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RECURSIVELY DEFINED REFINEMENTS OF

THE INTEGRAL FORM OF JENSEN’S INEQUALITY

LÁSZLÓ HORVÁTH AND JOSIP PEČARIĆ

(Communicated by C. P. Niculescu)

Abstract. In this paper we establish infinite chains of integral inequalities related to the classical
Jensen’s inequality by using special refinements of the discrete Jensen’s inequality. As applica-
tions, we introduce and study new integral means (generalized quasi-arithmetic means), and give
refinements of the left hand side of Hermite-Hadamard inequality.

1. Introduction

The integral form and the discrete version of Jensen’s inequality provide the start-
ing point for much of the discussion in this paper. They can be stated as follows:

THEOREM A. (classical Jensen’s inequality, see [7]) Let g be an integrable func-

tion on a probability space (X ,A ,μ) taking values in an interval I ⊂ R . Then
∫
X

gdμ

lies in I . If f is a convex function on I such that f ◦ g is integrable, then

f

⎛
⎝∫

X

gdμ

⎞
⎠�

∫
X

f ◦ gdμ .

THEOREM B. (discrete Jensen’s inequality, see [7]) Let C be a convex subset
of a real vector space V , and let f : C → R be a convex function. If p1, . . . , pn are

nonnegative numbers with
n

∑
i=1

pi = 1 , and v1, . . . ,vn ∈C, then

f

(
n

∑
i=1

pivi

)
�

n

∑
i=1

pi f (vi) .

Jensen obtained his famous inequality in [16]. There is an extensive theory for
the study of refinements of the discrete Jensen’s inequality, see [15], but there are only
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few papers dealing with refinements of the classical Jensen’s inequality, see Rooin [18],
Horváth [9] and Horváth and Pečarić [14]. In this paper we establish infinite chains of
integral inequalities related to the classical Jensen’s inequality. The key of our treatment
is special refinements of the discrete Jensen’s inequality which have been developed in
Horváth [13]. As an immediate application, new infinite refinements of the classical
Jensen’s inequality are derived. We essentially follow the approach of Brnetić, Pearce
and Pečarić [3], but our treatment is applicable in a more general environment. In Sec-
tion 3 we consider our results in some interesting special cases. In Section 4 some new
integral means (generalized quasi-arithmetic means) are introduced, and their proper-
ties are studied. Section 5 is devoted to refinements of the left hand side of Hermite-
Hadamard inequality.

2. Preliminaries and the main inequalities

N and N+ denote the set of nonnegative and positive integers, respectively.
Before proceeding to the results we present some hypotheses, and an inequality

from [13] which will be needed.
(H1 ) Let n ∈ N+ be fixed, and denote

Sk :=

{
(i1, . . . , in) ∈ N

n
+ |

n

∑
j=1

i j = n+ k−1

}
, k ∈ N+. (1)

(H2 ) Let
(a j (m))m∈N+

, 1 � j � n

be strictly increasing sequences such that

α := a1 (1) = . . . = an (1) > 0. (2)

(H3 ) Let p1, . . . , pn be nonnegative numbers with
n

∑
j=1

p j = 1.

Under the hypotheses (H1 ) and (H2 ), define the finite sequences

(uk (i1, . . . , in))(i1,...,in)∈Sk
, k ∈ N+

recursively by

u1 (1, . . . ,1) :=
1
α

, (3)

and for every (i1, . . . , in) ∈ Sk+1 (see (1))

uk+1 (i1, . . . , in) := ∑
{l∈{1,...,n}|il �=1}

1

1+ al(il−1)
al(il)−al(il−1) +

n

∑
j=1
j �=l

a j(i j)
a j(i j+1)−a j(i j)

× al (il −1)
al (il)−al (il −1)

uk (i1, . . . , il−1, il −1, il+1, . . . , in) .

Now we state one of the main results in [13].
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THEOREM 1. Assume (H1 –H3 ). Let C be a convex subset of a real vector space
X , and {x1, . . . ,xn} be a finite subset of C . If f : C → R is a convex function, then

f

(
n

∑
j=1

p jx j

)
= T1 � . . . � Tk � Tk+1 � . . . �

n

∑
j=1

p j f (x j),

where for each k ∈ N+

Tk = Tk,n(x1, . . . ,xn; p1, . . . , pn;a1, . . . ,an)

:= ∑
(i1,...,in)∈Sk

uk (i1, . . . , in)

(
n

∑
j=1

a j (i j) p j

)
f

⎛
⎜⎜⎜⎝

n

∑
j=1

a j (i j) p jx j

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎠ .

We follow this section by introducing some notations. Let (Xi,Bi,μi) (i ∈ Tl :=
{1, . . . , l}) be probability spaces for some l ∈ N+ , l � 2. The σ -algebra in XTl :=
X1× . . .×Xl generated by the projection mappings

pri : X1× . . .×Xl → Xi, pri (x1, . . . ,xl) = xi (i = 1, . . . , l)

is denoted by BTl . μTl means the product measure on BTl : this is the only measure
on BTl (the measures are σ -finite) which satisfies

μTl (B1× . . .×Bl) = μ1 (B1) . . .μl (Bl) , Bi ∈ Bi, (i = 1, . . . , l) .

