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APPLICATIONS OF THE HERMITE–HADAMARD INEQUALITY

MONIKA NOWICKA AND ALFRED WITKOWSKI

(Communicated by K. Nikodem)

Abstract. We show how the recent improvement of the Hermite-Hadamard inequality can be
applied to some (not necessarily convex) planar figures and three-dimensional bodies satisfying
some kind of regularity.

1. Introduction

The classical Hermite-Hadamard inequality [4] states that for a convex function
f : [a,b] → R

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � f (a)+ f (b)

2
. (1)

Due to its simple and elegant form it became a natural object of investigations. Neuman
and Bessenyei [6, 1] proved the version for simplices saying that if Δ ⊂Rn is a simplex
with barycenter b and vertices x0, . . . ,xn and f : Δ → R is convex, then

f (b) � 1
Vol(Δ)

∫
Δ

f (x)dx � f (x0)+ . . .+ f (xn)
n+1

. (2)

The following generalizations for convex function on disk and ball can be found in [3]:
If D(O,R) ⊂ R2 is a disk and f : D → R is convex and continuous, then

f (O) � 1
πR2

∫∫

D(O,R)

f (x,y)dxdy � 1
2πR

∫

∂D(O,R)

f (x,y)ds

and If B(O,R) ⊂ R3 is a ball and f : B → R is convex and continuous, then

f (O) � 3
4πR3

∫∫∫

B(O,R)

f (x,y,z)dxdydz � 1
4πR2

∫∫

∂B(O,R)

f (x,y,z)dS.

The stronger version of the right-hand side of (1) ([9, page 140])

1
b−a

∫ b

a
f (t)dt � 1

2

(
f

(
a+b

2

)
+

f (a)+ f (b)
2

)

Mathematics subject classification (2010): 26D15, 26B15.
Keywords and phrases: Hermite-Hadamard inequality, convex function, polygon, polyhedron, annu-

lus.

c© � � , Zagreb
Paper MIA-19-97

1319

http://dx.doi.org/10.7153/mia-19-97


1320 M. NOWICKA AND A. WITKOWSKI

also received generalizations for simplices [10], disks, 3-balls and regular n -gons P
[2]:

1
Vol(Δ)

∫
Δ

f (x)dx � 1
n+1

f (b)+
n

n+1
f (x0)+ . . .+ f (xn)

n+1
, (3)

1
πR2

∫∫

D(O,R)

f (x,y)dxdy � 1
3

f (O)+
2
3
· 1
2πR

∫

∂D(O,R)

f (x,y)ds,

3
4πR3

∫∫∫

B(O,R)

f (x,y,z)dxdydz � 1
4

f (O)+
3
4
· 1
4πR2

∫∫

∂B(O,R)

f (x,y,z)dS,

1
Area(P)

∫∫
P

f (x,y)dxdy � 1
3

f (O)+
2

3Perim(P)

∫
∂P

f (x,y)ds.

In this paper we use the lower and upper estimates for the average of a convex
function over a simplex obtained by the authors in [7, 8]. We provide the alternate
proof of the above results and then generalize them to figures and bodies satisfying
some regularity conditions and to a broader class of functions.

2. Definitions and lemmas

Suppose x0, . . . ,xn ∈ Rn are the vertices of a simplex Δ ⊂ Rn .
For a nonempty set K ⊂{0, . . . ,n} we denote by ΔK the simplex conv{xi : i∈K} .
For every set K � {0, . . . ,n} we denote by Δ[K] the simplex with vertices

x[K]
j =

1
n+1 ∑

i∈K
xi +

n+1− k
n+1

x j, j ∈ {0, . . . ,n} \K.

We shall denote by hλ
a the homothety with center a and scale λ , i.e. the mapping

defined by the formula
hλ

a (x) = a+ λ (x−a).

By ∂B we shall denote the boundary of the set B .

