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(Communicated by S. Varošanec)

Abstract. In this paper we consider convex functions of higher order. Using the Cauchy’s er-
ror representation of Hermite interpolating polynomial the results concerning to the Hermite-
Hadamard inequalities are presented. As a special case, generalizations for the zeros of orthog-
onal polynomials are considered.

1. Introduction

We follow here notations and terminology about Hermite interpolating polynomial
from [1, p. 62]:

Let −∞ < a < b < ∞ , and a � a1 < a2 . . . < ar � b , (r � 2) be given. For
f ∈ Cn[a,b] a unique polynomial PH(t) of degree (n− 1) , exists, fulfilling one of the
following conditions:

Hermite conditions

P(i)
H (a j) = f (i)(a j); 0 � i � k j, 1 � j � r,

r

∑
j=1

k j + r = n,

in particular:
Simple Hermite or Osculatory conditions (n = 2m , r = m , k j = 1 for all j )

PO(a j) = f (a j), P′
O(a j) = f ′(a j), 1 � j � m,

Lagrange conditions (r = n , k j = 0 for all j )

PL(a j) = f (a j), 1 � j � n,

Type (m,n−m) conditions (r = 2, 1 � m � n−1, k1 = m−1, k2 = n−m−1)

P(i)
mn(a) = f (i)(a), 0 � i � m−1,

P(i)
mn(b) = f (i)(b), 0 � i � n−m−1,

Two-point Taylor conditions (n = 2m , r = 2, k1 = k2 = m−1)

P(i)
2T (a) = f (i)(a), P(i)

2T (b) = f (i)(b), 0 � i � m−1.
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DEFINITION 1. Let f be a real-valued function defined on the segment [a,b] .
The divided difference of order n of the function f at distinct points x0, . . . ,xn ∈ [a,b] ,
is defined recursively (see [7]) by

f [xi] = f (xi), (i = 0, . . . ,n)

and

f [x0, . . . ,xn] =
f [x1, . . . ,xn]− f [x0, . . . ,xn−1]

xn− x0
.

The value f [x0, . . . ,xn] is independent of the order of the points x0, . . . ,xn .
The definition may be extended to include the case that some (or all) of the points

coincide. Assuming that f ( j−1)(x) exists, we define

f [x, . . . ,x︸ ︷︷ ︸
j−times

] =
f ( j−1)(x)
( j−1)!

.

The notion of n-convexity goes back to Popoviciu ([8]). We follow the definition
given by Karlin ([6]):

DEFINITION 2. A function f : [a,b]→ R is said to be n -convex on [a,b] , n � 0,
if for all choices of (n+1) distinct points in [a,b], n -th order divided difference of f
satisfies

f [x0, . . . ,xn] � 0.

In fact, Popoviciu proved that each continuous n -convex function on [0,1] is the
uniform limit of the sequence of corresponding Bernstein’s polynomials (see for ex-
ample [7, p. 293]). Also, Bernstein’s polynomials of continuous n -convex function are
also n -convex functions. Therefore, when stating our results for a continuous n -convex
function f , without any loss in generality we assume that f (n) exists and is continuous.

In [5] M. Bessenyei and Zs. Páles were investigating the case of higher order
convexity. The base points of the Hermite-Hadamard type inequalities turn out to be
the zeros of certain orthogonal polynomials. The main tools of the paper are based
on some methods of numerical analysis, like Gauss quadrature formula and Hermite
interpolation. They considered the following Gauss type quadrature formulae where
the coefficients and the base points are to be determined so that be exact when f is a
polynomial of degree at most 2n−1, 2n , 2n and 2n+1, respectively:∫ b

a
ρ(t) f (t)dt =

n

∑
k=1

ck f (ξk), (1)

∫ b

a
ρ(t) f (t)dt = c0 f (a)+

n

∑
k=1

ck f (ξk), (2)

∫ b

a
ρ(t) f (t)dt =

n

∑
k=1

ck f (ξk)+ cn+1 f (b), (3)

∫ b

a
ρ(t) f (t)dt = c0 f (a)+

n

∑
k=1

ck f (ξk)+ cn+1 f (b). (4)
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Using this formulae and the remainder term of the Hermite interpolation they proved
Hermite-Hadamard type inequalities in cases of odd and even higher order convexity
separately in the subsequent theorems:

