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GENERALIZATION OF MAJORIZATION
THEOREM VIA TAYLOR’S FORMULA
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(Communicated by S. Varosanec)

Abstract. We give generalization of majorization theorem for the class of n-convex functions
by using Taylor’s formula. We use inequalities for the Cebysev functional to obtain bounds
for the identities related to generalizations of majorization inequalities. We present mean value
theorems and n— exponential convexity for the functional obtained from the generalized ma-
jorization inequalities. At the end we discuss the results for particular families of function and
give means.

1. Introduction

Majorization gives us the precise answer about the location of the components of
the vector x respected to that of vector y. The well known Majorization theorem given
by Marshall and Olkin [1 1] (see also [15], p. 320):

THEOREM 1. Let I be an interval in R and let X,y be two n-tuples such that
xp,yi€l (i=1,...,n). Then

n n

Y o) <Y 0(x)

i=1 i=1

holds for every continuous convex function ¢ : I — R iff

;yw < ;xw

holds for m =1,2,...n—1 and

The generalization of Theorem 1 was given by Fuchs in [6] as weighted Majoriza-
tion Theorem (see also [15], p. 323):
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Keywords and phrases: Convex function, divided difference, Taylor’s formula, éeby§ev functional,
Griiss inequality, Ostrowski inequality, exponential convexity.
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THEOREM 2. Let X,y be two decreasing n-tuples from an interval I, let w =
(W1,...,wy) be a real n-tuple such that

k

k
Ewiyigzwixh fork:l,...,n—l; (D
i=1

i=1
and

Y wiyi =Y wixi. )
i-1 =1

Then for every continuous convex function ¢ : I — R, we have

n

Ewl yl \Ewi¢(xi)~ (3)

=1

The following integral version of Theorem 2 is a simple consequence of Theorem
Ain [13] (see also [15], p. 328):

THEOREM 3. Let x,y: [a,b] — [o,B] such that [o, ] C I be decreasing and
w: [a,b] — R be continuous functions. If

/av w(t)y(t)dt < /avw(t)x(t)dt forevery v € [a,b] 4)

and . .
/a w(t)y(1)dr = / w(t)x(1)dt 5)

hold, then for every continuous convex function ¢ : [ — R, we have

b b
| e (enar < [ wooo)ar ©)

For other integral version and generalization of majorization theorem see ([11], p.
583) (see also [12], [1], [10]). The classical Taylor’s formula with integral remainder
can be stated as:

THEOREM 4. Let n be a positive integer and ¢ - [a,b] — R be such that ¢~ is
absolutely continuous, then for all x € |a,b| the Taylor’s formula at the point ¢ € [a,b]
is

¢(x) = T-1(95¢,%) + Ru—1(93¢,%),

where T,_1(¢;c,x) is a Taylor’s polynomial of degree n— 1, i.e.

"21 ¢®(c)

Trgien) = ¥, = of

k=0

and the remainder is given by

Ru—1(¢;c,x) / ot Y.
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In rest of the paper, we need the following real valued function of our interest
defined as:
x—t,1 <X,
X—1)r =
(r=1)+ { 0, t>x

For two Lebesgue integrable functions f,% : [, ] — R, we consider the Ceby3ev
functional

B B B
M) = g [ ponod = 5= [” a5 [noyar

In [5] the authors proved the following theorems:

THEOREM 5. Let f:[a, B] — R be a Lebesgue integrable function and h: [a., B] —
R be an absolutely continuous function with (.— o)(B —.)[W']> € L[c, B]. Then we have
the inequality

1 Lol B , 2
A < AN ([ e —pPe) 0

The constant % in (7) is the best possible.

THEOREM 6. Assume that h: [ot, 3] — R is monotonic nondecreasing on [ct, 3]
and f : [0, B] — R be an absolutely continuous with f' € L.|a, B]. Then we have the
inequality

AU < 5l [ 5= 0B =) ®)

The constant % in (8) is the best possible.

2. Main results

We start the section with the proof of identities obtained by using Taylor’s formula.