The l -fold product of the probability space (X ,B,μ) is denoted by
(
Xl,Bl ,μ l

)
.

The following abbreviationswill be used: dμTl (x) := dμTl (x1, . . . ,xl) and dμ l (x)
:= dμ l (x1, . . . ,xl) .

λ l is always means the Lebesgue measure on the Borel sets of R
l .

Our first purpose is to obtain an extended and refined version of the classical
Jensen’s inequality.

THEOREM 2. Assume (H1 –H3 ). Suppose the following hypotheses are also hold
(H4 ) Let (Xi,Bi,μi) (i = 1, . . . ,n) be probability spaces.
(H5 ) For each i = 1, . . . ,n, let gi be a μi -integrable function on Xi taking values

in an interval I ⊂ R .
(H6 ) Let f be a convex function on I such that f ◦ gi is μi -integrable on Xi

(i = 1, . . . ,n) .
Then
(a)

f

⎛
⎝ n

∑
i=1

pi

∫
Xi

gidμi

⎞
⎠� T1 � . . . � Tk � Tk+1 � . . . �

n

∑
i=1

pi

∫
Xi

f ◦ gidμi, (4)
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where

Tk = Tk,n( f ;gi;μi; pi;ai)

:= ∑
(i1,...,in)∈Sk

uk (i1, . . . , in)

(
n

∑
j=1

a j (i j) p j

)

×
∫

XTn

f

⎛
⎜⎜⎜⎝

n

∑
j=1

a j (i j) p jg j (x j)

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎠dμTn (x) , k ∈ N+. (5)

(b) For each k ∈ N+ and all t ∈ [0,1]

f

⎛
⎝ n

∑
i=1

pi

∫
Xi

gidμi

⎞
⎠� Hk (0) � Hk (t) � Tk, (6)

where

Hk (t) = Hk,n (t; f ;gi;μi; pi;ai)

:= ∑
(i1,...,in)∈Sk

uk (i1, . . . , in)

(
n

∑
j=1

a j (i j) p j

)

×
∫

XTn

f

⎛
⎜⎜⎜⎜⎜⎝t

n

∑
j=1

a j (i j) p jg j (x j)

n

∑
j=1

a j (i j) p j

+(1− t)

n

∑
j=1

a j (i j) p j

∫
Xj

g jdμ j

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎟⎟⎠dμTn (x) . (7)

REMARK 1. By (H3 –H6 ), the hypotheses of Lemma 2.1 in [8] are all satisfied,
and so it yields that all the integrals in (5) and (7) exist and finite.

Assume (H1 –H6 ).
(a) If n = 1, then Sk = {k} and uk (k) = 1

a1(k)
for all k ∈ N+ , and therefore

Tk = T1 =
∫
X1

f ◦ g1dμ1, k ∈ N+,

and

Hk (t) = H1 (t) =
∫
X1

f

⎛
⎝tg1 (x1)+ (1− t)

∫
X1

g1dμ1

⎞
⎠dμ1 (x1) , t ∈ [0,1] , k ∈ N+.
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We can see that for n = 1 (4) is trivial (the classical Jensen’s inequality), while (6)
gives

f

⎛
⎝∫

X1

g1dμ1

⎞
⎠= H1 (0) � H1 (t) � H1 (1) =

∫
X1

f ◦ g1dμ1, t ∈ [0,1] .

(b) Suppose n � 2. Then S1 = {(1, . . . ,1)} , and hence

T1 =
∫

XTn

f

(
n

∑
j=1

p jg j (x j)

)
dμTn (x) ,

and

H1 (t) =
∫

XTn

f

⎛
⎜⎝t

n

∑
j=1

p jg j (x j)+ (1− t)
n

∑
j=1

p j

∫
Xj

g jdμ j

⎞
⎟⎠dμTn (x) , t ∈ [0,1] .

Now we summarize the essential properties of the function Hk defined in (7).

THEOREM 3. Assume (H1 –H6 ). Then for each k ∈ N+
(a) Hk is convex and increasing.
(b)

Hk (0) � f

⎛
⎝ n

∑
i=1

pi

∫
Xi

gidμi

⎞
⎠ , Hk (1) = Tk.

(c) Hk is continuous on [0,1[ .
(d) If f is continuous, then Hk is continuous on [0,1] .

It is easy to construct examples which show that Hk is not continuous at 1 in
general.

The following refinements of the classical Jensen’s inequality are immediate con-
sequences of Theorem 2.