REMARK 2.1. In the plane the simplices Δ[K] are: the triangle (if K = /0), in-
tersection of the triangle and a line parallel to one of its sides and passing through its
barycenter (if K has one element) and the barycenter itself if K has two elements.

In case of three dimensions we have respectively: the tetrahedron, triangles paral-
lel to its faces, segments parallel to its edges; all of them having the same barycenter.

Note that the simplices Δ[K] can be obtained by applying homotheties to the faces
of Δ . The details are explained in [7].

If U ⊂ Rk and f : U → R is a Riemann integrable function, then by

Avg( f ,U) =
1

Vol(U)

∫
U

f (x)dx
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we shall denote its average value over U . For simplicity of notation if A,B, . . . ,Z are
points and U = conv{A,B, . . . ,Z} we shall write Avg( f ,AB . . .Z) .

The following results provide the main tools for our investigations:

THEOREM 2.1. ([8]) Suppose f : Δ→R is a convex function and K,L⊂{0, . . . ,n}
are disjoint, nonempty sets. Then

Avg( f ,ΔK∪L) � cardK
cardK ∪L

·Avg( f ,ΔK)+
cardL

cardK ∪L
·Avg( f ,ΔL).

THEOREM 2.2. ([7]) If K ⊂ L are proper subsets of {0, . . . ,n} and f : Δ → R is
a convex function, then

f (b) � Avg( f ,Δ[L]) � Avg( f ,Δ[K]) � Avg( f ,Δ).

The above theorems were proven by Chen [2] in case Δ is a triangle.
In the sequel we shall apply both theorems to some planar and 3-dimensional

bodies.

3. Quadrilateral

Bessenyei in [1] proved that if ABCD is a parallelogram and f is a convex func-
tion, then Avg( f ,ABCD) � 1

4( f (A)+ f (B)+ f (C)+ f (D)) .
We will try to generalize and improve this result.
Consider a quadrilateral ABCD such that the segment AC divides its area evenly

(see Figure 1a).

A

B

C

D

a)

A

B

C

D

O

b)

A

B

C

D

P

Q

Rc)

Figure 1: Quadrilateral with equal halves

We can apply Theorem 2.1 to both triangles ABC and ADC to obtain

Avg( f ,ABC) � 1
3

f (B)+
2
3

Avg( f ,AC), (4)

Avg( f ,ACD) � 1
3

f (D)+
2
3

Avg( f ,AC), (5)
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which yields

Avg( f ,ABCD) � 1
3

(
f (B)+ f (D)

2
+2Avg( f ,AC)

)
(6)

� 1
3

(
f (B)+ f (D)

2
+ f (A)+ f (C)

)
.

By adding a midpoint O of the segment AC we can get another upper bound (see
Figure 1b):

Avg( f ,AOB) � 1
3

f (O)+
2
3

Avg( f ,AB)

Avg( f ,BOC) � 1
3

f (O)+
2
3

Avg( f ,BC)

Avg( f ,COD) � 1
3

f (O)+
2
3

Avg( f ,CD)

Avg( f ,DOA) � 1
3

f (O)+
2
3

Avg( f ,DA)

and since the four triangles have the same area this produces

Avg( f ,ABCD)� f (O)
3

+
2
3

Avg( f ,AB)+Avg( f ,BC)+Avg( f ,CD)+Avg( f ,DA)
4

(7)

� f (O)
3

+
2
3

f (A)+ f (B)+ f (C)+ f (D)
4

. (8)

Thus we have proven the following

THEOREM 3.1. Let ABCD be a quadrilateral such that the segment AC divides
it into two triangles of equal area and O be the midpoint of AC. If f : ABCD → R is
such that its restrictions to triangles ABC and ACD are convex, then the inequalities
(6), (7) and (8) hold.

