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Abstract. In this paper some multidimensional integral and discrete Opial-type inequalities due
to Agarwal, Pang and Sheng are considered. Theirs generalizations and extensions using sub-
multiplicative convex functions, appropriate integral representations of functions, appropriate
summation representations of discrete functions and inequalities involving means are presented.

1. Introduction

In 1960, Z. Opial [10] proved next integral inequality:

Let x(t)∈C1[0,h] be such that x(0) = x(h) = 0 and x(t) > 0 for t ∈ (0,h) .
Then ∫ h

0

∣∣x(t)x′(t)
∣∣dt � h

4

∫ h

0

(
x′(t)

)2
dt, (1)

where constant h
4 is the best possible.

Over the last five decades, an enormous amount of work has been done on this integral
inequality, dealing with new proofs, various generalizations, extensions and discrete
analogues. Opial’s inequality is recognized as fundamental result in the analysis of
qualitative properties of solution of differential equations (see [3, 9] and the references
cited therein).

The aim of this paper is to generalize and extend some integral and discrete Opial-
type inequalities due to Agarwal, Pang and Sheng ([1, 2, 6]). To establish these in-
equalities, we will use some elementary techniques such as appropriate integral rep-
resentations of functions, appropriate summation representations of the discrete func-
tions and inequalities involving means. We start each section with inequality involving
a submultiplicative convex function. Recall that function f : [0,∞) → [0,∞) is called
submultiplicative function if it satisfies the inequality

f (xy) � f (x) f (y) , for all x,y ∈ [0,∞)
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(see for example [8]).
One of such submultiplicative functions, which is also convex and increasing, is

f (x) = xp log(e+ x) , where p � 1+
√

5
2 . The obtained results will give in a special case

improvements of corresponding inequalities in [1, 2, 6], and, at the same time, they will
simplify proofs of the corresponding theorems in [4, 5, 7].

For the following inequalities we present obtained generalizations, extensions and
improvements: first is a result by Agarwal and Pang from [1], observed in Section 2.
Recall, AC[0,h] is the space of all absolutely continuous functions on [0,h] . Also, let
B denotes the beta function.

THEOREM 1. [1] Let λ � 1 be a given real number and let p be a nonnegative
and continuous function on [0,h] . Further, let x ∈ AC[0,h] be such that x(0) = x(h) =
0 . Then the following inequality holds

∫ h

0
p(t)|x(t)|λ dt � 1

2

(∫ h

0

(
t(h− t)

)λ−1
2 p(t)dt

)∫ h

0
|x′(t)|λ dt . (2)

For a constant function p, the inequality (2) reduces to

∫ h

0
|x(t)|λ dt � hλ

2
B

(
λ +1

2
,

λ +1
2

)∫ h

0
|x′(t)|λ dt . (3)

Next is a multidimensional Poincaré-type inequality by Agarwal and Sheng from
[6], observed in Section 3. This inequality involves a special class of continuous func-
tions, a class G(Ω) , whose definition and properties are given at the beginning of Sec-
tion 3.

THEOREM 2. [6] Let λ ,μ � 1 and let u ∈ G(Ω) . Then the following inequality
holds ∫

Ω
|u(x)|λ dx � K(λ ,μ)

∫
Ω
‖gradu(x)‖λ

μ dx ,

where

K(λ ,μ) =
1

2m
B

(
1+ λ

2
,
1+ λ

2

)
C

(
λ
μ

)
Gm

(
(b−a)λ

)
, (4)

C(α) =

{
1 , α � 1 ,

m1−α , 0 � α � 1 .
(5)

Finally, a discrete inequality, observed in Section 4, is a result by Agarwal and
Pang from [2]. A definition of a class G(Ω) for the discrete case and a definition of
forward difference operator Δi are given at the beginning of Section 4.

THEOREM 3. [2] Let λ � 1 and let u ∈ G(Ω) . Then the following inequality
holds

X−1

∑
x=1

|u(x)|λ � K(λ )
X−1

∑
x=0

(
m

∑
i=1

|Δi u(x)|2
) λ

2

,
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where

K(λ ) =
1
m

C

(
λ
2

) m

∏
i=1

(
Xi−1

∑
xi=1

1
2

(xi(Xi − xi))
λ−1

2

) 1
m

(6)

and C is defined by (5).

