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SOME GENERALIZATIONS AND PROBABILITY

VERSIONS OF SAMUELSON’S INEQUALITY

HONGWEI JIN AND JULIO BENÍTEZ

(Communicated by C. P. Niculescu)

Abstract. Several generalizations of Samuelson’s inequality are given, including complex data
and inequalities concerning random variables in a probability space. The proofs of these gener-
alizations need only a well known result from inner product spaces, namely, Bessel’s inequality.
Finally we apply these generalizations to locate the eigenvalues of certain matrices and tensors,
as well as the complex roots of polynomials.

1. Preliminaries

Samuelson’s inequality establishes that for x1, . . . ,xn ∈ � , one has

[x j −m(x)]2 � (n−1)s2, (1)

where m(x) is the arithmetic mean and s is the sample variance of the real data
x1, . . . ,xn , i.e.,

m(x) =
1
n

n

∑
i=1

xi, s2 =
1
n

n

∑
i=1

(xi −m(x))2.

Samuelson’s inequality was proven in [7]. Several proofs of this inequality can be found
in the literature (see [3]). We present some generalizations of Samuelson’s inequality
with simple proofs which require Bessel’s inequality.

Bessel’s inequality is a well known fact of inner product spaces. If {v̂1, . . . , v̂n} is
an orthonormal set in a complex Euclidean space E and x ∈ E , then

|〈x, v̂1〉|2 + · · ·+ |〈x, v̂n〉|2 � ‖x‖2. (2)

Furthermore, the inequality (2) becomes an equality if and only if x ∈ span{v̂1, . . . , v̂n}
(see, e.g., the proof of Bessel’s inequality given in [1, p. 441]).
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2. Generalizations of Samuelson’s inequality

In this section, we will give several generalizations of Samuelson’s inequality.
We shall review the definition of the expectation and variance of complex random

variables since usually the real random variables are studied. Let (Ω,Σ,�) be a proba-
bility space and let Z : Ω → � be a complex random variable, i.e., ReZ : Ω → � and
ImZ : Ω →� are random variables. For any measurable A ⊂ � one has

�(Z ∈ A) = �(Z−1(A)) =
∫

Z−1(A)
d�.

The expectation of Z is defined by

E(Z) =
∫

Ω
Z d�=

∫
Ω

ReZ d�+ i
∫

Ω
ImZ d�,

provided the two integrals in the right hand side exist. The variance of Z is defined by
Var(Z) = E

(|Z−E(Z)|2) . Observe that although Z is complex, Var(Z) is always real

(and non-negative). Since E(Z) = E(Z) , after few manipulations, one gets Var(Z) =
E(|Z|2)−|E(Z)|2 .

Let S ∈ Σ be such that �(S) �= 0. Define Σ|S = {R∩S : R ∈ Σ} and �|S : Σ|S →�

given by �|S(R) = �(R)/�(S) . It is easily checked that (S,Σ|S,�|S) is a probability
space. Therefore, if Z : Ω → � is a complex random variable and A is a measurable
subset of � such that �(Z ∈ A) �= 0, then the restriction of Z to Z−1(A) is a random
variable defined in the probability space (Z−1(A),Σ|Z−1(A),�|Z−1(A)) . This new random
variable is called the A-truncated distribution of Z and this distribution will be denoted
by Z|A (intuitively speaking, Z is truncated so that only the values in A are observed).
The expectation of Z|A is

E(Z|A) =
∫

Z−1(A)
Z d�|Z−1(A) =

1
�(Z ∈ A)

∫
Z−1(A)

Z d�.

THEOREM 1. Let (Ω,Σ,�) be a probability space and let Z : Ω→� be a random
variable whose expectation and variance are finite. If A is a measurable subset of �
such that �(Z ∈ A) �= 0 , then

�(Z /∈ A)
�(Z ∈ A)

Var(Z) � |E(Z)−E(Z|A)|2 . (3)

This inequality becomes an equality if and only if �(Z ∈ A) = 1 or Z takes two values
α and β such that α ∈ A and β /∈ A.

