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ON A PROBLEM CONNECTED WITH STRONGLY CONVEX FUNCTIONS

MIROSEAW ADAMEK

(Communicated by K. Nikodem)

Abstract. In this paper we show that the result obtained by Nikodem and Pdles in [3] can by
extended to a more general case. In particular, for a non-negative function F defined on a real
vector space we define F -strongly convex functions and show that such functions are in the form
g+ F*, where g is a convex function and F* is a function associated with function F,iff F* is
a quadratic function. Using this result, we get a characterization of quadratic functions.

1. Introduction

Let (X,]|-]|) be areal normed space, D stand for a convex subset of X and ¢ be a
positive constant. A function f : D — R is called strongly convex with modulus c if

flex+(1=1)y) <tfx)+ (1—1)f(y) —et(L—1) | x— |, (1)

forall x,y € D and r € (0,1).

Such functions have been introduced by Polyak in [4] and as in turns out they play
an important role in optimization theory. Strongly convex functions have also been
studied by many authors, among others, see [1], [5], [6]. A function f:D — R is
called strongly Jensen convex with modulus c if

f(x;y)<f(x>;f(y)—§||x—yllz, )
forall x,y € D.

In [3] the authors present relations between strongly convex (strongly Jensen con-
vex) and convex (Jensen convex) functions. In particular, they show that each strongly
convex function (strongly Jensen convex function) is in the form g+ ||-||*, where g is
a convex function (Jensen convex function) iff the space (X, ||-||) is an inner product
space.

Now, if in (1) and (2) we replace c||-||*, with a non-negative function F defined
on X we get the following inequalities, respectively.

flx+ (1 =0)y) <tf(x) + (1 =1)f(y) —t(1 =) F(x—y),
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forall x,y e D and r € (0,1).

f(ery) < Jx)+£0)

1
2 2 _ZF(x_y)a

forall x,y € D.
The main goal of this paper is to resolve a problem of whether for such functions
a similar result as Nikodem and Péles got in [3] is possible to obtain.

2. Main result

At the beginning we formally introduce two definitions of functions aforemen-
tioned in the introduction.

DEFINITION 1. Let X be a real vector space, D be a nonempty convex subset of
X and F : X — [0,c0) be a given function. A function f: D — R will be called F -
strongly convex if

flext+ (1 =0)y) Stf(x)+(L=1)f(y) —t(1 —1)F(x—y)
forall x,y € D and r € (0,1).
DEFINITION 2. Let X be a real vector space, D be a nonempty convex subset

of X and F : X — [0,e) be a given function. A function f:D — R we will call F-
strongly J-convex if

1
F(EE) < LEHIO) L,
forall x,y € D.

Notice that in Definition 1 parameter 7 is arbitrary from the segment (0,1). Thus,
function f is F-strongly convex if and only if

flex+(1=1)y) <tf(x)+ (1 =1)f(y) —t(1 =1)F(y —x)
forall x,y € D and ¢ € (0,1). So, defining the function F* by setting
F*(x) :=max{F(—x),F(x)}, x€X,
we have the following observation.

OBSERVATION 1. Let X be a real vector space, D be a nonempty convex subset
of X and F :X — [0,) be a given function. A function f: D — R is F-strongly
convex (F -strongly J-convex) if and only if a function f: D — R is F* -strongly convex
(F* -strongly J-convex).
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2.1. F -strongly J-convexity

In this section we will consider F -strongly J-convex functions and we shall start
with three useful lemmas.

LEMMA 1. Let X be a real vector space, D be a nonempty convex subset of X
and F : X — [0,%0) be a given quadratic function (i.e. F(x+y)+F(x—y)=2F(x)+
2F(y)). A function f:D — R is F-strongly J-convex if and only if the function g =
f—F is J-convex.

Proof. F is a quadratic function thus

e =—F(52) 1 3F )+ 3F0).

Now, the inequality

f(x;y> < f(x)erf(y)

can by written in an equivalent form

)

f(%) _F(x;ry> < f(x)—F(x)ﬂsz(y)—F(y).