2. Integral inequalities in one variable

First we give a generalization of Theorem 1 involving submultiplicative convex
functions. In a special case (Corollary 4) this theorem will improve result from Theo-
rem 1.

THEOREM 4. Let n ∈ N and let fi be increasing, submultiplicative convex func-
tions on [0,∞) , i = 1, . . . ,n. Let p be a nonnegative and integrable function on [0,h] .
Further, let xi ∈ AC[0,h] be such that xi(0) = xi(h) = 0 for i = 1, . . . ,n. Then the
following inequality holds

∫ h

0
p(t)

n

∏
i=1

fi (|xi(t)|)dt

�
(∫ h

0
p(t)

n

∏
i=1

(
t

fi(t)
+

h− t
fi(h− t)

)−1

dt

)
n

∏
i=1

∫ h

0
fi
(|x′i(t)|)dt . (7)

Proof. As in [1], for each fixed i , i = 1, . . . ,n , from the hypotheses of the theorem
we have

xi(t) =
∫ t

0
x′i(s)ds ,

xi(t) = −
∫ h

t
x′i(s)ds .

Since fi is an increasing and convex function, we use Jensen’s inequality to obtain

fi (|xi(t)|) � fi

(
1
t

∫ t

0
t |x′i(s)|ds

)
� 1

t

∫ t

0
fi
(
t |x′i(s)|

)
ds

and by submultiplicativity of fi follows

fi (|xi(t)|) � 1
t

∫ t

0
fi(t) fi(|x′i(s)|)ds =

fi(t)
t

∫ t

0
fi(|x′i(s)|)ds . (8)
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Analogously we obtain

fi (|xi(t)|) � fi

(
1

h− t

∫ h

t
(h− t) |x′i(s)|ds

)

� 1
h− t

∫ h

t
fi
(
(h− t) |x′i(s)|

)
ds

� 1
h− t

∫ h

t
fi(h− t) fi(|x′i(s)|)ds

=
fi(h− t)
h− t

∫ h

t
fi(|x′i(s)|)ds . (9)

Multiplying (8) by t
fi(t)

and (9) by h−t
fi(h−t) and adding these inequalities, we find(

t
fi(t)

+
h− t

fi(h− t)

)
fi (|xi(t)|) �

∫ h

0
fi
(|x′i(s)|)ds ,

i.e.

fi (|xi(t)|) �
(

t
fi(t)

+
h− t

fi(h− t)

)−1 ∫ h

0
fi
(|x′i(s)|)ds . (10)

This gives us

n

∏
i=1

fi (|xi(t)|) �
n

∏
i=1

[(
t

fi(t)
+

h− t
fi(h− t)

)−1 ∫ h

0
fi
(|x′i(s)|)ds

]
. (11)

Now multiplying (11) by p and integrating on [0,h] we obtain∫ h

0
p(t)

n

∏
i=1

fi (|xi(t)|)dt

�
∫ h

0
p(t)

n

∏
i=1

[(
t

fi(t)
+

h− t
fi(h− t)

)−1 ∫ h

0
fi
(|x′i(s)|)ds

]
dt ,

which is the inequality (7). �

REMARK 1. For a special class of a submultiplicative convex functions fi on
[0,∞) with fi(0) = 0 (i = 1, . . . ,n) , Theorem 4 also holds. Namely, submultiplica-
tivity of a function implies its positivity, and if fi is a convex, nonnegative function on
[0,∞) with fi(0) = 0, then fi is obviously an increasing function.