Proof. If �(Z ∈A)= 1, then �(Z /∈A)= 0 and E(Z|A) =
∫
Z−1(A) Z d�=

∫
Ω Z d�=

E(Z) because Ω\Z−1(A) has measure zero. Therefore, if �(Z ∈ A) = 1, the inequality
becomes an equality. Thus, in the rest of the proof we can assume that �(Z ∈ A) < 1.

We will consider the Hilbert space L 2(Ω,�) = {u : Ω → � :
∫

Ω |u|2 d� < ∞}
endowed with the inner product 〈u,v〉 =

∫
Ω uvd� . For S ⊂ Ω , we denote its indicator
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function by �S (i.e., �S has value 1 at points of S and 0 at points of Ω\S ). We denote
p = �(Z ∈ A) and q = 1− p = �(Z /∈ A) .

It is simple to prove that the functions �Ω and −q�Z−1(A) + p�Ω\Z−1(A) are or-
thogonal:〈

�Ω,−q�Z−1(A) + p�Ω\Z−1(A)

〉
= −q�(Z ∈ A)+ p�(Z /∈ A) = −qp+ pq = 0.

The following equalities are trivial: ‖Z‖2 =
∫

Ω |Z|2 d�= E(|Z|2) , 〈Z,�Ω〉 =
∫

Ω Z d�=
E(Z) , and ‖�Ω‖2 =

∫
Ω d�= 1. Also we have that〈

Z,−q�Z−1(A) + p�Ω\Z−1(A)

〉
= −q

∫
Z−1(A)

Z d�+ p
∫

Ω\Z−1(A)
Z d�

= (−q− p)
∫
Z−1(A)

Z d�+ p
∫

Ω
Z d�

= p [E(Z)−E(Z|A)] ,

and by noticing that �Z−1(A) and �Ω\Z−1(A) are orthogonal,∥∥∥−q�Z−1(A) + p�Ω\Z−1(A)

∥∥∥2
= q2

∥∥∥�Z−1(A)

∥∥∥2
+ p2

∥∥∥�Ω\Z−1(A)

∥∥∥2
= q2p+ p2q = pq �= 0.

Now, it is sufficient to apply Bessel’s inequality (2) when x = Z , v̂1 = �Ω , and v̂2 =
‖−q�Z−1(A) + p�Ω\Z−1(A)‖−1(−q�Z−1(A) + p�Ω\Z−1(A)) to get the inequality (3).

If the inequality (3) is an equality, then Z ∈ span{�Ω,−q�Z−1(A) + p�Ω\Z−1(A)} .
Therefore, there exist λ ,μ ∈ � such that

Z = λ�Ω + μ
(
−q�Z−1(A) + p�Ω\Z−1(A)

)
. (4)

This equality implies that

Z(ω) =

{
λ − μq if ω ∈ Z−1(A),
λ + μ p if ω /∈ Z−1(A).

Observe that Z−1(A) and Ω \ Z−1(A) are not empty sets because �(Z ∈ A) �= 0 and
�(Z /∈ A) �= 0. Therefore, exist ω1 ∈ Z−1(A) and ω2 /∈ Z−1(A) , and thus, Z(ω1) =
λ − μq and Z(ω2) = λ + μ p . If λ + μ p ∈ A , then w2 ∈ Z−1(λ + μ p) ⊆ Z−1(A) ,
which is not possible, hence λ + μ p /∈ A . Similarly, one gets λ − μq ∈ A .

If Z takes two values α and β such that α ∈ A and β /∈ A , then Z = α�Z−1(A) +
β�Ω\Z−1(A) . Define λ = α p+βq and μ = β −α . It is not difficult to see that λ −μq =
α and λ + μ p = β . Therefore, Z can be written as in (4), and by Bessel’s inequality,
the inequality (3) becomes an equality. �

REMARK 1. Let (Ω,Σ,�) be a probability space and let A be a measurable subset
of � . We denote by Ac the complementary of A in � , i.e., Ac = � \A . If Z is a
complex random variable such that �(Z ∈ A) �= 0 and �(Z ∈ Ac) �= 0, then

�(Z ∈ Ac) [E(Z|Ac)−E(Z|A)] = E(Z)−E(Z|A). (5)
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In fact,

�(Z ∈ Ac) [E(Z|Ac)−E(Z|A)] =
∫

Z−1(Ac)
Z d�− �(Z ∈ Ac)

�(Z ∈ A)

∫
Z−1(A)

Z d�

=
∫

Ω
Z d�−

(
1+

�(Z ∈ Ac)
�(Z ∈ A)

)∫
Z−1(A)

Z d�

=
∫

Ω
Z d�− 1

�(Z ∈ A)

∫
Z−1(A)

Z d�,

which proves (5).