THEOREM 4. Assume (H1 –H3 ). The hypotheses (H4 –H6 ) are replaced by
(Ĥ4 ) Let (X ,B,μ) be a probability space.
(Ĥ5 ) Let g be a μ -integrable function on X taking values in an interval I ⊂ R .
(Ĥ6 ) Let f be a convex function on I such that f ◦ g is μ -integrable on X .
Then
(a)

f

⎛
⎝∫

X

gdμ

⎞
⎠� T1 � . . . � Tk � Tk+1 � . . . �

∫
X

f ◦ gdμ ,
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where

Tk = Tk,n( f ;g;μ ; pi;ai)

= ∑
(i1,...,in)∈Sk

uk (i1, . . . , in)

(
n

∑
j=1

a j (i j) p j

)

×
∫
Xn

f

⎛
⎜⎜⎜⎝

n

∑
j=1

a j (i j) p jg(x j)

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎠dμn (x) , k ∈ N+.

(b) For each k ∈ N+ and all t ∈ [0,1]

f

⎛
⎝∫

X

gdμ

⎞
⎠= Hk (0) � Hk (t) � Tk,

where

Hk (t) = Hk,n (t; f ;g;μ ; pi;ai)

= ∑
(i1,...,in)∈Sk

uk (i1, . . . , in)

(
n

∑
j=1

a j (i j) p j

)

×
∫
Xn

f

⎛
⎜⎜⎜⎝t

n

∑
j=1

a j (i j) p jg(x j)

n

∑
j=1

a j (i j) p j

+(1− t)
∫
X

gdμ

⎞
⎟⎟⎟⎠dμn (x) .

3. Results when recursion is explicitly represented

We first recall the following example from [13].

EXAMPLE 1. Assume (H1 ) and (H3 ). Let α > 0, a � 0 and b j ∈ R (1 � j � n)
such that the numbers a+b j are all positive. Define the sequences (a j (m))m∈N+

by

a j (m) := α
m−1

∏
i=1

(
1+

1
ai+b j

)
, m ∈ N+, 1 � j � n. (8)

Then these sequences are strictly increasing and

α = a1 (1) = . . . = an (1) > 0,

thus they satisfy (H2 ).
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In this case it can be proved that for every k ∈ N+

uk (i1, . . . , in) =
1
α

k−1

∏
j=1

1

1+a(n+ j−1)+
n

∑
l=1

bl

n

∏
j=1

(
i j−1

∏
m=1

(am+b j)

)

× (k−1)!
(i1−1)! . . .(in−1)!

, (i1, . . . , in) ∈ Sk. (9)

As illustrations, we just consider Theorem 4 in two special cases of the previous
example.

The first part of the next result can be considered as the integral version of Theorem
1 (a) in [12].

COROLLARY 1. Assume (H1 ), (H3 ), and (Ĥ4 –Ĥ6 ). By choosing α = a = 1 and
b j = 0 (1 � j � n) in (8), we have

(a)

f

⎛
⎝∫

X

gdμ

⎞
⎠� T1 � . . . � Tk � Tk+1 � . . . �

∫
X

f ◦ gdμ ,

where

Tk = Tk,n( f ;g;μ ; pi)

=
1(n+k−1

k−1

) ∑
(i1,...,in)∈Sk

(
n

∑
j=1

i j p j

)∫
Xn

f

⎛
⎜⎜⎜⎝

n

∑
j=1

i j p jg(x j)

n

∑
j=1

i j p j

⎞
⎟⎟⎟⎠dμn (x) , k ∈ N+.

(b) For each k ∈ N+ and all t ∈ [0,1]

f

⎛
⎝∫

X

gdμ

⎞
⎠= Hk (0) � Hk (t) � Tk,

where

Hk (t) = Hk,n (t; f ;g;μ ; pi)

=
1(n+k−1

k−1

) ∑
(i1,...,in)∈Sk

(
n

∑
j=1

i j p j

)∫
Xn

f

⎛
⎜⎜⎜⎝t

n

∑
j=1

i j p jg(x j)

n

∑
j=1

i j p j

+(1− t)
∫
X

gdμ

⎞
⎟⎟⎟⎠dμn (x) .

(c) For each k ∈ N+

Tk,n

(
f ;g;μ ;

1
n

)
� Tk,n( f ;g;μ ; pi),
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where

Tk,n

(
f ;g;μ ;

1
n

)
=

1(n+k−2
k−1

) ∑
(i1,...,in)∈Sk

∫
Xn

f

(
1

n+ k−1

n

∑
j=1

i jg(x j)

)
dμn (x)

(d) If pi > 0 (1 � i � n) , then for each k ∈ N+ and for each l ∈ N+

f

⎛
⎝∫

X

gdμ

⎞
⎠� Tk � Al �

∫
X

f ◦ gdμ ,

where

Al = Al,n ( f ;g;μ ; pi)

:=
1(n+l−1

l−1

) ∑
i1+...+in=l

i j∈N; 1� j�n

(
l

∑
j=1

i j p j

)∫
Xn

f

⎛
⎜⎜⎜⎜⎝

l

∑
j=1

i j p jg(x j)

l

∑
j=1

i j p j

⎞
⎟⎟⎟⎟⎠dμn (x) .