To obtain the lower bound we apply Theorem 2.2 to both triangles ABC and
ADC . By Remark 2.1 we have four reasonable choices for each triangle, so we can
produce 16 inequalities. An example is shown on the Figure 1c: the segments PQ =
h2/3
C (DA) and QR = h2/3

C (AB) pass through the barycenters of both triangles and there-
fore Avg( f ,PQ) � Avg( f ,ACD) and Avg( f ,QR) � Avg( f ,ABC) , which leads to

Avg( f ,PQ)+Avg( f ,QR)
2

� Avg( f ,ABCD).

The reader will easily find two other pairs of segments for which Theorem 2.2 can be
applied.

A parallelogram offers more opportunities: firstly, we obtain inequalities (4) and
(5) with BD and AC swapped thus obtaining an improvement of Bessenyei’s result
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THEOREM 3.2. Let ABCD be a parallelogram with center O and f : ABCD→ R

be such that its restrictions to triangles AOB, BOC, COD and DOA are convex, then
the inequalities (7) and (8) hold and additionally

Avg( f ,ABCD) � 1
3

min
{

f (B)+ f (D)
2 +2Avg( f ,AC), f (A)+ f (C)

2 +2Avg( f ,BD)
}

� 1
3

min
{

f (B)+ f (D)
2 + f (A)+ f (C), f (A)+ f (C)

2 + f (B)+ f (C)
}

� f (A)+ f (B)+ f (C)+ f (D)
4 .

The fact that the parallelogram can be divided into four triangles of equal area
opens new opportunities. For example we can apply Theorem 2.1 to AOB (and then
cyclically to others) as follows:

Avg( f ,AOB) � 1
3

f (A)+
2
3

Avg( f ,OB).

Summing and taking into account that the point O halves both diagonals we get

THEOREM 3.3. Under the assumption of Theorem 3.2

Avg( f ,ABCD) � 1
3

f (A)+ f (B)+ f (C)+ f (D)
4

+
2
3

Avg( f ,AC)+Avg( f ,BD)
2

.

The reader will find more estimates applicable to parallelograms and rhombus in
Section 4 devoted to polygons.

As above using Theorem 2.2 we can produce 64 different lower bounds. Figure 2
illustrates two, probably the most spectacular, inequalities:

THEOREM 3.4. Under the assumption of Theorem 3.2 let A′B′C′D′ = h2/3
O (ABCD) ,

KL = h2/3
D (AO) , LM = h2/3

D (OC) , PQ = h2/3
B (AO) , QR = h2/3

B (OC) . Then the follow-
ing inequalities hold (see Figure 2)

Avg( f ,KL)+Avg( f ,LM)+Avg( f ,PQ)+Avg( f ,QR)
4

� Avg( f ,ABCD),

A B

CD

K

L

M

R

Q

P
a)

O

A B

CD

A′
B′

C′D′

b)

O

Figure 2: Lower bounds for parallelogram
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Avg( f ,A′B′)+Avg( f ,B′C′)+Avg( f ,C′D′)+Avg( f ,D′A′)
4

� Avg( f ,ABCD).

REMARK 3.1. If f is convex on the parallelogram, then obviously f is convex
on all four triangles. The converse does not hold. In both cases one can easily conclude
the inequality

1
4

4

∑
k=1

f (Ok) � Avg( f ,ABCD),

where Ok ’s are the barycenters of the triangles. This inequality in case of convex f
yields f (O) � Avg( f ,ABCD) . In the case of convexity on triangles only this may not
be true (consider the quadrilateral {(x,y) : |x|+ |y|= 1} and f (x,y) = −|y|).

4. Fans and n -gons

We shall call nice a star-shaped polygon P with vertices A0, . . . ,An−1 satisfying
the following condition: there exists a point O called center in the kernel of P such
that all triangles OAkAk+1 , k = 0, . . . ,n− 1 are of the same area. If additionally all
segments AkAk+1 are of the same length, then we shall call it very nice.

Regular n -gons are very nice, but the class of nice and very nice polygons is much
broader.

