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ON A PROBLEM CONNECTED WITH STRONGLY CONVEX FUNCTIONS

MIROSŁAW ADAMEK

(Communicated by K. Nikodem)

Abstract. In this paper we show that the result obtained by Nikodem and Páles in [3] can by
extended to a more general case. In particular, for a non-negative function F defined on a real
vector space we define F -strongly convex functions and show that such functions are in the form
g+F∗ , where g is a convex function and F∗ is a function associated with function F , iff F∗ is
a quadratic function. Using this result, we get a characterization of quadratic functions.

1. Introduction

Let (X ,‖·‖) be a real normed space, D stand for a convex subset of X and c be a
positive constant. A function f : D → R is called strongly convex with modulus c if

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− ct(1− t)‖ x− y‖2 , (1)

for all x,y ∈ D and t ∈ (0,1) .
Such functions have been introduced by Polyak in [4] and as in turns out they play

an important role in optimization theory. Strongly convex functions have also been
studied by many authors, among others, see [1], [5], [6]. A function f : D → R is
called strongly Jensen convex with modulus c if

f
(x+ y

2

)
� f (x)+ f (y)

2
− c

4
‖ x− y‖2 , (2)

for all x,y ∈ D .
In [3] the authors present relations between strongly convex (strongly Jensen con-

vex) and convex (Jensen convex) functions. In particular, they show that each strongly
convex function (strongly Jensen convex function) is in the form g+‖·‖2 , where g is
a convex function (Jensen convex function) iff the space (X ,‖·‖) is an inner product
space.

Now, if in (1) and (2) we replace c‖·‖2 , with a non-negative function F defined
on X we get the following inequalities, respectively.

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− t(1− t)F(x− y),
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for all x,y ∈ D and t ∈ (0,1) .

f
( x+ y

2

)
� f (x)+ f (y)

2
− 1

4
F(x− y),

for all x,y ∈ D .
The main goal of this paper is to resolve a problem of whether for such functions

a similar result as Nikodem and Páles got in [3] is possible to obtain.

2. Main result

At the beginning we formally introduce two definitions of functions aforemen-
tioned in the introduction.

DEFINITION 1. Let X be a real vector space, D be a nonempty convex subset of
X and F : X → [0,∞) be a given function. A function f : D → R will be called F -
strongly convex if

f
(
tx+(1− t)y

)
� t f (x)+ (1− t) f (y)− t(1− t)F(x− y)

for all x,y ∈ D and t ∈ (0,1).

DEFINITION 2. Let X be a real vector space, D be a nonempty convex subset
of X and F : X → [0,∞) be a given function. A function f : D → R we will call F -
strongly J-convex if

f
(x+ y

2

)
� f (x)+ f (y)

2
− 1

4
F(x− y)

for all x,y ∈ D .

Notice that in Definition 1 parameter t is arbitrary from the segment (0,1) . Thus,
function f is F-strongly convex if and only if

f
(
tx+(1− t)y

)
� t f (x)+ (1− t) f (y)− t(1− t)F(y− x)

for all x,y ∈ D and t ∈ (0,1). So, defining the function F∗ by setting

F∗(x) := max{F(−x),F(x)} , x ∈ X ,

we have the following observation.

OBSERVATION 1. Let X be a real vector space, D be a nonempty convex subset
of X and F : X → [0,∞) be a given function. A function f : D → R is F -strongly
convex (F -strongly J-convex) if and only if a function f : D→R is F∗ -strongly convex
(F∗ -strongly J-convex).
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2.1. F -strongly J-convexity

In this section we will consider F -strongly J-convex functions and we shall start
with three useful lemmas.

LEMMA 1. Let X be a real vector space, D be a nonempty convex subset of X
and F : X → [0,∞) be a given quadratic function (i.e. F(x+ y)+F(x− y) = 2F(x)+
2F(y)). A function f : D → R is F -strongly J-convex if and only if the function g =
f −F is J-convex.

Proof. F is a quadratic function thus

1
4
F(x− y) = −F

(x+ y
2

)
+

1
2
F(x)+

1
2
F(y).

Now, the inequality

f
(x+ y

2

)
� f (x)+ f (y)

2
− 1

4
F(x− y)

can by written in an equivalent form

f
(x+ y

2

)
−F

(x+ y
2

)
� f (x)−F(x)+ f (y)−F(y)

2
.