(e) Suppose pi > 0 (1 � i � n) . Then

lim
k→∞

Tk = lim
l→∞

Al = n!
∫
Xn

⎛
⎝∫

En

h(t1, . . . ,tn−1,x1, . . . ,xn)dλ n−1 (t)

⎞
⎠dμn (x) , (10)

where

En :=

{
(t1, . . . ,tn−1) ∈ R

n−1 |
n−1

∑
j=1

t j � 1, t j � 0, j = 1, . . . ,n−1

}
,

the function h defined on En×Xn by

h(t1, . . . ,tn−1,x1, . . . ,xn) :=

(
n

∑
j=1

t j p j

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
j=1

t j p j

(
n

∑
j=1

t j p jg(x j)

)⎞⎟⎟⎟⎠

with the notation tn := 1−
n−1

∑
j=1

t j .

Proof. (a) and (b) come from Theorem 4.
(c) Theorem 1 (b) in [12] can be applied.
(d) According to Proposition 2 in [14], the sequence (Al)l∈N+

is decreasing and

f

⎛
⎝∫

X

gdμ

⎞
⎠� Al �

∫
X

f ◦ gdμ , l ∈ N+.
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Define for all (x1, . . . ,xn) ∈ Xn the expressions

Gk,n (x1, . . . ,xn) :=
1(n+k−1

k−1

) ∑
(i1,...,in)∈Sk

(
n

∑
j=1

i j p j

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
j=1

i j p j

n

∑
j=1

i j p jg(x j)

⎞
⎟⎟⎟⎠ , k∈N+,

and

Bl,n (x1, . . . ,xn) :=
1(n+l−1

l−1

) ∑
i1+...+in=l

i j∈N; 1� j�n

(
n

∑
j=1

i j p j

)
f

⎛
⎜⎜⎜⎝ 1

n

∑
j=1

i j p j

n

∑
j=1

i j p jg(x j)

⎞
⎟⎟⎟⎠ , l ∈N+.

Theorem 1 (a) in [12] shows that the sequence(
Gk,n (x1, . . . ,xn)

)
k∈N+

(11)

is increasing for all (x1, . . . ,xn) ∈ Xn . By Example 3 in [10], the sequence(
Bl,n (x1, . . . ,xn)

)
l∈N+

(12)

is decreasing for all (x1, . . . ,xn) ∈ Xn . It follows from Theorem 3 in [12] that

lim
k→∞

Gk,n (x1, . . . ,xn) = lim
l→∞

Bl,n (x1, . . . ,xn)

=
∫
En

h(t1, . . . ,tn−1,x1, . . . ,xn)dλ n−1 (t) , (x1, . . . ,xn) ∈ Xn. (13)

Putting all this together gives that for each k ∈ N+ and for each l ∈ N+

Gk,n (x1, . . . ,xn) � Bl,n (x1, . . . ,xn) , (x1, . . . ,xn) ∈ Xn.

By integrating both sides over Xn , we have Tk � Al (k ∈ N+, l ∈ N+) .
(e) Assuming that the function h is λ n−1 × μn -integrable over En ×Xn for the

present, the monotonicity properties of the sequences (11) and (12), the limit formula
(13), and the Fubini’s theorem imply (10).

The measurability of h is obvious. To justify the supposed integrability condition,
choose a fixed interior point a of I . Since f is convex

f (t) � f (a)+ f ′+ (a)(t−a) , t ∈ I,

where f ′+ (a) means the right-hand derivative of f at a . By using this and the discrete
Jensen’s inequality, we have(

n

∑
j=1

t j p j

)
f (a)+ f ′+ (a)

(
n

∑
j=1

t j p jg(x j)−a

(
n

∑
j=1

t j p j

))

� h(t1, . . . ,tn−1,x1, . . . ,xn) �
n

∑
j=1

t j p j f (g(x j)) (14)
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for all (t1, . . . ,tn−1,x1, . . . ,xn) ∈ En ×Xn . It is enough to prove that the functions on
the left hand side and the right hand side of the previous inequalities are λ n−1 × μn -
integrable over En ×Xn . We consider only the function on the right hand side of (14),
the other case can be handled similarly. In proving this, we may suppose that f is
nonnegative on I , and therefore by the Fubini’s theorem, and then by Lemma 2.1 (a) in
[8]

∫
En×Xn

(
n

∑
j=1

t j p j f (g(x j))

)
dλ n−1× μn (t1, . . . ,tn−1,x1, . . . ,xn)

=
∫
En

⎛
⎝∫

Xn

n

∑
j=1

t j p j f (g(x j))dμn (x)

⎞
⎠dλ n−1 (t)

=

⎛
⎝∫

X

f ◦ gdμ

⎞
⎠
⎛
⎝∫

En

(
n

∑
j=1

t j p j

)
dλ n−1 (t)

⎞
⎠< ∞.

The proof is complete. �

REMARK 2. We stress that the sequences (Tk)k∈N+
and (Al)l∈N+

, compared in
part (d) of the previous result, are generated from such refinements of the discrete
Jensen’s inequality which have been obtained by essentially different methods.