THEOREM 4.1. If P is a nice polygon and f : P → R is convex on every triangle
formed by its center O and two consecutive vertices, then

Avg( f ,P) � 1
3

f (O)+
2
3
· 1
n

n−1

∑
k=0

Avg( f ,AkAk+1), (9)

Avg( f ,P) � 1
3
· 1
n

n−1

∑
k=0

f (Ak)+
2
3
· 1
n

n−1

∑
k=0

Avg( f ,OAk), (10)

Avg( f ,P) � 1
3

f (O)+
2
3
· 1
n

n−1

∑
k=0

f (Ak). (11)

If additionally A′
k = h2/3

O (Ak) for k = 0, . . . ,n−1 , then

1
n

n−1

∑
k=0

Avg( f ,A′
kA

′
k+1) � Avg( f ,P) (12)

(see Figure 3).

Proof. To obtain (9) apply Theorem 2.1 to vertex O and side AkAk+1 , then add up
the inequalities. Similarly, for (10) use vertex Ak and side OAk+1 . The inequality (11)
can be obtained from (9) or (10) by applying standard Hermite-Hadamard inequalities.

Finally (12) is consequence of Theorem 2.2. �
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REMARK 4.1. Every triangle is a nice polygon with its barycenter as O .

REMARK 4.2. In case of a very nice polygon, the inequalities (9) and (12) can be
written as

Avg( f ,∂h2/3
O (P)) � Avg( f ,P) � 1

3
f (O)+

2
3

Avg( f ,∂P).

Suppose n is even. Then we can group the triangles in pairs to get

Avg( f ,OAkAk+1) � 1
3

f (Ak+1)+
2
3

Avg( f ,OAk)

Avg( f ,OAk−1Ak) � 1
3

f (Ak−1)+
2
3

Avg( f ,OAk).

This shows that the following result holds true.

THEOREM 4.2. Under assumptions of Theorem 4.1 if the number of vertices of P
is even, then

Avg( f ,P) � 1
3

1
n/2 ∑

k odd

f (Ak)+
2
3

1
n/2 ∑

k even

Avg( f ,OAk),

Avg( f ,P) � 1
3

1
n/2 ∑

k even

f (Ak)+
2
3

1
n/2 ∑

k odd

Avg( f ,OAk),

(see Figure 3).

Theorem 4.1 (9) Theorem 4.1 (10) Theorem 4.1 (12) Theorem 4.2

Figure 3: Hermite-Hadamard inequalities for n-gon

REMARK 4.3. Note that every nice n -gon can be considered a nice 2n -gon by
adding the midpoints of its sides to the set of vertices (see Figure 3).

Remark 3.1 remains valid also in this case.

A fan is a polygon with vertices O,A1, . . . ,An such that all triangles OAkAk+1 ,
k = 1, . . . ,n− 1 are of the same orientation and ∑n−1

k=1 ∠AkOAk+1 < 2π . For nice fans
we obtain similar results as for nice n -gons. We encourage the reader to formulate an
equivalent of Theorems 4.1 and 4.2.
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5. Annulus

In [2] the following version of Hermite-Hadamard inequality can be found

THEOREM 5.1. ([2], Th. 2.2) Let U be a convex subset of a plane, and D⊂U be
an annulus with radii r < R and C(s) denotes a co-centric circle with radius s, then
for a convex function f : U → R hold

Avg
(

f ,C
(

2(r2+rR+R2)
3(r+R)

))
� Avg( f ,D)

and

Avg( f ,D) � 2r+R
3(r+R)

Avg( f ,C(r))+
r+2R

3(r+R)
Avg( f ,C(R)).