REMARK 2. In view of the equality (5), under the assumptions of Theorem 1 and
in addition �(Z /∈ A) �= 0, we have

Var(Z) � �(Z ∈ A)�(Z /∈ A) |E(Z|Ac)−E(Z|A)|2 .

To the best knowledge of the authors, the following result is not known in the
literature. It generalizes Samuelson’s inequality (1) in two ways: it deals with complex
numbers and more than one data is compared with the arithmetic mean. The sample
variance of the complex data {z1, . . . ,zn} is defined by 1

n ∑n
k=1 |zk −m(z)|2 .

THEOREM 2. For z1, . . . ,zn ∈ � and p ∈ {1, . . . ,n} , one has

|m(z)−m(y)|2 � n− p
p

s2, (6)

where m(z) and m(y) are the arithmetic mean of {z1, . . . ,zn} and {z1, . . . ,zp} , respec-
tively, and s2 is the sample variance of {z1, . . . ,zn} .

Proof. Let Ω = {1, . . . ,n} . If we set �(R) = card(R)/n for R⊆ Ω , then it is clear
that (Ω,P(Ω),�) is a probability space. Let ε > 0 and for k = 1, . . . ,n , let wk ∈ �
be such that |wk − zk| < ε and w1, . . . ,wn are pairwise distinct. Let W : Ω → � be
the complex random variable defined by W (k) = wk . Finally, let A = {w1, . . . ,wp} . It
is clear that E(W ) = ∑n

k=1 wk�(W = wk) = (w1 + · · ·+wn)/n , E(W |A) = (w1 + · · ·+
wp)/p , and Var(W ) = E(|W − E(W )|2) is the sample variance of w1, . . . ,wn . It is
enough to apply Theorem 1 and let ε → 0 to prove this theorem. �

REMARK 3. The inequality (6) can be proved by using Bessel’s inequality without
proving Theorem 2. The idea is to use (2) for x = (z1, . . . ,zn) , the subspace spanned by
�n = (1, . . . ,1) and a = (p− n, . . . , p− n, p, . . . , p) , where p− n is repeated p times,
and �n is endowed with the standard inner product, i.e., if u = (uk)n

k=1 ∈ �n and
v = (vk)n

k=1 ∈ �n , then 〈u,v〉 = ∑n
k=1 ukvk .

REMARK 4. The procedure established in the previous remark can be considered
to prove that the inequality (6) becomes an equality if and only if x ∈ span{�n,a} , and
this is equivalent to say that {z1, . . . ,zp} and {zp+1, . . . ,zn} are both singletons.
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REMARK 5. Observe that the case p = 1 and z1, . . . ,zn ∈� reduces to

|m(z)− zi|2 � (n−1)s2, i ∈ {1, . . . ,n},

which is the complex version of Samuelson’s inequality, and p = 1, z1, . . . ,zn ∈ �

reduces to the classical Samuelson’s inequality.

REMARK 6. The inequality of Theorem 2 can be written in another way. Under
the notation of this theorem, the next equality can be easily checked, (n− p)[m(y)−
m(x)] = n[m(y)−m(z)] , being m(x) the arithmetic mean of {zp+1, . . . ,zn} . Hence,

|m(y)−m(x)|2 � n2

p(n− p)
s2.

Also, we can compare the arithmetic mean of a whole sample with the mean of
two subsets of the sample.