THEOREM 1. Let ρ : [a,b] → R be a positive integrable function. Denote the
zeros of Pm by ξ1, . . . ,ξm where Pm is the m-th degree member of the orthogonal poly-
nomial system on [a,b] with respect to the weight function (x− a)ρ(x) , furthermore
denote the zeros of Qm by η1, . . . ,ηm where Qm is the m-th degree member of the or-
thogonal polynomial system on [a,b] with respect to the weight function (b− x)ρ(x) .
Define the coefficients α0, . . . ,αm and β1, . . . ,βm+1 by the formulae

α0 :=
1

P2
m(a)

∫ b

a
P2

m(x)ρ(x)dx, αk :=
1

ξk −a

∫ b

a

(x−a)Pm(x)
(x− ξk)P′

m(ξk)
ρ(x)dx

and

βk :=
1

b−ηk

∫ b

a

(b− x)Qm(x)
(x−ηk)Q′

m(ηk)
ρ(x)dx, βm+1 :=

1
Q2

m(b)

∫ b

a
Q2

m(x)ρ(x)dx.

If a function f : [a,b] → R is (2m+1)-convex, then it satisfies the following Hermite-
Hadamard type inequality

α0 f (a)+
m

∑
k=1

αk f (ξk) �
∫ b

a
ρ(x) f (x)dx �

m

∑
k=1

βk f (ηk)+ βm+1 f (b).

THEOREM 2. Let ρ : [a,b] → R be a positive integrable function. Denote the
zeros of Pm by ξ1, . . . ,ξm where Pm is the m-th degree member of the orthogonal
polynomial system on [a,b] with respect to the weight function ρ(x) , furthermore de-
note the zeros of Qm−1 by η1, . . . ,ηm−1 where Qm−1 is the (m− 1)-st degree mem-
ber of the orthogonal polynomial system on [a,b] with respect to the weight function
(b− x)(x−a)ρ(x) . Define the coefficients α1, . . . ,αm and β0, . . . ,βm by the formulae

αk :=
∫ b

a

Pm(x)
(x− ξk)P′

m(ξk)
ρ(x)dx

and

β0 :=
1

(b−a)Q2
m−1(a)

∫ b

a
(b− x)Q2

m−1(x)ρ(x)dx,

βk :=
1

(b−ηk)(ξk −a)

∫ b

a

(b− x)(x−a)Qm−1(x)
(x−ηk)Q′

m−1(ηk)
ρ(x)dx,

βm :=
1

(b−a)Q2
m−1(b)

∫ b

a
(x−a)Q2

m−1(x)ρ(x)dx.

If a function f : [a,b] → R is (2m)-convex, then it satisfies the following Hermite-
Hadamard type inequality

m

∑
k=1

αk f (ξk) �
∫ b

a
ρ(x) f (x)dx � β0 f (a)+

m−1

∑
k=1

βk f (ηk)+ βm f (b).
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In this paper we obtain generalizations of above inequalities for convex functions
of higher order by using the Cauchy’s error representation of Hermite interpolating
polynomial. As a special case, generalizations of Hermite-Hadamard type inequalities,
where the base points turn out to be the zeros of orthogonal polynomials will be con-
sidered. Similar results for Lidstone’s polynomial can be found in [4]. See also [2] and
[3].

2. Cauchy’s error representation

In [1, p. 71] the following theorem is proved:

THEOREM 3. Let F(t) ∈ Cn−1([a,b]) and suppose that F (n)(t) exists at each
point of (a,b) . Then

F(t)−
r

∑
j=1

k j

∑
i=0

Hi j(t)F(i)(a j) =
1
n!

ω(t)F(n)(ξ ), (5)

where ξ ∈ (a,b) and Hi j are fundamental polynomials of the Hermite basis defined by

Hi j(t) =
1
i!

ω(t)
(t−a j)k j+1−i

k j−i

∑
k=0

1
k j!