We shall improve this result. For n > 4 let An
k , k = 0, . . . ,n− 1 be the vertices

of a regular n -gon inscribed in C(R) and Bn
k , k = 0, . . . ,n− 1 be the vertices of a

regular n -gon inscribed in C(r) and rotated anticlockwise by π
n . The two polygons

bound the area Dn , and divide it into 2n isosceles triangles K n
k = An

kA
n
k+1B

n
k and

L n
k = Bn

kB
n
k+1A

n
k+1 . We have

AreaK n
k = Rsin

π
n

(
Rcos

π
n
− r

)
, AreaL n

k = r sin
π
n

(
R− rcos

π
n

)
, (13)

AreaDn =
n−1

∑
k=0

(AreaK n
k +AreaL n

k ) = nsin
π
n

cos
π
n

(R2− r2). (14)

Denote by Kn
k ,Ln

k the barycenters of K n
k and L n

k . Applying the Hermite-Hadamard
inequality, equations (13) and (14) we obtain

Avg( f ,Dn) =
1

AreaDn

n−1

∑
k=0

(∫
K n

k

f (x)dx+
∫
L n

k

f (x)dx
)

=
n−1

∑
k=0

(
AreaK n

k

AreaDn
Avg( f ,K n

k )+
AreaL n

k

AreaDn
Avg( f ,L n

k )
)

�
R

(
Rcos π

n − r
)

cos π
n (R2− r2)

1
n

n−1

∑
k=0

f (Kn
k )+

r
(
R− rcos π

n

)
cos π

n (R2− r2)
1
n

n−1

∑
k=0

f (Ln
k). (15)

As n tends to infinity the two regular polygons with vertices Kn
k and Ln

k respectively
approach the circles of radii 1

3 (2R+r) and 1
3 (R+2r) , and the arithmetic means in (15)

tend to averages of f over these circles, so we have proven the following fact.

THEOREM 5.2. Under the assumptions of Theorem 5.1 the inequality

R
r+R

Avg

(
f ,C

(
r+2R

3

))
+

r
r+R

Avg

(
f ,C

(
2r+R

3

))
� Avg( f ,D)

holds.
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Similar reasoning and the strengthened version of the Hermite-Hadamard inequal-
ity (3) applied to K n

k and L n
k produce a better right bound.

THEOREM 5.3. Under the assumptions of Theorem 5.1 the inequality

Avg( f ,D) � 1
3

[
R

r+R
Avg

(
f ,C

(
r+2R

3

))
+

r
r+R

Avg

(
f ,C

(
2r+R

3

))]

+
2
3

[
r+2R

3(r+R)
Avg( f ,C(R))+

2r+R
3(r+R)

Avg( f ,C(r))
]

holds.

REMARK 5.1. Suppose the function f is such there exist a point O ∈U and half-
lines starting from O such that f is convex in each sector bounded by them. Then,
if O is the center of D , the inequalities in (15) are valid for all triangles except these
intersecting with the sectors’ boundaries. Thus they can be neglected as n tends to
infinity, and the Theorems 5.2 and 5.3 remain valid for f .

6. Platonic bodies and related polytopes

Let B ⊂ R3 be a platonic body inscribed in a sphere with center O . Define the
following sets:

• S – set of segments joining O with vertices of B

• O – set of segments joining O with centers of faces

• E – set of edges of B

• D – set of segments joining centers of faces with their vertices.

THEOREM 6.1. Let f : B→R be a function such that its restriction to every pyra-
mid formed by a face as a base and O as its apex is convex. Then with the above
notation the following inequalities hold:

Avg( f ,B) � 1
4

f (O)+
3
4

Avg( f ,∂B), (16)

Avg( f ,B) � 1
2

Avg( f ,O)+
1
2

Avg( f ,E ), (17)

Avg( f ,B) � 1
2

Avg( f ,S )+
1
2

Avg( f ,D), (18)

and

Avg( f ,∂h3/4
O (B)) � Avg( f ,B). (19)
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Proof. Let F be a face of B with vertices A0, . . . ,An−1 and O′ be its circumcenter.
Split the pyramid FO into simplices OO′AkAk+1 . Applying Theorem 2.1 we obtain

Avg( f ,OO′AkAk+1) � 1
4

f (O)+
3
4

Avg( f ,O′AkAk+1).