THEOREM 3. For z1, . . . ,zn ∈� and p,q ∈ {1, . . . ,n} , we denote by m(z) , m(y) ,
and m(x) the arithmetic mean of {z1, . . . ,zn} , {z1, . . . ,zp} , and {zp+1, . . . ,zp+q} , re-
spectively, and by s2 the sample variance of {z1, . . . ,zn} . If p+q < n, then

ns2 � |p(1−α)[m(z)−m(y)]+q(1−β )[m(z)−m(x)]|2
pα(α −1)+qβ (β −1)

, (7)

where α,β ∈ � satisfy n = p(1−α)+q(1−β ) .
Moreover, the inequality (7) is an equality if and only if exist A,B,C ∈� such that

{A} = {z1, . . . ,zp} , {B} = {zp+1, . . . ,zp+q} , {C} = {zp+q+1, . . . ,zn} , and A(1−β )+
B(α −1)+C(β −α) = 0 .

Proof. The symbols �k and 0k will denote the vectors of �k all of whose com-
ponents are 1 and 0, respectively. Set x = (z1, . . . ,zn) and a = (α�p | β�q | �n−(p+q)) .
Since p+q < n we have a �= 0n . Since n = p(1−α)+q(1−β ) we get that �n and a
are orthogonal. Now we have

〈x,a〉 = α(z1 + · · ·+ zp)+ β (zp+1 + · · ·+ zp+q)+ zp+q+1 + · · ·+ zn

= (α −1)(z1 + · · ·+ zp)+ (β −1)(zp+1 + · · ·+ zp+q)+ z1 + · · ·+ zn

= p(α −1)m(y)+q(β −1)m(x)+n ·m(z)
= p(α −1)m(y)+q(β −1)m(x)+ [p(1−α)+q(1−β )]m(z)
= p(1−α)[m(z)−m(y)]+q(1−β )[m(z)−m(x)]

and

‖a‖2 = pα2 +qβ 2 +n− (p+q)= pα2 +qβ 2− pα −qβ = pα(α −1)+qβ (β −1).

From Bessel’s inequality we get (7).
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The inequality (7) becomes an equality if and only if x ∈ span{�n,a} , i.e., if and
only if exist λ ,μ ∈ � such that x = λ�n + μa . Therefore, the inequality (7) is an
equality if and only if exist λ ,μ ∈ � such that

zi = λ + μα (i = 1, . . . , p), z j = λ + μβ ( j = p+1, . . . , p+q),

and
zk = λ + μ (k = p+q+1, . . .,n).

This is equivalent to say that the sets {zi}p
i=1 , {z j}p+q

j=p+1 , and {zk}n
k=p+q+1 , are single-

tons, and if we denote by A,B,C their unique elements, respectively, then exist λ ,μ ∈�
such that A = λ + μα , B = λ + μβ , C = λ + μ (equivalently, the rank of

[
1 α A
1 β B
1 1 C

]
is

two). �

REMARK 7. Theorem 3 is a generalization of Theorem 2. If we choose α = β or
α = 1, or β = 1, in Theorem 3, one gets Theorem 2.

Until now, we have used Bessel’s inequality with two terms. We will use this
inequality with more terms to study the arithmetic mean of several nested samples.

THEOREM 4. Let z1, . . . ,zn be complex numbers and p1, . . . , pk ∈ {1, . . . ,n} such
that 1 � pk < · · · < p1 < n. Let m and s2 denote the arithmetic mean and the sample
variance of z1, . . . ,zn , respectively. If mi denotes the arithmetic mean of z1, . . . ,zpi ,
then

s2 � p1

n− p1
|m−m1|2 +

p1

n
p2

p1− p2
|m1−m2|2 + · · ·+ pk−1

n
pk

pk−1− pk
|mk−1−mk|2 .

This inequality becomes an equality if and only if {z1, . . . ,zpk} , {zpk+1, . . . ,zpk−1} , . . . ,
and {zp1+1, . . . ,zn} are singletons.