[
(t−a j)k j+1

ω(t)

](k)

t=a j

(t−a j)k, (6)

where

ω(t) =
r

∏
j=1

(t −a j)k j+1. (7)

Motivated by (5) and formulae (1), (2), (3) and (4) we define functionals Φ1( f ) ,
Φ2( f ) , Φ3( f ) and Φ4( f ) respectively, by

Φ1(F) = F(t)−
r

∑
j=1

k j

∑
i=0

Hi j(t)F (i)(a j), (8)

Φ2(F) = F(t)−
k1

∑
i=0

Hi1(t)F (i)(a)−
r

∑
j=2

k j

∑
i=0

Hi j(t)F (i)(a j), (9)

Φ3(F) = F(t)−
r−1

∑
j=1

k j

∑
i=0

Hi j(t)F (i)(a j)−
kr

∑
i=0

Hir(t)F (i)(b), (10)

Φ4(F) = F(t)−
k1

∑
i=0

Hi1(t)F(i)(a)−
r−1

∑
j=2

k j

∑
i=0

Hi j(t)F (i)(a j)−
kr

∑
i=0

Hir(t)F (i)(b). (11)

Now, using Theorem 3 we get the following corollaries:
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COROLLARY 1. Let F : [a,b] → R is n-convex function, and Hi j are defined on
[a,b] by (6), such that k j is odd for all j = 1, . . . ,r . Then we have

Φ1(F) � 0. (12)

Proof. Since k j is odd for all j = 1, . . . ,r , then using (7), we get that ω(t) � 0.
By using (5) for n -convex function F , (12) obviously holds. �

REMARK 1. If we put that n = 2m , r = m and k j = 1 for all j we get Hermite
interpolating polynomial with simple Hermite or Osculatory conditions and then

F(t)−
m

∑
j=1

H0 j(t)F(a j)−
m

∑
j=1

H1 j(t)F ′(a j) � 0.

COROLLARY 2. Let F : [a,b] → R is n-convex function, and Hi j are defined on
[a,b] by (6), such that a1 = a and k j is odd for all j = 2, . . . ,r . Then we have

Φ2(F) � 0. (13)

Proof. Now ω(t) = (t − a)k1+1 ∏r
j=2(t − a j)k j+1 . Since k j is odd for all j =

2, . . . ,r , we get that ω(t)� 0. So, by using (5) for n -convex function F , (13) obviously
holds. �

COROLLARY 3. Let F : [a,b] → R is n-convex function and Hi j are defined on
[a,b] by (6), such that ar = b. Then

(a) If k j is odd for all j = 1, . . . ,r , we have

Φ3(F) � 0. (14)

(b) If k j is odd for all j = 1, . . . ,r−1 and kr is even, we have

Φ3(F) � 0. (15)

Proof. Now ω(t) = (t−b)kr+1 ∏r−1
j=1(t−a j)k j+1 .

(a) Since k j is odd for all j = 1, . . . ,r , we get that ω(t) � 0.
(b) Since k j is odd for all j = 1, . . . ,r−1 and kr is even, we get that ω(t) � 0.
So, by using (5) for n -convex function F , (14) and (15) obviously hold. �

COROLLARY 4. Let F : [a,b] → R is n-convex function and Hi j are defined on
[a,b] by (6), such that a1 = a and ar = b. Then

(a) If k j is odd for all j = 2, . . . ,r , we have

Φ4(F) � 0. (16)

(b) If k j is odd for all j = 2, . . . ,r−1 and kr is even, we have

Φ4(F) � 0. (17)
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Proof. Now ω(t) = (t−a)k1+1(t−b)kr+1 ∏r−1
j=2(t−a j)k j+1 .

(a) Since k j is odd for all j = 2, . . . ,r , we get that ω(t) � 0.
(b) Since k j is odd for all j = 2, . . . ,r−1 and kr is even, we get that ω(t) � 0.
So, by using (5) for n -convex function F , (16) and (17) obviously hold. �

REMARK 2. If we put r = 2, 1 � m � n−1, k1 = m−1, k2 = n−m−1 and k2

is odd then we get Hermite interpolating polynomial with (m,n−m) type conditions
and then

F(t)−
m−1

∑
i=0

Hi1(t)F (i)(a)−
n−m−1

∑
i=0

Hi2(t)F (i)(b) � 0.

For k2 even, the above inequality is reversed.
If we put n = 2m , r = 2, k1 = k2 = m− 1 and m is even then we get Hermite

interpolating polynomial with two-point Taylor conditions and then

F(t)−
m−1

∑
i=0

Hi1(t)F(i)(a)−
m−1

∑
i=0

Hi2(t)F(i)(b) � 0.

For m odd, the above inequality is reversed.