Summing over k and F we obtain (16). The inequalities

Avg( f ,OO′AkAk+1) � 1
2

Avg( f ,OO′)+
1
2

Avg( f ,AkAk+1)

lead to (17), while

Avg( f ,OO′AkAk+1) � 1
2

Avg( f ,OAk)+
1
2

Avg( f ,O′Ak+1)

give (18). Finally Theorem 2.2 leads to the inequalities

Avg( f ,h3/4
O (O′AkAk+1)) � Avg( f ,OO′AkAk+1)

that finally yield (19). �
Based on a platonic body B we can build a new polytope B∗ in the following way:

on every face F of B we build or excavate a regular pyramid of the same height with
apex OF . If we denote by

• S – set of segments joining O with vertices of B ,

• O∗ – set of segments joining O with OF ’s,

• E – set of edges of B ,

• D∗ – set of segments joining OF ’s of the pyramids with vertices of F ,

then the same reasoning as above shows that the next theorem is valid.

THEOREM 6.2. Let f : B∗ → R be a function such that its restriction to every
tetrahedron formed by O, OF and two adjacent vertices of F . Then with the above
notation the following inequalities hold:

Avg( f ,B∗) � 1
4

f (O)+
3
4

Avg( f ,∂B∗),

Avg( f ,B∗) � 1
2

Avg( f ,O∗)+
1
2

Avg( f ,E ),

Avg( f ,B∗) � 1
2

Avg( f ,S )+
1
2

Avg( f ,D∗),

and

Avg( f ,∂h3/4
O (B∗)) � Avg( f ,B∗).
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7. Dipyramid and dicone

Let P be a regular, convex n -gon with vertices A0, . . . ,An−1 . Suppose X is a
point on the line l perpendicular to the plane containing P and passing through its
center. The set UX =

⋃n−1
k=0 XAkAk+1 will be called a Chinese umbrella with vertex X .

The umbrella’s scaffold will be denoted by SX =
⋃n−1

k=0 XAk .
By a dipyramid with vertices O0,O1 we mean the body D bounded by two Chi-

nese umbrellas UO0 and UO1 . The dipyramid may be convex or not, depending on the
position of its vertices with respect to the plane of the polygon.

The following result is a consequence of Theorems 2.1 and 2.2.

THEOREM 7.1. Let D be a dipyramid with vertices O0 and O1 , and let f : D →
R be a function that is convex on every simplex O0O1AkAk+1, k = 0, . . . ,n−1 . Then

Avg( f ,D) � 1
4 f (O0)+ 3

4 Avg( f ,UO1 ), (20)

Avg( f ,D) � 1
4 f (O1)+ 3

4 Avg( f ,UO0 ), (21)

Avg( f ,h3/4
O0

(UO1)) � Avg( f ,D), (22)

Avg( f ,h3/4
O1

(UO0)) � Avg( f ,D), (23)

Avg( f ,D) � 1
2 (Avg( f ,O0O1)+Avg( f ,∂P)) , (24)

Avg( f ,D) � 1
2

(
Avg( f ,SO0 )+Avg( f ,SO1 )

)
, (25)

(see Figure 4).

Proof. Grouping the vertices of the simplex O0O1AkAk+1 into {O0},{O1AkAk+1}
one gets the inequalities (20) and (22). Similar split {O1},{O0AkAk+1} gives (21) and
(23).

Inequalities (24) and (25) follow by grouping them into {O0O1} , {AkAk+1} and
{O0Ak} , {O1Ak+1} respectively. �

O0

O1

Theorem 7.1 (21)

O0

O1

Theorem 7.1 (23)

O0

O1

Theorem 7.1 (24)

O0

O1

Theorem 7.1 (25)

Figure 4: Hermite-Hadamard inequalities for dipyramid
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Denote by ηi , i = 0,1 the angle between the line l and the plane of a side of UOi

and for 0 < s < 1 let Os = (1− s)O0 + sO1 . The umbrella UOs splits the dipyramid
D into two dipyramids D0

s and D1
s with vertices O0,Os and O1,Os respectively. It is

clear, that
Vol(D0

s ) = sVol(D) and Vol(D1
s ) = (1− s)Vol(D). (26)

Note also that
Area(UO0)
Area(UO1)

=
sinη1

sinη0

which gives

Area(∂D) =
sinη0 + sinη1

sinη1
Area(UO0) =

sinη0 + sinη1

sinη0
Area(UO1). (27)

Now we are ready to generalize the results of Theorem 7.1.

