
x−x1

ϕ (x)
)

/x=x1 which is non-negative when

ϕ is non-negative increasing and convex. Therefore the detailed proof is omitted. �

Proof (of Theorem 15). It was proved in [1] that when ρρρρρ is satisfying (1.5), xxxxx is
increasing, and ψN is non-negative increasing and convex and that ∑n

i=1 ρiψ ′
N (xi) > 0,

∑n
i=1 ρixiψ ′

N (xi) � 0, we get that x1 � ∑n
i=1 ρixiψ ′

N(xi)
∑n

i=1 ρiψ ′
N (xi)

= MψN holds.

Case A: For x1 � xs � MψN � xs+1 � xn, we use identity (1.6) for s∈{1, ...,n−1},
and as Pj � 0, Pj � 0, j = 1, ...,n , and ϕ is non-negative increasing and convex func-
tion, we get that the N -quasiconvex function ψN satisfies

PnψN
(
MψN

)− n

∑
i=1

ρiψN (xi) (5.3)

=
s−1

∑
j=1

Pj
(
ψN
(
x j+1

)−ψN (x j)
)
+Ps

(
ψN
(
MψN

)−ψN (xs)
)

+Ps+1
(
ψN
(
MψN

)−ψN (xs+1)
)
+

n

∑
j=s+2

Pj
(
ψN
(
x j−1

)−ψN (x j)
)

�
[

s−1

∑
j=1

Pjψ
′
N (x j)

(
x j+1− x j

)
+Psψ

′
N (xs)

(
MψN − xs

)

+Ps+1ψ
′
N (xs+1)

(
MψN − xs+1

)
+

n

∑
j=s+2

Pjψ
′
N (x j)

(
x j−1− x j

)]

+

[
s−1

∑
j=1

Pj
(
x j+1− x j

)2 ∂
∂x j

(
xN

j − xN
j+1

x j − x j+1
ϕ (x j)

)

+Ps
(
MψN − xs

)2 ∂
∂xs

(
xN
s −MN

ψN

xs−MψN

ϕ (xs)

)

+Ps+1
(
xs+1−MψN

)2 ∂
∂xs+1

(
xN
s+1−MN

ψN

xs+1−MψN

ϕ (xs+1)

)

+
n

∑
j=s+2

Pj
(
x j − x j−1

)2 ∂
∂x j

(
xN

j − xN
j−1

x j − x j−1
ϕ (x j)

)]
.

It is shown in [2] that under our conditions on ρ , the first parenthesis in the right
handside of (5.3) for the convex functions ψN is non-negative. Then from the N -
quasiconvexity of ψN , the convexity of f (x) = x2 we get from (5.3) that

PnψN
(
MψN

)− n

∑
i=1

ρiψN (xi)

� [0]+
s−1

∑
j=1

Pj
(
x j+1− x j

)2 ∂
∂x j

(
xN

j − xN
j+1

x j − x j+1
ϕ (x j)

)
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+Ps
(
MψN − xs

)2 ∂
∂xs

(
xN
s −MN

ψN

xs−MψN

ϕ (xs)

)

+Ps+1
(
xs+1−MψN

)2 ∂
∂xs+1

(
xN
s+1−MN

ψN

xs+1−MψN

ϕ (xs+1)

)

+
n

∑
j=s+2

Pj
(
x j − x j−1

)2 ∂
∂x j

(
xN

j − xN
j−1

x j − x j−1
ϕ (x j)

)

�
(

s

∑
j=1

Pj +
n

∑
j=s+1

Pj

)(
∑s−1

j=1 Pj
(
x j+1− x j

)
+Ps

(
MψN − xs

)
∑s

j=1 Pj + ∑n
j=s+1 Pj

+
Ps+1

(
xs+1−MψN

)
+ ∑n

j=s+2 Pj
(
x j − x j−1

)
∑s

j=1 Pj + ∑n
j=s+1 Pj

)2
∂
∂x

(
xN
1 − xN

x1− x
ϕ (x)