REMARK 3. Similarly as in [3] we can construct new families of exponentially
convex function and Cauchy type means by looking at linear functionals (8), (9), (10)
and (11). The monotonicity property of the generalized Cauchy means obtained via
these functionals can be prove by using the properties of the linear functionals associ-
ated with this error representation, such as n -exponential and logarithmic convexity.

3. Generalization of the Hermite-Hadamard type inequalities

The classical Hermite-Hadamard inequality states that for a convex function F :
[a,b]→ R the following estimation holds:

F

(
a+b

2

)
� 1

b−a

∫ b

a
F(t)dt � F(a)+F(b)

2
. (18)

As a consequences of our results given in Section 2, here we give the generalized
Hermite-Hadamard type inequalities.

THEOREM 4. Let F : [a,b]→ R is n-convex function, ρ : [a,b]→ R is a positive
integrable function and Hi j and Hi j are defined on [a,b] by

Hi j(t) =
1
i!

ω(t)
(t−a j)k j+1−i

k j−i

∑
k=0

1
k j!

[
(t−a j)k j+1

ω(t)

](k)

t=a j

(t−a j)k, (19)

and

Hi j(t) =
1
i!

ω(t)
(t−b j)l j+1−i

l j−i

∑
k=0

1
l j!

[
(t−b j)l j+1

ω(t)

](k)

t=b j

(t −b j)k, (20)
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where

ω(t) =
r

∏
j=1

(t−a j)k j+1, ω(t) =
r

∏
j=1

(t −b j)l j+1

for a � a1 < a2 . . . < ar � b, a � b1 < b2 . . . < br � b,(r, r � 2) and ∑r
j=1 k j + r =

∑r
j=1 l j + r = n.

Then, if a1 = a, br = b, k j odd for all j = 2, . . . ,r , l j odd for all j = 1, . . . , r −1
and lr even, we have

k1

∑
i=0

F (i)(a)
∫ b

a
ρ(t)Hi1(t)dt +

r

∑
j=2

k j

∑
i=0

F(i)(a j)
∫ b

a
ρ(t)Hi j(t)dt

�
∫ b

a
ρ(t)F(t)dt

�
r−1

∑
j=1

l j

∑
i=0

F (i)(b j)
∫ b

a
ρ(t)Hi j(t)dt +

l r

∑
i=0

F (i)(b)
∫ b

a
ρ(t)Hir(t)dt.

If F is n-concave, the inequalities are reversed.

Proof. We use Corollary 2 and Corollary 3(b). �

COROLLARY 5. Let F : [a,b]→R is (2r−1)-convex function and ρ : [a,b]→ R

is a positive integrable function. Then, we have

F(a)
∫ b

a
ρ(t)H01(t)dt +

r

∑
j=2

F(a j)
∫ b

a
ρ(t)H0 j(t)dt +

r

∑
j=2

F ′(a j)
∫ b

a
ρ(t)H1 j(t)dt

�
∫ b

a
ρ(t)F(t)dt (21)

�
r−1

∑
j=1

F(b j)
∫ b

a
ρ(t)H0 j(t)dt +

r−1

∑
j=1

F ′(b j)
∫ b

a
ρ(t)H1 j(t)dt +F(b)

∫ b

a
ρ(t)H0r(t)dt,

where

H01(t) =
P2

r−1(t)
P2

r−1(a)
,

H0 j(t) =
(t−a)P2

r−1(t)

(t −a j)2
[
P′

r−1(a j)
]2 (a j −a)

(
1− P′

r−1(a j)+ (a j −a)P′′
r−1(a j)

(a j −a)P′
r−1(a j)

(t−a j)
)

,

H1 j(t) =
(t −a)P2

r−1(t)

(t−a j)(a j −a)
[
P′

r−1(a j)
]2 ,

H0 j(t) =
(b− t)P

2
r−1(t)

(t −b j)2
[
P
′
r−1(b j)

]2
(b−b j)

(
1+

P
′
r−1(b j)− (b−b j)P

′′
r−1(b j)

(b−b j)P
′
r−1(b j)

(t −b j)

)
,
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H1 j(t) =
(b− t)P

2
r−1(t)

(t−b j)(b−b j)
[
P
′
r−1(b j)

]2 , H0r(t) =
P

2
r−1(t)

P
2
r−1(b)

,

and

Pr−1(t) =
r

∏
j=2

(t−a j), Pr−1(t) =
r−1

∏
j=1

(t−b j)

for a < a2 . . . < ar � b, a � b1 < b2 . . . < br−1 < b,(r � 2) .
If F is (2r−1)-concave, the inequalities are reversed.