Now, the integral variant of Theorem 1 (a) is obtained.

COROLLARY 2. Assume (H1 ), (H3 ), and (Ĥ4 –Ĥ6 ). By choosing α = 1 , a = 0
and b j = 1

λ j−1 (1 � j � n) , where λ j > 1 (1 � j � n) in (8), we have with the notation

d (λ ) :=
n

∑
j=1

1
λ j−1

(a)

f

⎛
⎝∫

X

gdμ

⎞
⎠� T1 � . . . � Tk � Tk+1 � . . . �

∫
X

f ◦ gdμ ,

where for every k ∈ N+

Tk = Tk,n( f ;g;μ ; pi)

=
1

(d (λ )+1)k−1 ∑
(i1,...,in)∈Sk

(k−1)!
(i1 −1)! . . .(in −1)!

×
n

∏
j=1

1

(λ j −1)i j−1

(
n

∑
j=1

λ i j−1
j p j

)∫
Xn

f

⎛
⎜⎜⎜⎝

n

∑
j=1

λ i j−1
j p jg(x j)

n

∑
j=1

λ i j−1
j p j

⎞
⎟⎟⎟⎠dμn (x) .
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(b) For each k ∈ N+ and all t ∈ [0,1]

f

⎛
⎝∫

X

gdμ

⎞
⎠= Hk (0) � Hk (t) � Tk,

where

Hk (t) = Hk,n (t; f ;g;μ ; pi)

=
1

(d (λ )+1)k−1 ∑
(i1,...,in)∈Sk

(k−1)!
(i1 −1)! . . .(in −1)!

n

∏
j=1

1

(λ j −1)i j−1

×
(

n

∑
j=1

λ i j−1
j p j

)∫
Xn

f

⎛
⎜⎜⎜⎝

n

∑
j=1

λ i j−1
j p jg(x j)

n

∑
j=1

λ i j−1
j p j

+(1− t)
∫
X

gdμ

⎞
⎟⎟⎟⎠dμn (x) .

(c)

lim
k→∞

Tk =
∫
X

f ◦ gdμ .

Proof. We have only to apply Theorem 4 to get (a) and (b).
(c) Let for all (x1, . . . ,xn) ∈ Xn

Dk,n (λ ;x1, . . . ,xn) =
1

(d (λ )+1)k−1 ∑
(i1,...,in)∈Sk

(k−1)!
(i1−1)! . . . (in−1)!

×
n

∏
j=1

1

(λ j −1)i j−1

(
n

∑
j=1

λ i j−1
j p j

)
f

⎛
⎜⎜⎜⎝

n

∑
j=1

λ i j−1
j p jg(x j)

n

∑
j=1

λ i j−1
j p j

⎞
⎟⎟⎟⎠ .

By Theorem 1 (a) in [11], the sequence(
Dk,n (λ ;x1, . . . ,xn)

)
k∈N+

is increasing, and by (b) of the same theorem

lim
k→∞

Dk,n (λ ;x1, . . . ,xn) =
n

∑
j=1

p j f (g(x j)) , (x1, . . . ,xn) ∈ Xn.

It follows from these facts that

lim
k→∞

Tk = lim
k→∞

∫
Xn

Dk,n (λ ;x1, . . . ,xn)dμn (x)

=
n

∑
j=1

p j

∫
Xn

f (g(x j))μn (x) =
∫
X

f ◦ gdμ .

The proof is now complete. �
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4. Means generated by the expressions in the new refinements

In this section we introduce some new integral means (generalized quasi-arithmetic
means) and study their properties.

DEFINITION 1. Assume (H1 –H3 ) and
(H4 ) Let (Xi,Bi,μi) (i = 1, . . . ,n) be probability spaces.
Assume further
(H7 ) For each i = 1, . . . ,n , let gi be a measurable function on Xi taking values in

an interval I ⊂ R .
(H8 ) Let ϕ , ψ : I → R be continuous and strictly monotone functions.
(a) For each k ∈ N+ , we define integral means with respect to (5) by

Mψ,ϕ (k)
= Mψ,ϕ(gi;μi; pi;ai;k)

:= ψ−1

(
∑

(i1,...,in)∈Sk

uk (i1, . . . , in)

×
(

n

∑
j=1

a j (i j) p j

) ∫
XTn

(ψ ◦ϕ−1)

⎛
⎜⎜⎜⎝

n

∑
j=1

a j (i j) p jϕ (g j (x j))

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎠dμTn (x)

⎞
⎟⎟⎟⎠ , (15)

if the integrals exist and finite.
(b) For each k ∈ N+ and for all t ∈ [0,1] , integral means can be defined with

respect to (7) by

Mψ,ϕ (t;k)
= Mψ,ϕ (t;gi;μi; pi;ai;k)

:= ψ−1

⎛
⎝ ∑

(i1,...,in)∈Sk

uk (i1, . . . , in)

(
n

∑
j=1

a j (i j) p j

) ∫
XTn

(ψ ◦ϕ−1)

×

⎛
⎜⎜⎜⎜⎜⎝t

n

∑
j=1

a j (i j) p jϕ (g j (x j))

n

∑
j=1

a j (i j) p j

+(1− t)

n

∑
j=1

a j (i j) p j

∫
Xj

ϕ ◦ g jdμ j

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎟⎟⎠dμTn (x)

⎞
⎟⎟⎟⎟⎟⎠ , (16)

if the integrals exist and finite.