)
/x = x1

=

(
s

∑
j=1

Pj +
n

∑
j=s+1

Pj

)−1( n

∑
i=1

ρi
∣∣xi −MψN

∣∣)2
∂
∂x

(
xN
1 − xN

x1− x
ϕ (x)

)
/x = x1

In the same way as in the proof of the Theorem 13, we conclude that

(
s

∑
j=1

Pj +
n

∑
j=s+1

Pj

)−1( n

∑
j=1

ρi (|xi −M|)
)2

�((n−1)Pn)−1

(
n

∑
i=1

ρi
(∣∣xi −MψN

∣∣))2

holds and hence we get (5.2).
The proof of the special cases (1) and (2) in the theorem are the same as the proofs

of the equality cases in Theorem 2 and as proved in [1] and in [2].
Case B for M > xn is proved similarly to Case A.
Hence the proof of Theorem 15 is complete. �

Theorem 15, besides being a refinement of Slater-Pečarić inequality is also an
analog of Theorem 12 which deals with non-negative superquadratic functions.

6. Bounds for differences of “Jensen’s gap” for N -quasiconvex functions

In this section we state one of many results that can be derived from the pre-
vious theorems. First we quote a result from [3] about the difference between two
“Jensen’s gaps” ∑n

i=1 piψ (xi)−ψ (xp) and ∑n
i=1 qiψ (xi)−ψ (xq) . Then we present

a new theorem with results when ψ is a N -quasiconvex function. In particular for a
1-quasiconvex function ψ the result is interesting.

The proofs in this section like the proofs in [3] employ some of the techniques
used in [8].

In [3, Theorem 2] the following is proved:
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THEOREM 16. Suppose that ψ : I → R, where I is [0,a] or [o,∞) is superquad-
ratic. Let xi ∈ I, i = 1, ...,n, xp = ∑n

i=1 pixi, pi � 0, i = 1, ...,n, ∑n
i=1 pi = 1 and

xq = ∑n
i=1 qixi, qi � 0, i = 1, ...,n, ∑n

i=1 qi = 1. Then, for m = min
1�i�n

(
pi
qi

)
(

n

∑
i=1

piψ (xi)−ψ (xp)

)
−m

(
n

∑
i=1

qiψ (xi)−ψ (xq)

)
(6.1)

� mψ

(∣∣∣∣∣
n

∑
i=1

(qi − pi)xi

∣∣∣∣∣
)

+
n

∑
i=1

(pi −mqi)ψ

(∣∣∣∣∣xi −
n

∑
j=1

p jx j

∣∣∣∣∣
)

and for M = max
1�i�n

(
pi
qi

)
(

n

∑
i=1

piψ (xi)−ψ (xp)

)
−M

(
n

∑
i=1

qiψ (xi)−ψ (xq)

)
(6.2)

� −
n

∑
i=1

(Mqi− pi)ψ

(∣∣∣∣∣xi −
n

∑
j=1

q jx j

∣∣∣∣∣
)
−ψ

(∣∣∣∣∣
n

∑
i=1

(pi−qi)xi

∣∣∣∣∣
)

.

If the superquadratic function is also nonnegative and therefore is also convex,
then (6.1) and (6.2) refine the following theorem by Dragomir in [8]:

THEOREM 17. Under the same conditions on p , q , x, xp, xq, m and M, as in
Theorem 16, if ψ is convex then

M

(
n

∑
i=1

qiψ (xi)−ψ (xq)

)
�

n

∑
i=1

piψ (xi)−ψ (xp) (6.3)

� m

(
n

∑
i=1

qiψ (xi)−ψ (xq)

)
.

Now we show another refinement of Theorem 17 this time for N -quasiconvex
function ψN .