THEOREM 7. Let ¢ : [0, B] — R be such that ¢"~Y) is absolutely continuous for
some n =1 andlet w= (wy,...,wy), X=(X1,....,xn) and y = (y1,...,ym) be m-tuples
such that x;,y; € [, B], wi € R (i=1,...,m). Then

Y wit(x;) Ewlq)yl

i=1 i=1
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Ewl ¢ (x;) Ewl ¢ (vi)

n—l m
e —y»k) (-1
k=1 i i

1
7/ )= l[Ew, ((t—xi)+ Zw, ((t—y) )" oW (1)dr. (10)
Proof. Using Taylor’s formula at point o in X7 | wi¢ (x;) — X7, w;¢(y;), we have
m
— 2ol
=1

n—1 k) X;
I(Z"’ (“>(x, a>"+(n_11)! [ oo ar)

s
3
=
3<

Il
—_

I
<

i=1 k=0 k! o
m n—1 ¢(k)(a) 1 Vi ; .
_,-=Z{Wi<lc26 0 (yi—a)k+(n_1)! i <P()(t)(yi—t) 1dt>
N0 (o )k
= (21 i — ) ; i(vi a))
1 Yi 1 . m
oy 2yt 0= [ 30 o
B n—1 ¢(k)(a) m il P m y - L
_kgl k! <21 i(xi— a) ; (i a))
1 B m " (n) 1 B m . )
=) /a lziwl((x,—t)Jr) Lo (t)dt—(n_l)'/a ,2{ (1) )" " (1)t
where
a8, wil(x; — n—1 N i _ \h— 1 d 0
f, T tea= [ 3w wars [
and

/ﬁiwi((yi—f) )" (1)t = /ylzwl yi—1)"'¢ dt+/ 0

o =1

So by using above result we will get (9).
Similarly using Taylor’s formula at point 8 in X7 w;i¢(x;) — 27 wid (vi), we
get (10). O

Integral version of the above theorem can be stated as:
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THEOREM 8. Let ¢ : [0, B] — R be such that ¢"~Y) is absolutely continuous for
some n =1 andlet x,y : [a,b] — [at, B], w: [a,b] — R be continuous functions. Then

/ubw(’b')‘p( (1))dt— /bW(T)¢(y(T))dT
— (1) — oc)k] dr)

(11)
and
/ah w(r)d)(x(r))dr—/ah w(t)o(y(7))dT
- Z_j ¢><k])d(ﬁ) (Abw(f)|:(B—X(T))k_(ﬁ_y(,r))kildl_)( D
ﬁ /am—n"‘ ([W(” [“"x(rm)"1—<<t—y<r>>+>”1} ‘”) 6 (1),
(12)

In the following theorem we obtain generalizations of majorization inequality for
n-convex functions.

THEOREM 9. Let ¢ : [or, B] — R be such that ¢"~Y) is absolutely continuous for
some n =1 andlet w= (wy,...,wy), X=(X1,...,xn) and y = (y1,...,ym) be m-tuples
such that x;,y; € [, B], wi €R (i=1,...,m). Then

(i) if ¢ is n-convex function and
Dowil(i—1) )" =Y wil(i—1)4)" ' 20, 1€ e, Bl, (13)
i=1 i
then

m —
Ewiq} (xi) sz o(vi) > 2
i=1 k=1

(14)
(ii) If ¢ is n-convex function and
(0 (Bl = Sowl -3 ) <0, refepl as)
i=1 i=1
then

m
> wid(x;) Zwl o (vi) >
i=1 i=1

i
_
<
Ay
=
=
—~
=
=

K (; (B —x)f szﬁ yz) 1k,

(16)

T
I
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Proof. Since the function ¢ is n-convex, therefore without loss of generality we
can assume that ¢ is n-times differentiable and ¢ > 0 (see [15], p. 16). Hence we
can apply Theorem 7 to obtain (14) and (16) respectively. [

In the following Corollary, we give generalization of Fuch’s majorization theorem.
COROLLARY 1. Letall the assumptions of Theorem T be satisfied, X = (x1,...,Xn),
y=(1,....ym) be decreasing m-tuples and w = (wy,...,wn,) be any m-tuple such that

Xi,yi € [0, B], wi € R (i =1,...,m) which satisfies (1), (2) and ¢ : [o,f] — R is
n-convex function. Then

(i) for n > 1, (14) holds. Moreover, let the inequality (14) be satisfied. If the function

n—1 4 (k)
Fi(x):=Y ¢ kfa) (x— o)k, (17)
k=1 :

is convex, the R.H.S. of (14) is non negative, that is (3) holds.