THEOREM 7.2. Under the assumptions of Theorem 7.1 for all 0 < s < 1 the in-
equalities

Avg( f ,D) � 1
4 f (Os)+ 3

4

(
sAvg( f ,UO0 )+ (1− s)Avg( f ,UO1 )

)
, (28)

sAvg( f ,h3/4
Os

(UO0 ))+ (1− s)Avg( f ,h3/4
Os

(UO1 )) � Avg( f ,D), (29)

Avg( f ,∂h3/4
Os

(D)) � sinη1 Avg( f ,D0
s )

sinη0 + sinη1
+

sinη0 Avg( f ,D1
s )

sinη0 + sinη1
(30)

are valid.

Proof. To prove (28) we apply inequality (20) to D0
s and to D1

s and obtain

Avg( f ,D0
s ) � 1

4 f (Os)+ 3
4 Avg( f ,UO0 ),

Avg( f ,D1
s ) � 1

4 f (Os)+ 3
4 Avg( f ,UO1 ).

Now we multiply the first inequality by s , the second by 1−s and add up both inequal-
ities taking into account equalities (26).

The proof of (29) is similar but uses (22) and (23).
And finally from (22), (23) and (27) (which remains valid for homothetic images

also) it follows that

sinη0 + sinη1

sinη1−i

1

Area(∂h3/4
Os

(D))

∫
h3/4
Os

(UOi
)
f (x)dx � Avg( f ,D i

s), i = 0,1.

We complete the proof by dividing these inequalities by the first term and adding side

by side, because ∂h3/4
Os

(D) = h3/4
Os

(UO0)∪h3/4
Os

(UO1) . �
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COROLLARY 7.3. Let s∗ = sinη0
sinη0+sinη1

. The equations (27), (26) and Theorem
7.2 imply that

Avg( f ,D) � 1
4 f (Os∗)+ 3

4 Avg( f ,∂D),

Avg( f ,∂h3/4
Os∗ (D)) � Avg( f ,D).

With n growing to infinity our dipyramids approximate a dicone, where the n -gon
P gets replaced by a circle of radius R . All formulas (20)–(24), (28)–(30) remain valid,
while the formula (25) needs a modification.

Let us introduce a coordinate system in the most natural way (center O at the
center of P , z-axis along the line l and x -axis along OA0 ). Then we have

Avg( f ,SO0) =
1

n|O0A0|
n−1

∑
k=0

∫
O0Ak

f (x,y,z)dl

with x = rcosϕ , y = r sinϕ , z = (R− r)cotη0, 0 � r � R

=
1
nR

n−1

∑
k=0

∫ R

0
f
(
rcos 2πk

n ,r sin 2πk
n ,(R− r)cotη0

)
dr

→ 1
2πR

∫ R

0

∫ 2π

0
f (rcosϕ ,r sinϕ ,(R− r)cotη0) dϕ dr

=
1

2πR

∫∫

x2+y2�R2

f
(
x,y,(R−

√
x2 + y2)cotη0

) 1√
x2 + y2

dxdy

=
sinη0

2πR

∫∫
UO0

f (x,y,z)√
x2 + y2

dS.

Therefore the following result holds.

THEOREM 7.4. If f is a convex function defined on a dicone D , and g(x) =
f (x)

dist(x,l) (dist(x, l) denotes the distance from x to the line l ), then

Avg( f ,D) � R
4

(
Avg(g,UO0)+Avg(g,UO1)

)
.