Proof. We put k1 = 0, k j = 1 for j = 2, . . . ,r and l j = 1 for j = 1, . . . ,r−1,
lr = 0 in Theorem 4 and then calculate

H01(t) =
(t−a)P2

r−1(t)
(t −a)

·
[

(t−a)
(t −a)P2

r−1(t)

]
t=a

=
P2

r−1(t)
P2

r−1(a)
,

H0 j(t) =
(t−a)P2

r−1(t)
(t−a j)2

⎧⎨
⎩
[

(t−a j)2

(t−a)P2
r−1(t)

]
t=a j

+

[
(t−a j)2

(t −a)P2
r−1(t)

]′
t=a j

(t−a j)

⎫⎬
⎭

=
(t −a)P2

r−1(t)

(t−a j)2
[
P′

r−1(a j)
]2 (a j −a)

(
1− P′

r−1(a j)+ (a j −a)P′′
r−1(a j)

(a j −a)P′
r−1(a j)

(t−a j)
)

and

H1 j(t) =
(t−a)P2

r−1(t)
(t−a j)

[
(t −a j)2

(t−a)P2
r−1(t)

]
t=a j

=
(t−a)P2

r−1(t)

(t −a j)(a j −a)
[
P′

r−1(a j)
]2 .

Coefficients H0 j , H1 j and H0r we get similarly. �

REMARK 4. If we choose Pr−1 and Pr−1 such that they are orthogonal with
weight (t − a)ρ(t) and (b− t)ρ(t) respectively, to all polynomials of lower degree,
i.e. ∫ b

a
(t −a)ρ(t)Pr−1(t)tkdt = 0, k = 0,1, . . . ,r−2 (22)

and ∫ b

a
(b− t)ρ(t)Pr−1(t)tldt = 0, l = 0,1, . . . ,r−2,

we get that ∫ b

a
ρ(t)H1 j(t)dt = 0 and

∫ b

a
ρ(t)H1 j(t)dt = 0.
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Now, using the relation for coefficient H1 j(t) , we get

∫ b

a
ρ(t)H0 j(t)dt

=
∫ b

a

ρ(t)(t−a)P2
r−1(t)

(a j −a)(t−a j)2
[
P′

r−1(a j)
]2 dt− P′

r−1(a j)+ (a j −a)P′′
r−1(a j)

(a j −a)P′
r−1(a j)

∫ b

a
ρ(t)H1 j(t)dt.

Now, using (22), we have

∫ b

a

ρ(t)(t−a)Pr−1(t)
(t −a j)P′

r−1(a j)

(
Pr−1(t)

(t −a j)P′
r−1(a j)

−1

)
dt = 0

because
Pr−1(t)

(t −a j)P′
r−1(a j)

−1 = (t −a j)Q(t),

where Q(t) is polynomial of degree r−3. So,

∫ b

a

ρ(t)(t−a)P2
r−1(t)

(t−a j)2
[
P′

r−1(a j)
]2 dt =

∫ b

a

ρ(t)(t−a)Pr−1(t)
(t−a j)P′

r−1(a j)
dt.

Similarly, we calculate
∫ b
a ρ(t)H0 j(t)dt and get the following relations for coeffi-

cients in (21): ∫ b

a
ρ(t)H01(t)dt =

1

P2
r−1(a)

∫ b

a
ρ(t)P2

r−1(t)dt,

∫ b

a
ρ(t)H0 j(t)dt =

1
(a j −a)P′

r−1(a j)

∫ b

a

ρ(t)(t−a)Pr−1(t)
(t −a j)

dt,

∫ b

a
ρ(t)H1 j(t)dt = 0,

∫ b

a
ρ(t)H0 j(t)dt =

1

(b−b j)P
′
r−1(b j)

∫ b

a

ρ(t)(b− t)Pr−1(t)
(t−b j)

dt,

∫ b

a
ρ(t)H1 j(t)dt = 0,

∫ b

a
ρ(t)H0r(t)dt =

1

P
2
r−1(b)

∫ b

a
ρ(t)P

2
r−1(t)dt,

which is result proved by M. Bessenyei and Zs. Páles in [5] (see Theorem 1).