Proof. Define x = (z1, . . . ,zn) and let the symbols �k and 0k have the same mean-
ing as in the proof of Theorem 3. Define the vectors a1 = ((p1 −n)�p1 | p1�n−p1) ,
a2 = ((p2− p1)�p2 | p2�p1−p2 | 0n−p1) , a3 =

(
(p3 − p2)�p3 | p3�p2−p3 | 0n−p2

)
, and

so on, until ak . Now, it is sufficient to apply Bessel’s inequality to x and the subspace
spanned by {�n,a1, . . . ,ak} . �

3. Some applications

We will show some applications of the previous results.

APPLICATION 1. We shall use Theorem 2 to locate the eigenvalues of a complex
matrix. Recall that the spectrum of a square matrix A is the set of the eigenvalues of
A and usually is denoted by σ(A) . If λ1, . . . ,λn are the eigenvalues of a matrix and
f : σ(A) → � , we denote by m( f (λ )) the arithmetic mean of f (λ1), . . . , f (λn) .

In [5, 8] the authors proved that for a definite positive matrix A of order n and λ0 ∈
σ(A) , one has (8). We extend this inequality to matrices whose spectrum is contained
in � .
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THEOREM 5. Let A be a complex n×n matrix such that σ(A)⊂� . If λ0 ∈σ(A) ,
then

tr(A)
n

− ξ � λ0 � tr(A)
n

+ ξ , (8)

where

ξ =

√
(n−1)(n tr(A2)− tr(A)2)

n
.

Moreover, λ0 ∈ {tr(A)/n− ξ , tr(A)/n+ ξ} if and only if σ(A)\ {λ0} is a singleton.

Proof. Let λ1, . . . ,λn be the eigenvalues of A , counting algebraic multiplicities. It
is known that tr(A) = λ1 + · · ·+λn and tr(A2) = λ 2

1 + · · ·+λ 2
n (this last equality follows

from Schur’s triangularization theorem). Now it is sufficient to apply Samuelson’s
inequality to the real data λ1, . . . ,λn and observe that

m(λ ) =
λ1 + · · ·+ λn

n
=

tr(A)
n

and if s2 denotes the sample variance of λ1, . . . ,λn , then

s2 = m(λ 2)−m(λ )2 =
λ 2

1 + · · ·+ λ 2
n

n
−

(
λ1 + · · ·+ λn

n

)2

=
tr(A2)

n
− tr(A)2

n2 . �

Recall that the spectrum of any Hermitian matrix is always contained in � , which
shows that the hypotheses of the previous theorem are not artificial.

Also, Theorem2 permits to locate the spectrum of any complex matrix. It is known
(see e.g., [9, Th. 9.1]) that tr(AA∗) � |λ1|2 + · · ·+ |λn|2 , where A is a complex n× n
matrix and λ1, . . . ,λn are the eigenvalues of A . Moreover, tr(AA∗) = |λ1|2 + · · ·+ |λn|2
if and only if A is normal, i.e., AA∗ = A∗A .

THEOREM 6. Let A be a complex n×n matrix. If λ0 ∈ σ(A) , then∣∣∣∣λ0− tr(A)
n

∣∣∣∣ �
√

(n−1)(n tr(AA∗)−| tr(A)|2)
n

.

This inequality becomes an equality if and only if A is normal and σ(A) \ {λ0} is a
singleton.

Proof. As in the previous theorem, we have tr(A) = n ·m(λ ) . By the paragraph
preceding this theorem, tr(AA∗) � n ·m(|λ |2) . An obvious application of Theorem 2
finishes the proof. �

EXAMPLE 1. Let

A =

⎡⎣ 1 2 4
2 4 5
4 5 6

⎤⎦ , B =

⎡⎣ 1 0 i/
√

2
0 1 −i/

√
2

i/
√

2 −i/
√

2 1

⎤⎦ .
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Since A is Hermitian, σ(A) ⊂ � . By using Theorem 5, we have that σ(A) is
contained in [−4.61,11.94] . Observe that by Gershgorin’s disk theorem, we have
σ(A)⊂ [1−6,1+6]∪ [4−7,4+7]∪ [6−9,6+9] = [−5,15] , a poorer location than the
previous one. By using a numerical software, we get σ(A) = {−1.40,0.54,11.863} .