It has been shown in [13] that for any j = 1, . . . ,n

∑
(i1,...,in)∈Sk

uk (i1, . . . , in)a j (i j) = 1, (17)
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and therefore by (H3 )

∑
(i1,...,in)∈Sk

uk (i1, . . . , in)

(
n

∑
j=1

a j (i j) p j

)
= 1, k ∈ N+. (18)

This implies that

Mψ,ϕ (k) ∈ I and Mψ,ϕ (t;k) ∈ I, k ∈ N+, t ∈ [0,1] ,

that is they really define means.
By Remark 1, if ϕ ◦ gi and ψ ◦ gi are μi -integrable on Xi (i = 1, . . . ,n) , and

ψ ◦ϕ−1 is either convex or concave, then the integrals in (15) and (16) exist and finite.
The following integral mean is also needed: if (H3 –H4 ) and (H7 ) are satisfied,

and χ : I → R is a continuous and strictly monotone function, then define

Mχ = Mχ(gi;μi; pi) := χ−1

⎛
⎝ n

∑
i=1

pi

∫
Xi

χ ◦ gidμi

⎞
⎠ , (19)

if the integrals exist and finite.
Let q , g : [a,b] → R be positive and Lebesgue-integrable functions, and let χ :

]0,∞[ → R be a continuous and strictly monotone function. The so called generalized
weighted quasi-arithmetic mean of g with respect to the weight function q

Mχ = Mχ(g;q) := χ−1

⎛
⎜⎜⎜⎜⎜⎜⎝

b∫
a

q(x)χ (g(x))dx

b∫
a

q(x)dx

⎞
⎟⎟⎟⎟⎟⎟⎠

(20)

is a special case of (19), and it contains different remarkable means (for example,
weighted arithmetic, harmonic and geometric means). The properties of means (20) are
studied intensively, we just mention two papers dealing with integral means: Haluška
and Hutnik [6] and Sun, Long and Chu [19].

We continue this section with a discussion on the monotonicity of the introduced
means.

THEOREM 5. Assume (H1 –H4 ), (H7 –H8 ), and assume that ϕ ◦gi and ψ ◦gi are
μi -integrable on Xi (i = 1, . . . ,n) .Then

(a)
Mϕ � Mψ,ϕ (1) � . . . � Mψ,ϕ (k) � . . . � Mψ , k ∈ N+, (21)

and
Mϕ � Mψ,ϕ (0;k) � Mψ,ϕ (t;k) � Mψ,ϕ (k), k ∈ N+, t ∈ [0,1] ,

if either ψ ◦ϕ−1 is convex and ψ is increasing or ψ ◦ϕ−1 is concave and ψ is de-
creasing.
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(b)

Mϕ � Mψ,ϕ (1) � . . . � Mψ,ϕ (k) � . . . � Mψ , k ∈ N+, (22)

and

Mϕ � Mψ,ϕ (0;k) � Mψ,ϕ (t;k) � Mψ,ϕ (k), k ∈ N+, t ∈ [0,1] ,

if either ψ ◦ ϕ−1 is convex and ψ is decreasing or ψ ◦ ϕ−1 is concave and ψ is
increasing.

Proof. (a) and (b) can be obtained by applications of Theorem 2 to the functions
ψ ◦ϕ−1 and ϕ ◦ gi (i = 1, . . . ,n) (ϕ (I) is an interval), if ψ ◦ϕ−1 is convex, and to
the functions −ψ ◦ϕ−1 and ϕ ◦gi (i = 1, . . . ,n) , if ψ ◦ϕ−1 is concave, and then upon
taking ψ−1 . �

Recently, in [17] by Khuram Ali Khan and Pečarić the inequalities (21) and (22)
have been proved for the mean Mψ,ϕ(1) . It can be seen that our approach allows us to
essentially generalize and extend some of the results from [17].

5. Connections to Hermite-Hadamard inequality

Different refinements of the left hand side of Hermite-Hadamard inequality can be
got from Theorem 4.

THEOREM 6. Assume (H1 –H3 ), and let f be a convex function on [a,b] . Then
(a)

f

(
a+b

2

)
� T̂1 � . . . � T̂k � T̂k+1 � . . . � 1

b−a

b∫
a

f ,

where

T̂k = T̂k,n( f ; pi;ai)

=
1

(b−a)n ∑
(i1,...,in)∈Sk

uk (i1, . . . , in)

(
n

∑
j=1

a j (i j) p j

)

×
∫

[a,b]n

f

⎛
⎜⎜⎜⎝

n

∑
j=1

a j (i j) p jx j

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎠dλ n (x) , k ∈ N+.