(ii) If n is even, then (16) holds. Moreover, let the inequality (16) be satisfied. If the
Sfunction

n—=1¢_ 1\k4 (k)
F(x) ::kz (I)Z%m)(ﬁ—x)". (18)
-1 :

is convex, the R.H.S. of (16) is non negative, that is (3) holds.

Proof. (i) On account of given m-tuples satisfying (1), (2) and the function x —
((x—1)+)""! being convex for given n, (13) holds by virtue of Theorem 2. Therefore
by following Theorem 9 we can obtain (14). Moreover, we can rewrite the R.H.S. of
(14) in the form of the L.H.S. with ¢ = F, where F} is defined in (17) and will be
obtained after reorganization of this side. Since Fj is assumed to be convex, therefore
using the given conditions on m-tuples and by following Theorem 2 the non negativity
of R.H.S. of (14) is immediate, that is (3) holds.

Similarly we can prove the part (ii). O

3. New upper bounds via éeby§ev functional

In the sequel, we consider Theorems 5 and 6 to derive generalizations of the
results proved in the previous section. Let w = (wy,...,wp), X = (x1,...,Xx,) and
y=(y1,-.-,ym) be m-tuples such that x;,y; € [et, ], wi €R (i =1,...,m), denote

m

R(r) = iwi((xi_t)+)n71 - Zwi((yi_t)-&-)nilv t € o, B, (19)

i=1 i=1

30) = (-1 (Sl —x)0 - St ), velapl @0)

Il
—_
Il
—_
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THEOREM 10. Let ¢ : [a, B] — R be such that ¢") is absolutely continuous for
some n > 1 with (.—a)(B —.)[¢"*V]> € L[, B] and let w = (wi,...,;wn), X =
(X1, Xm) and 'y = (¥1,...,ym) be m-tuples such that x;,y; € [a,B], wi € R (i =
1,...,m) and let the functions R, B be defined by (19), (20) respectively . Then

(i) the remainder R (a, ;) given in the following identity

ZWP Vi)
L (;wxxi ~af = Sl o)

7 ‘lMs

1

k=1 i=1
(n=1)(B) —
+¢ (ﬁ(ﬂ()x)(f_l /m (t)dt + 8L (o, B;9), 21)
satisfies the estimation
\ [B—al [P :
i@ i0)] < oA B [T - oo g o Vo

(ii) The remainder 82(c,B;) given in the following identity

> wit(xi) — Y, wid (vi)

i i=1

®(g) / m m

) (zwim —x)f = BB ) 1)

k=1
(1) (B
+2 (a( DICE /% t— 820, B3 0), (22)
satisfies the estimation
2 1 L [B—al P (n1) (12 3
850 B:0)] < gy A B FS T [T - o (B—n)lo" Vo)

Proof. Applying Theorem 5 for f+— R and h— (f)(") and employ similar method
as in Theorem 16 [9]. [

The following Griiss type inequalities can be obtained by using Theorem 6

THEOREM 11. Let ¢ : [0, B] — R be such that ¢ (n > 1) is absolutely con-
tinuous function and ¢("+1) >0 on o, B] and let the functions R, B be defined by
(19), (20) respectively. Then, we have

(i) the representation (21) and the remainder R (o,B;0) satisfies the bound

1 H%/H ¢(n71)(ﬁ)+¢(n71)(a) ¢(n72)(ﬁ)_¢(n72)(a) )

(n—1)! a

R4, Bs9)] < ; -
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(ii) The representation (22) and the remainder 82(o,B;¢) satisfies the bound

g [0 B+ Va) oD (B) 6" P ()]

Iﬁﬁ(a,ﬁ;¢>|<m\|%\|m - _ -

Proof. Applying Theorem 6 for f+— R and h— (f)(") and employ similar method
as in Theorem 17 [9]. [

Now we intend to give the Ostrowski type inequalities related to generalizations
of majorization’s inequality.