8. Cube

A cube being a Platonic body enjoys all properties discussed in Section 6. In this
section we present a handful of other applications of Theorems 2.1 and 2.2.

THEOREM 8.1. Let C be a cube, and f : C → R be a function convex on every
pyramid formed by a face and the center O of the cube. Fix two opposite vertices of a
cube and let P be a set being the sum of six diagonals of faces meeting at these vertices.
Let Q be the set of three main diagonals joining the remaining six vertices. Then

Avg( f ,C ) � 1
2

Avg( f ,P)+
1
2

Avg( f ,Q).
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Proof. Let ABCD be the face containing diagonal AC in P . The pyramid ABCDO
is the sum of two simplices ABCO and ACDO . Splitting vertices of each of them into
groups {AC},{BO} and {AC},{DO} respectively one gets

Avg( f ,ABCO) � 1
2

(Avg( f ,AC)+Avg( f ,BO))

Avg( f ,ACDO) � 1
2

(Avg( f ,AC)+Avg( f ,DO))

which gives

2Avg( f ,ABCDO) � Avg( f ,AC)+
1
2
(Avg( f ,BO)+Avg( f ,DO)).

We complete the proof in usual way, applying the same process to all diagonals in
P . �

THEOREM 8.2. Let C be a cube, and f : C → R be a function convex on every
pyramid formed by a face and the center O of the cube. Fix two opposite vertices of C
and let S be a set being the sum of edges meeting at these vertices. Let Q be the set of
three main diagonals joining the remaining six vertices. Then

Avg( f ,C ) � 1
2

Avg( f ,S)+
1
2

Avg( f ,Q).

Proof. The proof goes exactly the same way as the previous one, but this time we
split the vertices of simplices into groups {CO},{AB} and {CO},{AD} respectively
which leads to

2Avg( f ,ABCDO) � Avg( f ,OC)+
1
2
(Avg( f ,AB)+Avg( f ,AD)). �

The cube can be split into six simplices of equal volumes in different ways. One
of them is particularly interesting – we shall call it a diagonal split. Select two opposite
vertices, say O1 and O2 . The remaining vertices can be connected by edges of the cube
so that they form a closed polygonal line L =V0 . . .V5V0 . The diagonal split consists of
six simplices O1O2VkVk+1 . Note that O1Vk and O2Vk+1 are of the same length – they
are both edges of the cube or diagonals of its faces. The next theorem shows how the
diagonal split can be explored.

THEOREM 8.3. Consider a diagonal split of a cube C . Denote by S the set of six
edges adjacent to O1 and O2 and by P the set of six diagonals of faces adjacent to O1

and O2 . If f : C → R is convex on each simplex of the split, then

Avg( f ,C ) � 1
2

Avg( f ,O1O2)+
1
2

Avg( f ,L), (31)

Avg( f ,C ) � Avg( f ,P), (32)

Avg( f ,C ) � Avg( f ,S), (33)

(see Figure 5).
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Proof. To prove (31) use Theorem 2.1 dividing the vertices of O1O2VkVk+1 into
groups {O1O2} and {VkVk+1} . Two other splits lead to (32) and (33). �

O1

O2

Theorem 8.3 (31)

O1

O2

Theorem 8.3 (33)

O1

O2

Theorem 8.3 (32)

Figure 5: Hermite-Hadamard inequalities for cube

Next theorem presents an interesing asymmetric case:

THEOREM 8.4. Let A be a vertex of the cube C and let S be the set consisting of
its faces nonadjacent to A. If f : C → R is convex, then

Avg( f ,C ) � 1
4

f (A)+
3
4

Avg( f ,S), (34)

Avg( f ,h3/4
A (S)) � Avg( f ,C ), (35)

(see Figure 6).

We leave the obvious proof to the reader.

A

Theorem 8.4 (34) Theorem 8.4 (35)

Figure 6: Hermite-Hadamard inequalities for cube ctd.
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