Taking g := f — F we get

g()ﬁ?) <g(x)ﬂ;g(y)_ 0

LEMMA 2. Let X be a real vector space and F : X — [0,%0) be a function that is
even. If the function F is F -strongly J-convex, then F(%x) =3F(x) farall x € X.

A=

Proof. We are assuming the inequality

+ F(x)+F 1
F(x2y>< (x)z (y)_ZF(x—y), x,yeX. (3)

From the above inequality with x =y = 0 and non-negativity of F we get F(0) =0.
Now, taking y = 0 we have

F(f) <Y rm), xex.

2 4
Moreover, putting y = —x, substituting x with % in (3) and using evenness of F' we
obtain
Lrty <F (x ) eX
n X 5) X .
4 2
Thus
F()—C> ~Lp), xex &)
2/ 4 ’ ’
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LEMMA 3. Let X be a real vector space and F : X — [0,0) be a function that is
even. The function F is F -strongly J-convex if and only if F is a quadratic function.

Proof. Suppose that F is F -strongly J-convex. From Definition 2 and Lemma 2
we get
F(x+y)+F(x—y) <2F(x)+2F(y), x,yeX.

Now, putting x+y = u and x —y = v in the above inequality a using once more Lemma
2 we obtain
Flu+v)+F(u—v) > 2F(u)+2F(v), u,veX.

Thus
F(x+y)+F(x—y)=2F(x)+2F(y), x,y€X.

The reverse implication is obviously true. [
The next result gives the solution of the problem aforementioned in case of F -
strongly J-convexity. Moreover, we obtain a characterization of quadratic functions.
THEOREM 1. Let X be a real vector space, D be a nonempty convex subset of X

and F : X — [0,00) be a given function. The following conditions are equivalent:

1. For all function f:D — R, f is F-strongly J-convex if and only if the function
g=f—F" is J-convex;

2. The function F* is F*-strongly J-convex;
3. The function F* is a quadratic function.

Proof. Assuming (1) and taking ¢ = 0 we obtain that F* = f. Thus F* is F-
strongly J-convex and from Observation 1, F* is F*-strongly J-convex. So, we have
(2). Lemma 3 follows the implication (2)=-(3) and from Lemma | and Observation 1
we deduce the implication (3)=-(1). U

It is well known, that each quadratic and continuous function F : R” — R can be
written in the following form F(x) = xAx” , where A is a symmetric matrix of degree
n. Therefore, from Theorem 1 we have the following corollary.

COROLLARY 1. For E; spaces where n > 2 we have

27 x4yl +277 [l =yl <22 lIxll, +22 [yl xy€eR",
ifandonly if p =s5=2.

In order to substantiate this corollary let us observe that, multiplying the above
inequality by 2=*%*, the function F (x) := |lx]l}, must be F-strongly convex and, of
course, F' = F*. Therefore, from Theorem 1 the function F must be quadratic and
consequently we have that

F(x) = ax} 4 bxixy + cx3, 3)
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for x = (x1,x2,0,...,0) € R". From the definition of F' and (5), it follows that a = ¢,
because F(x1,x2,0,...,0) = F(x2,x1,0,...,0). Now taking x; = 1, x, =0 we con-
clude that a = 1. Hence, for x, = 0 with arbitrary x; we get s =2. Thus

(/|x1\p—|— [P = \/x% + bx1x3 + X3.

Dividing this equality by |x;| and tending with |x;| to infinity we obtain b = 0. Thus

</\x1\p+IX2|p: \/x%+x§~

Finally, taking in the above equality x; = x, we obtain p =2.

Observe that if we take n = 1 in the previous corollary we also get s =2 and, of
course, the value of p is unimportant.

At the end of this section, notice that if we additionally assume the continuity of
F in Theorem 1, then the function F* must also be homogeneous of degree 2 (i.e.
F*(tx) = t>F*(x) for all x € X and 7 € R) and consequently, using the well known
Jordan-von Neumann theorem presented in [2], defines a symmetric bilinear form, thus
X is an inner product space.

2.2. Strongly F -convexity

In this section F -strongly convex functions will be considered. We start with
three lemmas which are analogous to the lemmas presented in the previous section,
respectively.