THEOREM 12. Assume that all the assumptions of Theorem 7 hold. Moreover,
assume (p q) is a pair of conjugate exponents, thatis 1 < p,q< e, 1/p+1/g=1.
Let |07 : [or, B] — R be a R-integrable function for some n > 1. Then, we have:

(i)
iwiﬂxi) - iwiﬂyz')
_Z¢ (@) (ZWI Xi— iwi(y,-—a)k>

< Z;jj]3;|¢(m|1a<jﬁ

Zwt ¢ (i)
N (k;fﬁ)(x (B — ) ZWzﬂ y,> 1y

< il (0 [ Bomtesr = Swteoar]

q 1/q
dt) .

(24)

The constant on the R.H.S. of (23) and (24) are sharp for 1 < p < o and the best
possible for p=1.

Proof. To prove above results, we employ similar method adopted in Theorem 19
[91. O
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4. Associated linear functionals and exponential convexity

In the present section we will construct some linear functionals as differences of
the L. H. S and R. H. S. of some of the inequalities derived earlier. The obtained linear
functionals will be used in the construction of new families of exponentially convex
functions and some related results will be derived.

Some definitions and basic results regarding exponentially convex functions can
be seen from [2], [7] and [14] which are used in sequel.

REMARK 1. By the virtue of Theorem 9, we define the positive linear functionals
with respect to n-convex function ¢ as follows

Qi(¢9) = iWﬂP(xi) - iWﬂP(yi)

n—1 4 (k) m m
I PO EROIE R I VT AED

i=1 i=1

The Lagrange and Cauchy type mean value theorems related to defined functionals
are in the following theorems.

THEOREM 13. Letr ¢ : [0, B] — R be such that ¢ € C"[o, B]. If the inequalities
in (14) and (16) are valid, then there exist &; € [0, B] such that

Qi(9) = 0" (E)Qi(p); i=1,2,

where @(x) = ’};—': and Q;(-) are defined in Remark 1.

Proof. Similar to the proof of Theorem 4.1 in [8] (see also [3]). U

THEOREM 14. Let ¢, A : [0, ] — R be such that ¢, A € C"[ox, B]. If the inequal-
ities in (14) and (16) are valid, then there exist &; € [a, 3] such that

Qi(9) _ 9"(&).
Qi(A)  AM(&)’

i=1,2,

provided that the denominators are non-zero and () are defined in Remark 1.
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Proof. Similar to the proof of Corollary 4.2 in [8] (see also [3]). O

Theorem 14 enables us to define Cauchy means, because if

—1
£— o Qi(9)
ERWIC) Q1) )’
which show that &; (i =1,2) are means of o, 3 for given functions ¢ and A .
Next we construct the non trivial examples of n—exponentially and exponentially

convex functions from positive linear functionals Q;(-) (i = 1,2). We use the idea
given in [14].

THEOREM 15. Let © = {¢, : 1 € J}, where J is an interval in R, be a family of
functions defined on an interval I in R such that the function t — [xo,...,Xn; @] is
n— exponentially convex in the Jensen sense on J for every (n+ 1) mutually different
points xg,...,x, € I. Then for the linear functionals Q;(-) (i = 1,2) as defined in
Remark 1, the following statements are valid for each i = 1,2:

(i) The function t — Q;(@;) is n—exponentially convex in the Jensen sense on J
and the matrix [Qi(([)# )];’fl:l is a positive semi-definite for all m € N,m < n,

t,..,tm € J. Particularly,

det[Q; (@144 )] =0
2

forallmeN, m=1,2,...,n.

(ii) If the function t — Q;(@,) is continuous on J, then it is n— exponentially convex
onJ.

Proof. Similar to the proof of Theorem 23 [9]. [

The following corollary is an immediate consequence of the above theorem.