The matrix B is normal. By using Theorem 6, we get σ(B) ⊂ {λ ∈ � : |λ −1|�
2
√

3/3} . By Gershgorin’s disk theorem, we get σ(B) ⊂ {λ ∈ � : |λ − 1| �
√

2} .
Since 2

√
3/3 � 1.154 and

√
2 � 1.414, the bound obtained by Theorem 6 is better

than the bound obtained by Gershgorin’s disk theorem. A computation shows that
σ(B) = {1,1+ i,1− i} .

The spectrum is usually seen as part of the closed disk Dr(A)(0) centered at 0,
being r(A) the spectral radius of the matrix A . It is known that r(A) � ‖A‖ , where
‖ · ‖ is any matrix norm. We can choose ‖ · ‖1 or ‖ · ‖∞ in view of the easiness of
computing these norms. But for the above examples we obtain ‖A‖1 = ‖A‖∞ = 15
and ‖B‖1 = ‖B‖∞ = 1 +

√
2 � 2.414. Therefore, σ(A) ⊂ [−15,15] (recall that A is

Hermitian, and thus, σ(A) ∈ �) and σ(B) ⊂ D1+
√

2(0) .
We can improve the bounds of the previous paragraph by using other matrix norms.

In particular, if the matrix is normal, then its spectral radius equals the Euclidean norm
(‖·‖2 ) of the matrix. Let us note that the aforementioned examples are normal matrices
and we have ‖A‖2 � 11.863 and ‖B‖2 =

√
2 � 1.414. In general, for a normal matrix

X , it must exist λ ∈ σ(X) such that |λ | = ‖X‖2 .
However, let us note that the Euclidean norm of a matrix is harder to compute

than the bounds obtained by Theorems 5 and 6 since the computation of tr(A) and
tr(A2) – or tr(AA∗) – are simpler than the computation of ‖A‖2 , since ‖A‖2 is the
largest singular value of A . Precisely, the purpose of Theorems 5 and 6 is locate the
eigenvalues by means of easily computable terms.

The different circles containing the eigenvalues of the matrix B can be seen in
Figure 1.

COROLLARY 1. Let A be a complex n×n matrix.

(i) If σ(A) ⊂ � and (n−1) tr(A2) < tr(A)2 , then A is nonsingular.

(ii) If (n−1) tr(AA∗) < | tr(A)|2 , then A is nonsingular.

Proof. We will prove the first item, since the proof of the second one is similar. If
A is singular, then 0 ∈ σ(A) . By Theorem 5, −ξ � tr(A)/n � ξ , where the meaning
of ξ is also given in Theorem 5. Therefore, tr(A)2/n2 � ξ 2 , which is equivalent to
tr(A)2 � (n−1) tr(A2) . �

REMARK 8. The reverse implications of the previous corollary are not true. Take
the nonsingular matrix A =

[
0 1
1 0

]
. Observe that σ(A) = {−1,1} ⊂ � .

APPLICATION 2. Next, we will use Theorem 2 to locate the complex roots of a
complex polynomial. Laguerre focused ([4]) on n -th degree polynomials with all its
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Figure 1: The location of the eigenvalues of the matrix B. The solid points correspond to the
three eigenvalues. The solid circle corresponds to the bound obtained by Theorem 6. The dashed
circle corresponds to the bound obtained by Gershgorin’s disk theorem. The inner dotted circle
corresponds to the bound r(B) � ‖B‖2 , and the outer dotted circle corresponds to he bound
r(B) � ‖B‖1 .

roots real. Let t1, . . . ,tn denote the roots, all of which we will assume to be real, of the
n -th degree polynomial equation with n � 2:

a0 +a1t +a2t
2 + · · ·+an−1t

n−1 + tn = 0.

Lagerre proved that

− an−1

n
−b

√
n−1 � t j � −an−1

n
+b

√
n−1, j = 1,2, . . . ,n, (9)

where

b =

√
(n−1)a2

n−1

n2 − 2an−2

n
.

In [3] it is shown that −an−1/n is the arithmetic mean of t1, . . . ,tn and b is the sample
variance of t1, . . . ,tn . Therefore, (9) reduces to Samuelson’s inequality.