Taking g := f −F we get

g
(x+ y

2

)
� g(x)+g(y)

2
. �

LEMMA 2. Let X be a real vector space and F : X → [0,∞) be a function that is
even. If the function F is F -strongly J-convex, then F( 1

2x) = 1
4F(x) far all x ∈ X .

Proof. We are assuming the inequality

F
(x+ y

2

)
� F(x)+F(y)

2
− 1

4
F(x− y), x,y ∈ X . (3)

From the above inequality with x = y = 0 and non-negativity of F we get F(0) = 0.
Now, taking y = 0 we have

F
( x

2

)
� 1

4
F(x), x ∈ X .

Moreover, putting y = −x , substituting x with x
2 in (3) and using evenness of F we

obtain
1
4
F(x) � F

( x
2

)
, x ∈ X .

Thus

F
( x

2

)
=

1
4
F(x), x ∈ X . (4)

�
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LEMMA 3. Let X be a real vector space and F : X → [0,∞) be a function that is
even. The function F is F -strongly J-convex if and only if F is a quadratic function.

Proof. Suppose that F is F -strongly J-convex. From Definition 2 and Lemma 2
we get

F(x+ y)+F(x− y) � 2F(x)+2F(y), x,y ∈ X .

Now, putting x+y = u and x−y = v in the above inequality a using once more Lemma
2 we obtain

F(u+ v)+F(u− v) � 2F(u)+2F(v), u,v ∈ X .

Thus
F(x+ y)+F(x− y) = 2F(x)+2F(y), x,y ∈ X .

The reverse implication is obviously true. �
The next result gives the solution of the problem aforementioned in case of F -

strongly J-convexity. Moreover, we obtain a characterization of quadratic functions.

THEOREM 1. Let X be a real vector space, D be a nonempty convex subset of X
and F : X → [0,∞) be a given function. The following conditions are equivalent:

1. For all function f : D → R , f is F -strongly J-convex if and only if the function
g = f −F∗ is J-convex;

2. The function F∗ is F∗ -strongly J-convex;

3. The function F∗ is a quadratic function.

Proof. Assuming (1) and taking g = 0 we obtain that F∗ = f . Thus F∗ is F -
strongly J-convex and from Observation 1, F∗ is F∗ -strongly J-convex. So, we have
(2). Lemma 3 follows the implication (2)⇒(3) and from Lemma 1 and Observation 1
we deduce the implication (3)⇒(1). �

It is well known, that each quadratic and continuous function F : R
n → R can be

written in the following form F(x) = xAxT , where A is a symmetric matrix of degree
n . Therefore, from Theorem 1 we have the following corollary.

COROLLARY 1. For �n
p spaces where n � 2 we have

2
2−s
2 ‖x+ y‖s

p +2
s−2
2 ‖x− y‖s

p � 2
s
2 ‖x‖s

p +2
s
2 ‖y‖s

p , x,y ∈ R
n,

if and only if p = s = 2.

In order to substantiate this corollary let us observe that, multiplying the above
inequality by 2−

s+2
2 , the function F(x) := ‖x‖s

p must be F -strongly convex and, of
course, F = F∗ . Therefore, from Theorem 1 the function F must be quadratic and
consequently we have that

F(x) = ax2
1 +bx1x2 + cx2

2, (5)
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for x = (x1,x2,0, . . . ,0) ∈ R
n . From the definition of F and (5), it follows that a = c ,

because F(x1,x2,0, . . . ,0) = F(x2,x1,0, . . . ,0) . Now taking x1 = 1, x2 = 0 we con-
clude that a = 1. Hence, for x2 = 0 with arbitrary x1 we get s = 2. Thus

p
√
|x1|p + |x2|p =

√
x2
1 +bx1x2 + x2

2.

Dividing this equality by |x1| and tending with |x1| to infinity we obtain b = 0. Thus

p
√
|x1|p + |x2|p =

√
x2
1 + x2

2.

Finally, taking in the above equality x1 = x2 we obtain p = 2.
Observe that if we take n = 1 in the previous corollary we also get s = 2 and, of

course, the value of p is unimportant.
At the end of this section, notice that if we additionally assume the continuity of

F in Theorem 1, then the function F∗ must also be homogeneous of degree 2 (i.e.
F∗(tx) = t2F∗(x) for all x ∈ X and t ∈ R) and consequently, using the well known
Jordan-von Neumann theorem presented in [2], defines a symmetric bilinear form, thus
X is an inner product space.