COROLLARY 1. Let n ∈ N and let fi be increasing, submultiplicative convex
functions on [0,∞) , i = 1, . . . ,n. Let p be a nonnegative and integrable function on
[0,h] . Further, let xi ∈ AC[0,h] be such that xi(0) = xi(h) = 0 for i = 1, . . . ,n. Then
the following inequality holds∫ h

0
p(t)

n

∏
i=1

fi (|xi(t)|)dt

� 1
2n

(∫ h

0
p(t)

n

∏
i=1

(
fi(t) fi(h− t)

t (h− t)

) 1
2

dt

)
n

∏
i=1

∫ h

0
fi
(|x′i(t)|)dt . (12)
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Proof. The inequality (12) follows by the harmonic-geometric inequality

2

(
t

fi(t)
+

h− t
fi(h− t)

)−1

�
(

fi(t) fi(h− t)
t (h− t)

) 1
2

. �

For n = 1 we have two following results.

COROLLARY 2. Let f be an increasing, submultiplicative convex function on
[0,∞) and let p be a nonnegative and integrable function on [0,h] . Further, let x ∈
AC[0,h] be such that x(0) = x(h) = 0 . Then the following inequality holds

∫ h

0
p(t) f (|x(t)|)dt �

(∫ h

0
p(t)

(
t

f (t)
+

h− t
f (h− t)

)−1

dt

)∫ h

0
f
(|x′(t)|)dt . (13)

COROLLARY 3. Let f be an increasing, submultiplicative convex function on
[0,∞) and let p be a nonnegative and integrable function on [0,h] . Further, let x ∈
AC[0,h] be such that x(0) = x(h) = 0 . Then the following inequality holds

∫ h

0
p(t) f (|x(t)|)dt � 1

2

(∫ h

0
p(t)

(
f (t) f (h− t)

t (h− t)

) 1
2

dt

)∫ h

0
f
(|x′(t)|)dt . (14)

Next result was proven by Brnetić and Pečarić in [7]. Here it is merely a conse-
quence, a special case of Corollary 2 (as we can see from its proof). By the harmonic-
geometric inequality, it is clear that (15) improves (2).

COROLLARY 4. Let λ � 1 be a given real number and let p be a nonnegative and
continuous function on [0,h] . Further, let x ∈ AC[0,h] be such that x(0) = x(h) = 0 .
Then the following inequality holds

∫ h

0
p(t)|x(t)|λ dt �

(∫ h

0

(
t1−λ +(h− t)1−λ)−1

p(t)dt

)∫ h

0
|x′(t)|λ dt . (15)

Proof. The inequality (15) will follow if we use the function f (t) = tλ and apply
Corollary 2. �

3. Multidimensional integral inequalities

Let Ω be a bounded domain in R
m defined by Ω = ∏m

j=1[a j,b j] .
Let x = (x1, . . . ,xm) be a general point in Ω and dx = dx1 . . .dxm . For any con-
tinuous real-valued function u defined on Ω we denote

∫
Ω u(x)dx the m-fold inte-

gral
∫ b1
a1

· · ·∫ bm
am

u(x1, . . . ,xm)dx1 . . .dxm . Let Dku(x1, . . . ,xm) = ∂
∂xk

u(x1, . . . ,xm) and

Dku(x1, . . . ,xm) = D1 · · ·Dku(x1, . . . ,xm) , 1 � k � m .
We denote by G(Ω) the class of continuous functions u : Ω → R for which

Dmu(x) exists with u(x)|x j=a j = u(x)|x j=b j = 0, 1 � j � m .
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Further, let u(x;s j) = u(x1, . . . ,x j−1,s j,x j+1, . . . ,xm) , and

‖gradu(x)‖μ =

(
m

∑
j=1

∣∣∣∣ ∂
∂x j

u(x)
∣∣∣∣
μ
) 1

μ

.

Also let α = (α1, . . . ,αm) and αλ = (αλ
1 , . . . ,αλ

m) , λ ∈ R . In particular, (b− a) =
(b1−a1, . . . ,bm−am) and (b−a)λ = ((b1−a1)λ , . . . ,(bm−am)λ ) . For the geometric
and the harmonic means of α1, . . . ,αm we will use Gm(α) and Hm(α) , respectively.
Let M[k](α) denote the mean of order k of α1, . . . ,αm .

We start with a weighted extension of Theorem 2 involving submultiplicative con-
vex function. Again, in a special case (Corollary 6) this theorem will improve result
from Theorem 2.