Given the complex polynomial p(t) = c0 + c1t + · · ·+ cn−1tn−1 + tn , the matrix

C(p) =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0 −c0

1 0 · · · 0 −c1

0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1

⎤⎥⎥⎥⎥⎥⎦
is called the companion matrix of the polynomial p . It is known that the eigenvalues of
C(p) are the roots of the polynomial p . An application of Theorem 6 permits locate in
an easy manner the roots of p .
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THEOREM 7. Let p(t) = c0 + c1t + · · ·+ cn−1tn−1 + tn be a complex polynomial
and let z1, . . . ,zn be the roots of p(t) . Then∣∣∣z j +

cn−1

n

∣∣∣ � 1
n

√
(n−1)(nα + |cn−1|2), j = 1, . . . ,n,

where α = n−1+ ∑n−1
j=0 |c j|2 .

APPLICATION 3. Next we will give some bounds for the eigenvalues of a tensor.
Firstly, let us recall some concepts concerning tensors. A tensor can be regarded as a
higher order generalization of a matrix, which takes the form

A = (ai1,...,im), ai1,...,im ∈�, i j ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}.
Such a multidimensional array is called an m-order n-dimensional complex tensor and
the class of m-order n -dimensional real tensors is denoted by T (�n,m) . The m-order
n -dimensional identity tensor, denoted by I , is the tensor with entries

ai1,...,im =
{

1 if i1 = · · · = im,
0 otherwise.

Given a column vector x = (x1, . . . ,xn)T ∈�n , we define A xm−1 to be the vector
in �n whose i-th coordinate is the scalar

(A xm−1)i =
n

∑
i2,...,im=1

ai,i2,...,imxi2 · · ·xim .

The following definition, borrowed from Qi [6], extends the classical concept of
eigenvalues of square matrices.

DEFINITION 1. Let A ∈ T (�n,m) , I ∈ T (�n,m) be the identity tensor, and
λ ∈ � . If exists x ∈ �n \ {0} such that (A − λI )xm−1 = 0 , we say that λ is an
eigenvalue of the tensor A and x an eigenvector of A associated with λ .

Let the differential operators ĝi be defined by

ĝi =
n

∑
i2=1

· · ·
n

∑
im=1

ai,i2,...,im
∂

∂ai,i2
· · · ∂

∂ai,im
, i ∈ {1, . . . ,n},

where A is an auxiliary n× n matrix consists of indeterminate variables ai j ’s. Hu et
al. [2] defined the d -th order trace of the tensor A by

trd(A ) = (m−1)n−1

⎡⎢⎢⎣ ∑
n
∑

i=1
ki=d

∏ (ĝi)ki

((m−1)ki)!

⎤⎥⎥⎦ tr(A(m−1)d).

Next result can be found in [2, Corollary 6.5].
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LEMMA 1. Let A ∈ T (�n,m) . Then

(i) tr1(A ) = ∑λi∈σ(A ) miλi ,

(ii) tr2(A ) = ∑λi∈σ(A ) miλ 2
i ,

where σ(A ) is the set of all the eigenvalues of the tensor A and mi is the algebraic
multiplicity of the eigenvalue λi .

And next result can be found in [6, Theorem 1 (b)].

LEMMA 2. The number of eigenvalues of an m-order n-dimensional tensor A
is n(m−1)n−1 .

Now, we give a new estimation of the eigenvalues of a certain class of complex
tensors by using the first order and second order trace of A .

THEOREM 8. Let A ∈ T (�n,m) . If σ(A ) ⊂ � and λ ∈ σ(A ) , then∣∣∣∣ tr1(A )
N

−λ
∣∣∣∣ � (N−1)

[
tr2(A )

N
− tr1(A )2

N2

]
, (10)

where N = n(m−1)n−1 .

Proof. Let λ1, . . . ,λN be the eigenvalues of A and let s2 be the sample variance
of these eigenvalues. By Lemma 1 and Lemma 2, we have

s2 =
tr2(A )

N
− tr1(A )2

N2 .

Applying Theorem 2 to λ1, . . .λN , we get (10). �
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