2.2. Strongly F -convexity

In this section F -strongly convex functions will be considered. We start with
three lemmas which are analogous to the lemmas presented in the previous section,
respectively.

LEMMA 4. Let X be a real vector space, D be a nonempty convex subset of X
and F : X → [0,∞) be a given F -strongly affine function (i.e. we have ”=” instead
of ”�” in Definition 1). A function f : D → R is F -strongly convex if and only if the
function g = f −F is convex.

Proof. F is a F -strongly affine function thus

t(1− t)F(x− y) = −F(tx+(1− t)y)+ tF(x)+ (1− t)F(y).

Now, the inequality

f (tx+(1− t)y) � t f (x)+ (1− t) f (y)− t(1− t)F(x− y)

can be written in an equivalent form

f (tx+(1− t)y)−F(tx+(1− t)y) � t( f (x)−F(x))+ (1− t)( f (y)−F(y)).

Taking g := f −F we get

g(tx+(1− t)y) � tg(x)+ (1− t)g(y). �

LEMMA 5. Let X be a real vector space and F : X → [0,∞) be a function that is
even. If the function F is F -strongly convex, then F is homogeneous of degree 2 .
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Proof. From the assumption the following inequality holds true

F(tx+(1− t)y) � tF(x)+ (1− t)F(y)− t(1− t)F(x− y), (6)

for all t ∈ (0,1) and x,y ∈ X . Putting in this inequality y = 0 and using the fact that
F(0) = 0 we get

F(tx) � tF(x)+ t(1− t)F(x) = t2F(x),

thus
F(tx) � t2F(x), (7)

for all t ∈ (0,1) and x∈ X . In order to show the reverse inequality, we put x = (1− t)u ,
y = −tu in (6) and using the fact that F(0) = 0 we have

0 = F(0) � tF((1− t)u)+ (1− t)F(−tu)− t(1− t)F(u).

Now, using the above inequality, (7) and evenness of F we obtain

t(1− t)F(u) � tF((1− t)u)+ (1− t)F(tu) � t(1− t)2F(u)+ (1− t)F(tu).

Dividing this inequality by 1− t we get

tF(u) � t(1− t)F(u)+F(tu),

thus
F(tu) � t2F(u), (8)

for all t ∈ (0,1) and u ∈ X . From (7) and (8) we conclude that

F(tx) = t2F(x), (9)

for all t ∈ (0,1) and x ∈ X . Moreover, if we substitute in the above equality x with x
t

we conclude that (9) holds also for t > 1. Which together with the evenness of F gives
the equality

F(tx) = t2F(x), (10)

for all t ∈ R and x ∈ X . �

LEMMA 6. Let X be a real vector space and F : X → [0,∞) be a function that
is even. The function F is F -strongly convex if and only if F is a F -strongly affine
function.

Proof. Assume that F is F -strongly convex, i.e.

F(tx+(1− t)y) � tF(x)+ (1− t)F(y)− t(1− t)F(x− y), (11)

for all t ∈ (0,1) and x,y ∈ X . Now, putting tx+(1− t)y = u
√

t and x−y = v√
t

in (11)
and using Lemma 5 we get

tF(u) � F(tu+(1− t)v)+ t(1− t)F(u− v)− (1− t)F(v)
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or equivalently

F(tu+(1− t)v) � tF(u)+ (1− t)F(v)− t(1− t)F(u− v),

for all t ∈ (0,1) and u,v ∈ X . This together with (11) implies that

F(tu+(1− t)v) = tF(u)+ (1− t)F(v)− t(1− t)F(u− v),

for all t ∈ (0,1) and x,y ∈ X , i.e. the function F is F -strongly affine.
The reverse implication is obvious. �
The next result gives the solution of the problem aforementioned in case of F -

strongly convexity.

THEOREM 2. Let X be a real vector space, D be a nonempty convex subset of X
and F : X → [0,∞) be a given function. The following conditions are equivalent:

1. For all function f : D → R , f is F -strongly convex if and only if the function
g = f −F∗ is convex;

2. The function F∗ is F∗ -strongly convex;

3. The function F∗ is F∗ -strongly affine (and of course quadratic and homogeneous
of degree 2 , and X is an inner product space).

Proof. The implication (1)⇒(2) we argue as in the proof of Theorem 1. By virtue
of Lemma 6 we have the implication (2)⇒(3). Finally, using Lemma 4 and Observation
1 we obtain the implication (3)⇒(1). �
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