THEOREM 5. Let f be an increasing, submultiplicative convex function on [0,∞) .
Let p be a nonnegative and integrable function on Ω and u ∈ G(Ω) . Then the follow-
ing inequality holds

∫
Ω

p(x) f (|u(x)|)dx � 1
m

Hm(α)
∫

Ω

(
m

∑
i=1

f

(∣∣∣∣ ∂
∂xi

u(x)
∣∣∣∣
))

dx, (16)

where α = (α1, . . . ,αm) and

αi =
∫ bi

ai

(
xi −ai

f (xi −ai)
+

bi− xi

f (bi − xi)

)−1

p(x)dxi , i = 1, . . . ,m .

Proof. For each fixed i , i = 1, . . . ,m , we have

u(x) =
∫ xi

ai

∂
∂ si

u(x;si)dsi

and

u(x) = −
∫ bi

xi

∂
∂ si

u(x;si)dsi .

First we use Jensen’s inequality (since f is an increasing convex function) and then
submultiplicativity of f , to obtain

f (|u(x)|) � f

(
1

xi−ai

∫ xi

ai

(xi −ai)
∣∣∣∣ ∂
∂ si

u(x;si)
∣∣∣∣dsi

)

� 1
xi−ai

∫ xi

ai

f

(
(xi −ai)

∣∣∣∣ ∂
∂ si

u(x;si)
∣∣∣∣
)

dsi

� 1
xi−ai

∫ xi

ai

f (xi −ai) f

(∣∣∣∣ ∂
∂ si

u(x;si)
∣∣∣∣
)

dsi

=
f (xi −ai)
xi−ai

∫ xi

ai

f

(∣∣∣∣ ∂
∂ si

u(x;si)
∣∣∣∣
)

dsi (17)
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and analogously

f (|u(x)|) � f (bi − xi)
bi− xi

∫ bi

xi

f

(∣∣∣∣ ∂
∂ si

u(x;si)
∣∣∣∣
)

dsi , (18)

for i = 1, . . . ,m . Multiplying (17) by xi−ai
f (xi−ai)

and (18) by bi−xi
f (bi−xi)

and adding these
inequalities, we find(

xi −ai

f (xi −ai)
+

bi − xi

f (bi − xi)

)
f (|u(x)|) �

∫ bi

ai

f

(∣∣∣∣ ∂
∂ si

u(x;si)
∣∣∣∣
)

dsi ,

i.e.

f (|u(x)|) �
(

xi −ai

f (xi −ai)
+

bi− xi

f (bi − xi)

)−1∫ bi

ai

f

(∣∣∣∣ ∂
∂ si

u(x;si)
∣∣∣∣
)

dsi , (19)

for i = 1, . . . ,m . Now multiplying (19) by p and integrating on Ω we obtain

∫
Ω

p(x) f (|u(x)|)dx �
∫ bi

ai

(
xi −ai

f (xi −ai)
+

bi− xi

f (bi − xi)

)−1

p(x)dxi

×
∫

Ω
f

(∣∣∣∣ ∂
∂xi

u(x)
∣∣∣∣
)

dx , (20)

i.e. (∫ bi

ai

(
xi −ai

f (xi −ai)
+

bi− xi

f (bi − xi)

)−1

p(x)dxi

)−1∫
Ω

p(x) f (|u(x)|)dx

�
∫

Ω
f

(∣∣∣∣ ∂
∂xi

u(x)
∣∣∣∣
)

dx , (21)

for i = 1, . . . ,m . Notice that

α−1
i =

(∫ bi

ai

(
xi−ai

f (xi −ai)
+

bi− xi

f (bi − xi)

)−1

p(x)dxi

)−1

, i = 1, . . . ,m .