COROLLARY 2. Let © = {¢, :t € J}, where J is an interval in R, be a family
of functions defined on an interval I in R, such that the function t — [xo, ... ,Xn; @]
is exponentially convex in the Jensen sense on J for every (n+ 1) mutually different
points xy,...,x, € 1. Then for the linear functional Q;(-) (i = 1,2), the following
statements hold:

(i) The function t — Q;(@y) is exponentially convex in the Jensen sense on J and the
matrix [Qi( i+ )}'J’?l:l is a positive semi-definite forall m e Nym < n, t1,..,ty €
= h

J. Particularly,
det[Qi(qb’_/#)];rfl:I >0

foralme N, m=1,2,....n.
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(ii) If the function t — Q;(¢y) is continuous on J, then it is exponentially convex on
J.

COROLLARY 3. Let © = {¢, :t € J}, where J is an interval in R, be a family
of functions defined on an interval I in R, such that the function t — [Xo,...,Xu; ] is
2— exponentially convex in the Jensen sense on J for every (n+ 1) mutually different
points xo,...,x, € 1. Let Q;(-) (i =1,2) be linear functionals. Then the following
statements hold:

(i) If the function t — Q;(@,) is continuous on J, then it is 2— exponentially convex
Sfunction on J. If t — Q;(¢) is additionally strictly positive, then it is also log-
convex on J. Furthermore, the following inequality holds true:

[Q:(90)] " < [u(0n)) " [Qu(90)] "
for every choice r,s,t € J, such that r < s <t.

(ii) If the function t — Q;(@;) is strictly positive and differentiable on J, then for
every p,q,u,v € J, such that p <u and q < v, we have

”P,q(Qh@) < .uth(in@)v 27)
where 1
()" rta
Hp,q(Qi,0) = Qg (28)
exp ( “’Q ) p=4q,
for ¢p, 0, € O.

Proof. Similar to the proof of Corollary 2 [9]. [

5. Applications to Cauchy means

In the running section, we use a family of functions which fulfil the conditions of
Theorem 15, Corollary 2 and Corollary 3.

EXAMPLE 1. Let us consider a family of functions
O ={¢ :[0,00) > R:7>0}
defined by
X
m, t¢{l7,n—1},

J1 .
W%,t:]e{l,...,n—l},
with 0log0 = 0. Since dxq)’( ) =x'"" >0, the function ¢ is n-convex for x > 0 and

t— %(x) is exponentially convex by definition. Using analogous arguing as in the

o (x) =
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proof of Theorem 15 we also have that 7 +— [xg,...,X,; ¢/] is exponentially convex (and
so exponentially convex in the Jensen sense). Now, using Corollary 2 we conclude that
t— Qi(¢) (i =1,2) are exponentially convex in the Jensen sense. Hence, for this
family of functions, it is easy to give explicitly u; 4(Q;,0) (i = 1) from (28),

1
=9

t(t—1)--(t—n+1)
gy | 0 17D

m m
.21 Wit — '21 wiy;
1= 1=

m m

q q
Z WiX; *_Z WiVi
i=1 i=1

m m
'21 wixt logx;— '21 wiyilogyi  p—1
= =

m +Zﬁ ) t:q¢{17"'7n_1}a

Urg(R21,0) = ¢ exp _
3 wixg— Zl wiy! k=0

& 2 & 2
_21 wix; log x,-—_Zl wiyilogyi  p—1 |
- — +2m ,tzqe{l,...,n—l}.

m m
2 wixt logxi— ¥ wiytlogy; k=0
(izl i 0B izl i gy,) k#t

exp

Similarly, one can give t;4(€;,0) (i =2) from (28). Now using Theorem 14 we

conclude that .
Qi(¢r) ) =q .
o< <B. i=12.
(Qi(¢q)

Hence p; 4(Q;,0) (i =1,2) are means and their monotonicity is followed by (27).

We conclude the paper with the following remarks:

REMARK 2. One can also consider families of functions given in the last section
of [4] to construct a large families of functions which are exponentially convex and new
monotonic means.

REMARK 3. All the results given above can also be given in integral versions
using Theorem 8.
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