THEOREM 18. Suppose that ψN : I → R where I is [a,b) , 0 � a, b � ∞, is N -
quasiconvex function, that is ψN = xNϕ (x) , N = 1,2, ... where ϕ is convex on [a,b) .
Let p , q , x , xp, xq, m and M be as in Theorem 16, then(

n

∑
i=1

piψN (xi)−ψN (xp)

)
−m

(
n

∑
i=1

qiψN (xi)−ψN (xq)

)
(6.4)

�
n

∑
i=1

(pi −mqi)(xi − xp)2 ∂
∂xp

(
xN
i − xN

p

xi − xp
ϕ (xp)

)

+m(xq − xp)2 ∂
∂xp

(
xN
q − xN

p

xq − xp
ϕ (xp)

)
,
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and (
n

∑
i=1

piψN (xi)−ψN (xp)

)
−M

(
n

∑
i=1

qiψN (xi)−ψN (xq)

)
(6.5)

�
n

∑
i=1

(pi −Mqi)(xi − xq)2 ∂
∂xq

(
xN
i − xN

q

xi − xq
ϕ (xq)

)

−M (xq− xp)
2 ∂

∂xq

(
xN
q − xN

p

xq− xp
ϕ (xq)

)
.

For N = 1 we get that(
n

∑
i=1

piψ1 (xi)−ψ1 (xp)

)
−m

(
n

∑
i=1

qiψ1 (xi)−ψ1 (xq)

)
(6.6)

� ϕ
′
(xp)

((
n

∑
i=1

pix
2
i − (xp)

2

)
−m

(
n

∑
i=1

qix
2
i − (xq)

2

))
,

and (
n

∑
i=1

piψ1 (xi)−ψ1 (xp)

)
−M

(
n

∑
i=1

qiψ1 (xi)−ψ1 (xq)

)
(6.7)

� ϕ
′
(xq)

((
n

∑
i=1

pix
2
i − (xp)

2

)
−M

(
n

∑
i=1

qix
2
i − (xq)

2

))
.

In particular if ϕ is also non-negative increasing then (6.4)–(6.7) are refinements of
(6.3).

Proof. To prove (6.4) we define y and d as

yi =
{

xi, i = 1, ...,n
xq, i = n+1

, di =
{

pi −mqi, i = 1, ...,n
m, i = n+1

. (6.8)

From (6.8) we get that y = ∑n+1
i=1 diyi = ∑n

i=1 pixi = xp Then (2.3) for y and d is(
n

∑
i=1

piψN (xi)−ψN (xp)

)
−m

(
n

∑
i=1

qiψN (xi)−ψN (xq)

)

=
n

∑
i=1

(pi −mqi)ψN (xi)+mψN (xq)−ψN (xp)

=
n+1

∑
i=1

diψN (yi)−ψN (xp) �
n+1

∑
i=1

di (yi− y)2 ∂
∂y

(
yN − yN

i

y− yi
ϕ (y)

)
.

which after using again (6.8) is (6.4).
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To get (6.5), we choose z and r as

zi =
{

xi, i = 1, ...,n
xp, i = n+1

, ri =
{

qi− pi
M , i = 1, ...,n

1
M , i = n+1

.

Then, as ∑n+1
i=1 ri = 1, ri � 0, i = 1, ...,n+ 1 and ∑n+1

i=1 rizi = ∑n
i=1 qixi = xq , we

get that (
n

∑
i=1

qiψN (xi)−ψN (xq)

)
− 1

M

(
n

∑
i=1

piψN (xi)−ψN (xp)

)

=
n

∑
i=1

(
qi − pi

M

)
ψN (xi)+

1
M

ψN (xp)−ψN (xq)

=
n+1

∑
i=1

riψN (zi)−ψN

(
n+1

∑
i=1

rizi

)

�
n

∑
i=1

(
qi − pi

M

)
(xi − xq)

2 ∂
∂xq

(
xN
q − xN

i

xq − xi
ϕ (xq)

)

+
1
M

(xp− xq)
2 ∂

∂xq

(
xN
q − xN

p

xq− xp
ϕ (xq)

)
,

which is equivalent to (6.5). �
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Steffensen’s Inequality and Quazi Arithmetic Means, Journal of Mathematical Analysis and Applica-
tions, 307 (2005) 370–386.
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[19] J.-F. TIAN, Property of Hölder-type inequality and its application, Math. Inequal. Appl. 16, no. 3,
(2013), 831–841.

(Received February 1, 2016) Shoshana Abramovich
Department of Mathematics, University of Haifa

Israel
e-mail: abramos@math.haifa.ac.il

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