Now, by summing these m inequalities (21), we find

m

∑
i=1

α−1
i

∫
Ω

p(x) f (|u(x)|)dx �
m

∑
i=1

∫
Ω

f

(∣∣∣∣ ∂
∂xi

u(x)
∣∣∣∣
)

dx ,

which is the same as the inequality (16). �

COROLLARY 5. Let f be an increasing, submultiplicative convex function on
[0,∞) . Let p be a nonnegative and integrable function on Ω and let u ∈ G(Ω) . Then
the following inequality holds

∫
Ω

p(x) f (|u(x)|)dx � 1
2m

Hm(β )
∫

Ω

(
m

∑
i=1

f

(∣∣∣∣ ∂
∂xi

u(x)
∣∣∣∣
))

dx , (22)
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where β = (β1, . . . ,βm) and

βi =
∫ bi

ai

(
f (xi −ai) f (bi − xi)
(xi −ai)(bi − xi)

) 1
2

p(x)dxi , i = 1, . . . ,m .

Proof. By harmonic-geometric inequality we have

2

(
xi−ai

f (xi −ai)
+

bi − xi

f (bi − xi)

)−1

�
(

f (xi −ai) f (bi − xi)
(xi −ai)(bi − xi)

) 1
2

.

Applying this and using Hm( 1
2 γ) = 1

2Hm(γ) , the inequality (22) follows. �
Next result was proven by Agarwal, Brnetić and Pečarić in [4]. Here we use Theo-

rem 5 applied on a constant function p and the function f (t) = tλ to prove the inequal-
ity (23). By the harmonic-geometric inequality, it follows that Corollary 6 improves
Theorem 2.

COROLLARY 6. Let λ ,μ � 1 and let u ∈ G(Ω) . Then the following inequality
holds ∫

Ω
|u(x)|λ dx � K1(λ ,μ)

∫
Ω
‖gradu(x)‖λ

μ dx , (23)

where

K1(λ ,μ) =
1
m

I(λ )C
(

λ
μ

)
Hm

(
(b−a)λ

)
, (24)

I(λ ) =
∫ 1

0

(
t1−λ +(1− t)1−λ

)−1
dt (25)

and C is defined by (5).

Proof. We follow steps from the proof of Theorem 5, using the function f (t) = tλ ,
up to the inequality (20), which is now equal to

∫
Ω
|u(x)|λ dx �

∫ bi

ai

(
(xi −ai)1−λ +(bi− xi)1−λ

)−1
dxi

∫
Ω

∣∣∣∣ ∂
∂xi

u(x)
∣∣∣∣
λ

dx (26)

for i = 1, . . . ,m . However, since

∫ bi

ai

(
(xi −ai)1−λ +(bi− xi)1−λ

)−1
dxi = (bi−ai)λ

∫ 1

0

(
t1−λ +(1− t)1−λ

)−1
dt

= (bi−ai)λ I(λ ) ,

the inequality (26) can be written as

∫
Ω
|u(x)|λ dx � (bi −ai)λ I(λ )

∫
Ω

∣∣∣∣ ∂
∂xi

u(x)
∣∣∣∣
λ

dx . (27)
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Multiplying both sides of the inequality (27) by (bi − ai)−λ , i = 1, . . . ,m , and then
summing these inequalities, we obtain

m

∑
i=1

(bi −ai)−λ
∫

Ω
|u(x)|λ dx � I(λ )

∫
Ω

(
m

∑
i=1

∣∣∣∣ ∂
∂xi

u(x)
∣∣∣∣
λ
)

dx ,

i.e. ∫
Ω
|u(x)|λ dx � 1

m
I(λ )Hm

(
(b−a)λ

)∫
Ω

(
m

∑
i=1

∣∣∣∣ ∂
∂xi

u(x)
∣∣∣∣
λ
)

dx . (28)

Our result now follows from (28) and the elementary inequality

m

∑
i=1

aα
i � C(α)

(
m

∑
i=1

ai

)α

, ai � 0 . (29)

�

4. Multidimensional discrete inequalities

Let x,X ∈ N
m
0 be such that x � X , i.e., xi � Xi , i = 1, . . . ,m . Let Ω = [0,X ] ,

where [0,X ] ⊂ N
m
0 . We denote by G(Ω) the class of functions u : Ω → R , which

satisfies conditions u(x)|xi=0 = u(x)|xi=Xi = 0, i = 1, . . . ,m . For u we define forward
difference operators Δi , i = 1, . . . ,m , as

Δi u(x) = u(x1, . . . ,xi−1,xi +1,xi+1, . . . ,xm)−u(x) .