(b) For each k ∈ N+ and all t ∈ [0,1]

f

(
a+b

2

)
= Ĥk (0) � Ĥk (t) � Ĥk (1) = T̂k,
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where

Ĥk (t) = Ĥk,n (t; f ; pi;ai)

=
1

(b−a)n ∑
(i1,...,in)∈Sk

uk (i1, . . . , in)

(
n

∑
j=1

a j (i j) p j

)

×
∫

[a,b]n

f

⎛
⎜⎜⎜⎝t

n

∑
j=1

a j (i j) p jx j

n

∑
j=1

a j (i j) p j

+(1− t)
a+b

2

⎞
⎟⎟⎟⎠dλ n (x) .

(c) Ĥk is convex and increasing for each k ∈ N+ . If f is continuous, then Ĥk is
also continuous.

Proof. We can apply Theorem 4 and Theorem 3, when the probability space is(
[a,b] ,B, 1

b−aλ
)

(B now means the σ -algebra of Borel sets of [a,b]), I := [a,b] , g
is the identity function on [a,b] , and f is a convex function on [a,b] . �

The investigation of functions like Ĥk , seems to be due to Dragomir, who has
introduced and studied among others the function Ĥ1,1 in [4]. Many papers deal with
similar functions, for example see Abdallah El Farissi [1], Dragomir and Agarwal [5],
Yang and Wang [20] and Yang and Tseng [21]. Our result gives a new approach in
treating the problem.

6. Proofs of the main inequalities

We need the following well known result:

LEMMA 1. (see [2], 16.1 Lemma) Let (Ω,A ,μ) be a measure space. Let E be
a metric space, and f : E ×Ω → R a function with the properties

(i) ω → f (x,ω) is μ -integrable for each x ∈ E ,
(ii) x → f (x,ω) is continuous at x0 ∈ E for every ω ∈ Ω ,
(iii) there is a nonnegative μ -integrable function h on Ω such that

| f (x,ω)| � h(ω) , (x,ω) ∈ E ×Ω.

Then the function ϕ defined on E by

ϕ (x) =
∫
Ω

f (x,ω)dμ (ω)

is continuous at x0 .

Proof of Theorem 3. Fix k ∈ N+ .
(a) Since convexity is invariant under affine maps, the integral is monotonic, and

the sum of convex functions is also convex, Hk is convex on [0,1] .
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By applying the classical Jensen’s inequality, we get for all t ∈ [0,1] that

Hk (t) � ∑
(i1,...,in)∈Sk

uk (i1, . . . , in)

(
n

∑
j=1

a j (i j) p j

)

× f

⎛
⎜⎜⎜⎜⎜⎝
∫

XTn

⎛
⎜⎜⎜⎜⎜⎝t

n

∑
j=1

a j (i j) p jg j (x j)

n

∑
j=1

a j (i j) p j

+(1− t)

n

∑
j=1

a j (i j) p j

∫
Xj

g jdμ j

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎟⎟⎠dμTn (x)

⎞
⎟⎟⎟⎟⎟⎠

= ∑
(i1,...,in)∈Sk

uk (i1, . . . , in)

(
n

∑
j=1

a j (i j) p j

)
f

⎛
⎜⎜⎜⎜⎜⎝

n

∑
j=1

a j (i j) p j

∫
Xj

g jdμ j

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎟⎟⎠

= Hk (0) . (23)

Suppose 0 � t1 < t2 � 1. The convexity of Hk , and Hk (t) � Hk (0) (t ∈ [0,1])
mean that

Hk (t2)−Hk (t1)
t2− t1

� Hk (t2)−Hk (0)
t2

� 0,

and thus

Hk (t2) � Hk (t1) .

(b) When (18) is combined with (23) and with the discrete Jensen’s inequality, it
follows that

Hk (0) � f

⎛
⎜⎝ ∑

(i1,...,in)∈Sk

uk (i1, . . . , in)

⎛
⎜⎝ n

∑
j=1

a j (i j) p j

∫
Xj

g jdμ j

⎞
⎟⎠
⎞
⎟⎠

= f

⎛
⎜⎝ n

∑
j=1

p j

∫
Xj

g jdμ j

(
∑

(i1,...,in)∈Sk

uk (i1, . . . , in)a j (i j)

)⎞⎟⎠= f

⎛
⎜⎝ n

∑
j=1

p j

∫
Xj

g jdμ j

⎞
⎟⎠ .

Hk (1) = Tk is obvious.

(c) It follows from (a).

(d) It remains only to show that Hk is continuous at 1 . We check the conditions
of Lemma 1.