THEOREM 5. Let F : [a,b]→ R is n-convex function, ρ : [a,b]→ R is a positive
integrable function and Hi j and Hi j are defined on [a,b] by (19) and (20) respectively.
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Then, if b1 = a, br = b, k j odd for all j = 1, . . . ,r , l j odd for all j = 2, . . . , r −1 and
lr even, we have

r

∑
j=1

k j

∑
i=0

F(i)(a j)
∫ b

a
ρ(t)Hi j(t)dt

�
∫ b

a
ρ(t)F(t)dt

�
l1

∑
i=0

F (i)(a)
∫ b

a
ρ(t)Hi1(t)dt +

r−1

∑
j=2

l j

∑
i=0

F(i)(b j)
∫ b

a
ρ(t)Hi j(t)dt

+
l r

∑
i=0

F (i)(b)
∫ b

a
ρ(t)Hir(t)dt.

If F is n-concave, the inequalities are reversed.

Proof. We use Corollary 1 and Corollary 4(b). �

COROLLARY 6. Let F : [a,b] → R is (2r)-convex function and ρ : [a,b] → R is
a positive integrable function. Then, we have

r

∑
j=1

F(a j)
∫ b

a
ρ(t)H0 j(t)dt +

r

∑
j=1

F ′(a j)
∫ b

a
ρ(t)H1 j(t)dt

�
∫ b

a
ρ(t)F(t)dt

� F(a)
∫ b

a
ρ(t)H01(t)dt +

r

∑
j=2

F(b j)
∫ b

a
ρ(t)H0 j(t)dt (23)

+
r

∑
j=2

F ′(b j)
∫ b

a
ρ(t)H1 j(t)dt +F(b)

∫ b

a
ρ(t)H0(r+1)(t)dt,

where

H0 j(t) =
P2

r (t)

(t −a j)2 [P′
r(a j)]

2

(
1− P′′

r (a j)
P′

r(a j)
(t−a j)

)
,

H1 j(t) =
P2

r (t)

(t−a j) [P′
r(a j)]

2 , H01(t) =
(b− t)P

2
r−1(t)

(b−a)P
2
r−1(a)

,

H0 j(t) =
(t −a)(b− t)P

2
r−1(t)

(b j −a)(b−b j)(t −b j)2
[
P
′
r−1(b j)

]2
×
(

1+
(2b j −a−b)P

′
r−1(b j)− (b−b j)(b j −a)P

′′
r−1(b j)

(b−b j)(b j −a)P
′
r−1(b j)

(t −b j)

)
,
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H1 j(t) =
(t−a)(b− t)P

2
r−1(t)

(t −b j)(b j −a)(b−b j)
[
P
′
r−1(b j)

]2 , H0(r+1)(t) =
(t−a)P

2
r−1(t)

(b−a)P
2
r−1(b)

and

Pr(t) =
r

∏
j=1

(t−a j), Pr−1(t) =
r

∏
j=2

(t−b j)

for a � a1 < a2 . . . < ar � b, a < b2 . . . < br < b,(r � 2) . If F is (2r)-concave, the
inequalities are reversed.

Proof. We put k j = 1 for j = 1, . . . ,r and l j = 1 for j = 2, . . . ,r , l1 = lr+1 = 0 in
Theorem 5 and then calculate

H0 j =
P2

r (t)
(t−a j)2

{[
(t−a j)2

P2
r (t)

]
t=a j

+
[
(t−a j)2

P2
r (t)

]′
t=a j

(t−a j)

}

=
P2

r (t)

(t−a j)2 [P′
r(a j)]

2

(
1− P′′

r (a j)
P′

r(a j)
(t −a j)

)
,

H1 j(t) =
P2

r (t)
t−a j

[
(t−a j)2

P2
r (t)

]
t=a j

=
P2

r (t)

(t−a j) [P′
r(a j)]2

,

H01(t) =
(t−a)(t−b)P

2
r−1(t)

t−a

[
t −a

(t −a)(t−b)P
2
r−1(t)

]
t=a

=
(b− t)P

2
r−1(t)

(b−a)P
2
r−1(a)

,

H0 j(t) =
(t −a)(t−b)P

2
r−1(t)

(t−b j)2

×
⎧⎨
⎩
[

(t−b j)2

(t −a)(t−b)P
2
r−1(t)

]
t=b j

+

[
(t−b j)2

(t−a)(t−b)P
2
r−1(t)

]′
t=b j

(t −b j)