As in a previous section, let u(x;si) stand for u(x1, . . . ,xi−1,si,xi+1, . . . ,xm) , α =
(α1, . . . ,αm) and let Hm(α) denote the harmonic mean of α1, . . . ,αm . Also, let
X−1
∑

x=1
denote

m
∑
j=1

Xj−1

∑
x j=1

.

First we present a weighted extension of Theorem 3 involving submultiplicative
convex functions.

THEOREM 6. Let n∈N and let f j be submultiplicative convex functions on [0,∞)
with f j(0) = 0 , j = 1, . . . ,n. Let p be a nonnegative function on Ω and let u j ∈ G(Ω)
for j = 1, . . . ,n. Then the following inequality holds

X−1

∑
x=1

p(x)
n

∏
j=1

f j
(∣∣u j(x)

∣∣)� 1
m

Hm (α)
m

∑
i=1

n

∏
j=1

X−1

∑
x=0

f j (|Δi u j(x)|) , (30)

where α = (α1, . . . ,αm) and

αi =
Xi−1

∑
xi=1

p(x)
n

∏
j=1

(
xi

f j(xi)
+

Xi− xi

f j(Xi − xi)

)−1

, i = 1, . . . ,m . (31)
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Proof. For each fixed i (i = 1, . . . ,m) and each fixed j ( j = 1, . . . ,n) we have

u j(x) =
xi−1

∑
si=0

Δi u j(x;si) , u j(x) = −
Xi−1

∑
si=xi

Δi u j(x;si) .

From the discrete case of Jensen’s inequality (since f j is an increasing convex function)
and the submultiplicativity of f j , we have

f j(|u j(x)|) � f j

(
1
xi

xi−1

∑
si=0

xi
∣∣Δi u j(x;si)

∣∣)

� 1
xi

xi−1

∑
si=0

f j
(
xi
∣∣Δi u j(x;si)

∣∣)

� 1
xi

xi−1

∑
si=0

f j(xi) f j
(∣∣Δi u j(x;si)

∣∣)

=
f j(xi)

xi

xi−1

∑
si=0

f j
(∣∣Δi u j(x;si)

∣∣) (32)

and analogously

f j(|u j(x)|) � f j(Xi − xi)
Xi − xi

Xi−1

∑
si=xi

f j
(∣∣Δi u j(x;si)

∣∣) (33)

for i = 1, . . . ,m . We multiply (32) by xi
f j(xi)

and (33) by Xi−xi
f j(Xi−xi)

. Then we add these

resulting inequalities, to obtain(
xi

f j(xi)
+

Xi− xi

f j(Xi− xi)

)
f j(|u j(x)|) �

Xi−1

∑
si=0

f j
(∣∣Δi u j(x;si)

∣∣) ,
i.e.

f j(|u j(x)|) �
(

xi

f j(xi)
+

Xi− xi

f j(Xi − xi)

)−1 Xi−1

∑
si=0

f j
(∣∣Δi u j(x;si)

∣∣) (34)

for i = 1, . . . ,m . This gives us

n

∏
j=1

f j(|u j(x)|) �
n

∏
j=1

[(
xi

f j(xi)
+

Xi− xi

f j(Xi − xi)

)−1 Xi−1

∑
si=0

f j
(∣∣Δi u j(x;si)

∣∣)] (35)

for i = 1, . . . ,m . Now multiplying (35) by p we get

p(x)
n

∏
j=1

f j(|u j(x)|)

� p(x)

[
n

∏
j=1

(
xi

f j(xi)
+

Xi− xi

f j(Xi − xi)

)−1
][

n

∏
j=1

Xi−1

∑
si=0

f j
(∣∣Δi u j(x;si)

∣∣)]
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for i = 1, . . . ,m . Summing from x = 1 to x = X −1, we get

X−1

∑
x=1

p(x)
n

∏
j=1

f j(|u j(x)|)

�
(

Xi−1

∑
xi=1

p(x)
n

∏
j=1

(
xi

f j(xi)
+

Xi − xi

f j(Xi− xi)