LEMMA 4. Let X be a real vector space, D be a nonempty convex subset of X
and F : X — [0,%) be a given F -strongly affine function (i.e. we have ”=""instead
of 7 < in Definition 1). A function f:D — R is F -strongly convex if and only if the
function g = f —F is convex.

Proof. F is a F -strongly affine function thus
t(1—t)F(x—y) = —F(tx+ (1 —t)y) +tF(x) + (1 —1)F(y).
Now, the inequality
flex+ (1 =2)y) <tf(x)+ (1 —1)f(y) —t(1 —1)F(x—y)

can be written in an equivalent form

flex+(1=1)y) = F(tx+ (1 =1)y) < 1(f(x) = F(x)) + (1 = 1) (f(y) = F(y)).
Taking g := f — F we get

gltx+(1—-1)y) < tg(x)+ (1 —1)g(y). O

LEMMA 5. Let X be a real vector space and F : X — [0,%0) be a function that is
even. If the function F is F -strongly convex, then F is homogeneous of degree 2.
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Proof. From the assumption the following inequality holds true
Fix+(1=1)y) <tF(x) + (1 =) F(y) =t(1 =) F(x =), (6)

for all r € (0,1) and x,y € X. Putting in this inequality y = 0 and using the fact that
F(0) =0 we get
F(tx) <tF(x) +1(1 —1)F(x) = *F(x),

thus
F(tx) <12F (x), (7

forall # € (0,1) and x € X . In order to show the reverse inequality, we put x = (1 —17)u,
y = —tu in (6) and using the fact that F(0) = 0 we have

0=F() <tF((1=t)u)+ (1 —t)F(—tu) —t(1 —t)F(u).
Now, using the above inequality, (7) and evenness of F' we obtain
1(1—0)F(u) <tF((1—0)u)+ (1 —1)F(tu) <1(1—1)*F(u) + (1 —t)F(tu).
Dividing this inequality by 1 —¢ we get
tF(u) <t(l—1)F(u)+ F(tu),

thus
F(tu) > 1°F (u), (8)

forall r € (0,1) and u € X. From (7) and (8) we conclude that
F(tx) =1*F (x), )

forall # € (0,1) and x € X. Moreover, if we substitute in the above equality x with T
we conclude that (9) holds also for # > 1. Which together with the evenness of F gives
the equality

F(tx) =1*F (x), (10)

forallt e Rand xeX. O

LEMMA 6. Let X be a real vector space and F : X — [0,0) be a function that
is even. The function F is F -strongly convex if and only if F is a F -strongly affine
function.

Proof. Assume that F is F -strongly convex, i.e.
Fix+(1=1)y) StF(x) + (1 =) F(y) (1 =) F(x—y), (11)

forall # € (0,1) and x,y € X . Now, putting tx+ (1 —7)y =u+/f and x—y = % in(11)

and using Lemma 5 we get

tF(u) <F(tu+(1—t)v)+t(1—t)Fu—v)— (1 —1)F(v)
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or equivalently
Fltu+(1—t)w)2tFu)+ (1 —t)F(v) —t(1 —=t)F(u—v),
forall r € (0,1) and u,v € X. This together with (11) implies that
Fltu+(1—1)v)=tF(u)+(1—1)F(v) —t(1 —t)F(u—v),

forall r € (0,1) and x,y € X, i.e. the function F is F -strongly affine.
The reverse implication is obvious. [l

The next result gives the solution of the problem aforementioned in case of F -
strongly convexity.

THEOREM 2. Let X be a real vector space, D be a nonempty convex subset of X
and F : X — [0,00) be a given function. The following conditions are equivalent:

1. For all function f:D — R, f is F-strongly convex if and only if the function
g=f—F" is convex;

2. The function F* is F*-strongly convex;

3. The function F* is F* -strongly affine (and of course quadratic and homogeneous
of degree 2, and X is an inner product space).

Proof. The implication (/)=>(2) we argue as in the proof of Theorem 1. By virtue
of Lemma 6 we have the implication (2) = (3). Finally, using Lemma 4 and Observation
1 we obtain the implication (3)=-(1). U
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