⎫⎬
⎭

=
(t −a)(b− t)P

2
r−1(t)

(b j −a)(b−b j)(t −b j)2
[
P
′
r−1(b j)

]2
×
(

1+
(2b j −a−b)P

′
r−1(b j)− (b−b j)(b j −a)P

′′
r−1(b j)

(b−b j)(b j −a)P
′
r−1(b j)

(t−b j)

)
,

H1 j(t) =
(t−a)(t−b)P

2
r−1(t)

(t−b j)

[
(t−b j)2

(t −a)(t−b)P
2
r−1(t)

]
t=b j

=
(t −a)(b− t)P

2
r−1(t)

(t−b j)(b j −a)(b−b j)
[
P
′
r−1(b j)

]2 .

Coefficient H0(r+1) we get similarly as coefficient H01(t) . �
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REMARK 5. If we choose Pr such that it is orthogonal with weight ρ(t) to all
polynomials of lower degree, i.e.

∫ b

a
ρ(t)Pr(t)tkdt = 0, k = 0,1, . . . ,r−1

we get that ∫ b

a
ρ(t)H1 j(t)dt = 0.

Now, similar as in Remark 4 we get

∫ b

a
ρ(t)H0 j(t)dt =

1
P′

r(a j)

∫ b

a

ρ(t)Pr(t)
(t−a j)

dt.

Also, if we choose Pr−1 such that it is orthogonal with weight (t−a)(b− t)ρ(t) , to all
polynomials of lower degree, i.e.

∫ b

a
ρ(t)(t−a)(b− t)Pr−1(t)tldt = 0, l = 0,1, . . . ,r−2,

we get that ∫ b

a
ρ(t)H1 j(t)dt = 0

and then

∫ b

a
ρ(t)H0 j(t)dt =

1

(b j −a)(b−b j)P
′
r−1(b j)

∫ b

a

ρ(t)(t−a)(b− t)Pr−1(t)
(t−b j)

dt,

which is result proved by M. Bessenyei and Zs. Páles in [5] (see Theorem 2).

REMARK 6. If we put r = 1 and ρ(t) = 1 in Corollary 6, we get n = 2 and for
a1 = a+b

2 calculate

H01(t) = 1 ⇒
∫ b

a
H01(t)dt = b−a,

H11(t) = t− a+b
2

⇒
∫ b

a
H11(t)dt = 0,

H01(t) =
b− t
b−a

⇒
∫ b

a
H01(t)dt =

b−a
2

,

H02(t) =
t−a
b−a

⇒
∫ b

a
H02(t)dt =

b−a
2

.

So, using (23) for n = 2 we get classical Hermite-Hadamard inequality (18).
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COROLLARY 7. Let F : [a,b]→ R is (2m)-convex function and ρ : [a,b]→ R is
a positive integrable function. Then, if m is odd, we have

m

∑
j=1

F(a j)
∫ b

a
ρ(t)H0 j(t)dt +

m

∑
j=1

F ′(a j)
∫ b

a
ρ(t)H1 j(t)dt

�
∫ b

a
ρ(t)F(t)dt

�
m−1

∑
i=0

F(i)(a)
∫ b

a
ρ(t)Hi1(t)dt +

m−1

∑
i=0

F (i)(b)
∫ b

a
ρ(t)Hi2(t)dt,

where H0 j and H1 j as in Corollary 6 with r = m,

Hi1(t) =
(t −a)i(t−b)m

i!

m−1−i

∑
k=0

(−1)k(m+ k−1)!
[(m−1)!]2 (a−b)m+k

(t−a)k, and

Hi2(t) =
(t−a)m(t −b)i

i!

m−1−i

∑
k=0

(−1)k(m+ k−1)!

[(m−1)!]2 (b−a)m+k
(t−b)k.

If F is (2m)-concave, the inequalities are reversed.

Proof. We use Remark 1 and 2 and then calculate

Hi1(t) =
1
i!

(t −a)m(t −b)m

(t −a)m−i

m−1−i

∑
k=0

1
(m−1)!

[
(t −a)m

(t−a)m(t −b)m

](k)

t=a
(t −a)k

=
(t−a)i(t −b)m

i!

m−1−i

∑
k=0

(−1)k(m+ k−1)!
[(m−1)!]2 (a−b)m+k

(t−a)k.

Coefficient Hi2(t) we get similarly. �
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