)−1
)

n

∏
j=1

X−1

∑
x=0

f j
(∣∣Δi u j(x)

∣∣) (36)

for i = 1, . . . ,m . Multiplying both sides of the inequality (36) by α−1
i and then adding

these m inequalities , we obtain

m

∑
i=1

α−1
i

X−1

∑
x=1

p(x)
n

∏
j=1

f j
(∣∣u j(x)

∣∣) �
m

∑
i=1

n

∏
j=1

X−1

∑
x=0

f j
(∣∣Δi u j(x)

∣∣) ,
which is the same as the inequality (30). �

COROLLARY 7. Let n ∈ N and let f j be submultiplicative convex functions on
[0,∞) with f j(0) = 0 , j = 1, . . . ,n. Let p be a nonnegative function on Ω and let
u j ∈ G(Ω) for j = 1, . . . ,n. Then the following inequality holds

X−1

∑
x=1

p(x)
n

∏
j=1

f j
(∣∣u j(x)

∣∣)� 1
2nm

Hm (β )
m

∑
i=1

n

∏
j=1

X−1

∑
x=0

f j (|Δi u j(x)|) , (37)

where β = (β1, . . . ,βm) and

βi =
Xi−1

∑
xi=1

p(x)
n

∏
j=1

(
f j(xi) f j(Xi − xi)

xi (Xi − xi)

) 1
2

, i = 1, . . . ,m . (38)

Proof. By harmonic-geometric inequality we have

2

(
xi

f j(xi)
+

Xi − xi

f j(Xi − xi)

)−1

�
(

f j(xi) f j(Xi− xi)
xi (Xi− xi)

) 1
2

.

Applying this and using Hm( 1
2n β ) = 1

2n Hm(β ) , the inequality (37) follows. �

Next are special results for n = 1.

COROLLARY 8. Let f be a submultiplicative convex function on [0,∞) with f (0)=
0 . Let p be a nonnegative function on Ω and u ∈ G(Ω) . Then the following inequality
holds

X−1

∑
x=1

p(x) f (|u(x)|) � 1
m

Hm (α)
X−1

∑
x=0

m

∑
i=1

f (|Δi u(x)|) , (39)

where α = (α1, . . . ,αm) is defined by (31).
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COROLLARY 9. Let f be a submultiplicative convex function on [0,∞) with f (0)=
0 . Let p be a nonnegative function on Ω and u ∈ G(Ω) . Then the following inequality
holds

X−1

∑
x=1

p(x) f (|u(x)|) � 1
2m

Hm (β )
X−1

∑
x=0

m

∑
i=1

f (|Δi u(x)|) , (40)

where β = (β1, . . . ,βm) is defined by (38).

An improvement of Theorem 3 is the following result, given also Agarwal, Brnetić
and Pečarić in [5]. Here we use Corollary 8 applied on a constant function p and the
function f (t) = tλ to prove the inequality (41). Thus again, by the harmonic-geometric
inequality, it follows that Corollary 10 for μ = 2 improves Theorem 3.

COROLLARY 10. Let λ ,μ � 1 and let u ∈ G(Ω) . Then the following inequality
holds

X−1

∑
x=1

|u(x)|λ � K1(λ ,μ)
X−1

∑
x=0

(
m

∑
i=1

|Δi u(x)|μ
) λ

μ

, (41)

where

K1(λ ,μ) =
1
m

C

(
λ
μ

)
Hm (h(x,X ,λ )) , (42)

h(x,X ,λ ) = (h1(x,X ,λ ), . . . ,hm(x,X ,λ )) , (43)

hi(x,X ,λ ) =
Xi−1

∑
xi=1

(
x1−λ
i +(Xi− xi)1−λ

)−1
, i = 1, . . . ,m

and C is defined by (5).

Proof. From Corollary 8 using the function f (t) = tλ (and a constant function p )
we have

X−1

∑
x=1

|u(x)|λ � 1
m

Hm (h(x,X ,λ ))
X−1

∑
x=0

m

∑
i=1

|Δi u(x)|λ . (44)

The inequality (41) now follows from (44) and the elementary inequality (29). �
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