(i) See Remark 1.
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(ii) Since f is continuous, the function

t → f

⎛
⎜⎜⎜⎜⎜⎝t

n

∑
j=1

a j (i j) p jg j (x j)

n

∑
j=1

a j (i j) p j

+(1− t)

n

∑
j=1

a j (i j) p j

∫
Xj

g jdμ j

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎟⎟⎠

is continuous at 1 for every x ∈ XTn .
(iii) By applying the discrete Jensen’s inequality, we have

f

⎛
⎜⎜⎜⎜⎜⎝t

n

∑
j=1

a j (i j) p jg j (x j)

n

∑
j=1

a j (i j) p j

+(1− t)

n

∑
j=1

a j (i j) p j

∫
Xj

g jdμ j

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎟⎟⎠

� t f

⎛
⎜⎜⎜⎝

n

∑
j=1

a j (i j) p jg j (x j)

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎠+(1− t) f

⎛
⎜⎜⎜⎜⎜⎝

n

∑
j=1

a j (i j) p j

∫
Xj

g jdμ j

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎟⎟⎠

� max

⎛
⎜⎜⎜⎜⎜⎝ f

⎛
⎜⎜⎜⎝

n

∑
j=1

a j (i j) p jg j (x j)

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎠ , f

⎛
⎜⎜⎜⎜⎜⎝

n

∑
j=1

a j (i j) p j

∫
Xj

g jdμ j

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

for all t ∈ [0,1] and x ∈ XTn .
Choose a fixed interior point a of I . Since f is convex

f (t) � f (a)+ f ′+ (a)(z−a) , z ∈ I,

where f ′+ (a) means the right-hand derivative of f at a . It follows from this that

f

⎛
⎜⎜⎜⎜⎜⎝t

n

∑
j=1

a j (i j) p jg j (x j)

n

∑
j=1

a j (i j) p j

+(1− t)

n

∑
j=1

a j (i j) p j

∫
Xj

g jdμ j

n

∑
j=1

a j (i j) p j

⎞
⎟⎟⎟⎟⎟⎠

� f (a)+ f ′+ (a)

⎛
⎜⎜⎜⎜⎜⎝t

n

∑
j=1

a j (i j) p jg j (x j)

n

∑
j=1

a j (i j) p j

+(1− t)

n

∑
j=1

a j (i j) p j

∫
Xj

g jdμ j

n

∑
j=1

a j (i j) p j

−a

⎞
⎟⎟⎟⎟⎟⎠
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� min

⎛
⎜⎜⎜⎝ f (a)+ f ′+ (a)

⎛
⎜⎜⎜⎝

n

∑
j=1

a j (i j) p jg j (x j)

n

∑
j=1

a j (i j) p j

−a

⎞
⎟⎟⎟⎠

× f (a)+ f ′+ (a)

⎛
⎜⎜⎜⎜⎜⎝

n

∑
j=1

a j (i j) p j

∫
Xj

g jdμ j

n

∑
j=1

a j (i j) p j

−a

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

for all t ∈ [0,1] and x ∈ XTn .
The result now follows from Lemma 1.
The proof is complete. �

Proof of Theorem 2. (a) Since S1 = {(1, . . . ,1)} , (3), (2) and (H3 ) give that

T1 =
∫

XTn

f

(
n

∑
j=1

p jg j (x j)

)
dμTn (x) .

From the classical Jensen’s inequality we therefore have

T1 � f

⎛
⎝∫

XTn

n

∑
j=1

p jg j (x j)dμTn (x)

⎞
⎠= f

⎛
⎝ n

∑
i=1

pi

∫
Xi

gidμi

⎞
⎠ .

According to Theorem 1

Tk,n(g(x1) , . . . ,g(xn) ; p1, . . . , pn;a1, . . . ,an)
� Tk+1,n(g(x1) , . . . ,g(xn) ; p1, . . . , pn;a1, . . . ,an), k ∈ N+

for all fixed (x1, . . . ,xn) ∈ XTl , and hence

Tk � Tk+1, k ∈ N+.

Finally, it follows from the discrete Jensen’s inequality that

Tk � ∑
(i1,...,in)∈Sk

uk (i1, . . . , in)
∫

XTn

n

∑
j=1

a j (i j) p j f (g j (x j))dμTn (x)

= ∑
(i1,...,in)∈Sk

uk (i1, . . . , in)
n

∑
j=1

a j (i j) p j

∫
Xj

f ◦ g jdμ j

=
n

∑
j=1

(
∑

(i1,...,in)∈Sk

uk (i1, . . . , in)a j (i j)

)
p j

∫
Xj

f ◦ g jdμ j. (24)
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This and (17) imply that

Tk �
n

∑
j=1

p j

∫
Xj

f ◦ g jdμ j, k ∈ N+.

(b) Apply Theorem 3 (b).
The proof is complete. �
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[6] J. HALUŠKA, O. HUTNIK, Some inequalities involving integral means, Tatra Mt. Math. Publ. 35

(2007), no. 1, 131–146.
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[11] L. HORVÁTH, A new refinement of the discrete Jensen’s inequality depending on parameters, J. In-

equal. Appl. (2013) 2013:551, 16 pp.
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