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Abstract. This paper addresses weak and strong type Lebesgue space estimates for the com-
mutators of n -dimensional Hausdorff operators when the symbol functions belong to Lipschitz
space. Strong type estimates for such commutators on classical Morrey spaces are established as
well.

1. Introduction

Let us begin our discussion by introducing one dimensional Hausdorff operator:

hΦ f (x) =
∫ ∞

0

Φ(t)
t

f
(x

t

)
dt, (1.1)

where Φ is a locally intergrable function on (0,∞) . By changing variables, (1.1) as-
sumes the form:

h̃Φ f (x) =
∫ ∞

0

Φ
(

x
t

)
t

f (t)dt. (1.2)

Having fundamental importance in analysis the operator has been well studied by many
authors. Especially, the boundedness of above operators on various function spaces has
been a main focus of study in the past (see, [19, 21, 22] for instance). Among some
recent developments the important ones are the multidimensional extensions of hΦ and
h̃Φ. In this regard the seminal work was done in [17] and [20]. However, we consider
here the following two extensions of (1.1) and (1.2) discussed in [3]:

HΦ f (x) =
∫

Rn

Φ(y)
|y|n f

(
x
|y|
)

dy,

H̃Φ,Ω f (x) =
∫

Rn

Φ(x/|y|)
|y|n Ω(y′) f (y)dy,

where Ω(y′) is an integrable function defined on the unit sphere Sn−1 . When Ω = 1,
we denote H̃Φ,1 by H̃Φ.
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Besides its importance in analysis, hΦ takes many classical operators as its spe-
cial cases if the kernel function Φ is suitably chosen, see [8] for more details. Since we
are mainly concerned with the high-dimensional Hausdorff operator, so, by replacing
Φ with Φ1(t) = t−nχ(1,∞)(t) and Φ2(t) = χ(0,1)(t), in the definition of H̃Φ we obtain
n -dimensional Hardy operator and its adjoint operator [6], respectively. The Hardy op-
erator has also undergone several generalizations and refinements in the past [2, 9]. For
the recent account of the boundedness results for high-dimensional Hausdorff operator
and its generalizations we refer the interested reader to see [4, 5, 7, 8, 11, 12, 13, 18].

On the other hand, boundedness of commutator operators also play very important
role not only in the regularity theory to second order elliptic and parabolic partial dif-
ferential equation (PDEs) but also in the well posedness problems of solution to many
kind of PDEs. Especially, the boundedness of commutators can be used to produce
characterization of some function spaces. Keeping these facts in mind, some authors
considered the commutators of high-dimensional Hausdorff operator on various func-
tion spaces [10, 15, 16]. Here, we define the commutators of H̃Φ,Ω as:

H̃b
Φ,Ω( f ) =: bH̃Φ,Ω f − H̃Φ,Ω(b f ),

where b is a locally integrable function on R
n. When Ω = 1, we obtain the commutator

operator H̃Φ,b discussed in [10]. Also, the boundedness of

Hb
Φ( f ) =: bHΦ f −HΦ(b f )

on Herz-type spaces was obtained in [15]. Remark (3.1) in the same paper indicates
that (Lp,Lq) boundedness of Hb

Φ cannot be deduced from the results presented at there.
Therefore, there arise a question regarding (Lp,Lq) boundedness of Hb

Φ . To answer this
question, contrary to [15], here we use fractional maximal function to control the com-
mutator of HΦ . Moreover, this technique allows us to study Hb

Φ on classical Morrey
spaces.

One of the major result of harmonic analysis is Marcinkiewicz interpolation the-
orem (see [14]) which uses weak Lp(Rn) spaces defined as the set of all measurable
functions f such that

‖ f‖Lp,∞(Rn) = sup
λ>0

λ |{x ∈ R
n : | f (x)| > λ}| 1

p ,

where 0 < p < ∞. Operators that map Lp to Lq are called of strong type (p,q) while
operators that map Lp to Lq,∞ are called weak type (p,q).

In this paper we will prove that H̃b
Φ,Ω is of weak type (p,q) when the symbol

function b belongs to homogeneous Lipschitz space which, for 0 < β < 1, can be
defined as:

‖b‖Λ̇β (Rn) =: sup
x,h∈Rn

|b(x+h)−b(x)|
|h|β < ∞.

Using Marcinkiewicz interpolation theorem it is asserted that the operator also follows
the strong type estimates. In addition, when b ∈ Λ̇β , we obtain some size conditions

on Φ so that the operator Hb
Φ is bounded from classical Morrey space Lp,λ (Rn) to
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Lq,λ (Rn). The space Lp,λ (Rn) was first introduced by Morrey [24] in 1938 to study the
local behavior of second order elliptic and parabolic PDEs. For 1 � p < ∞ , 0 � λ � n,
we define the Morrey space Lp,λ (Rn) as:

Lp,λ (Rn) =
{

f ∈ Lp
loc(R

n) : ‖ f‖Lp,λ (Rn) < ∞
}

,

where

‖ f‖Lp,λ (Rn) = sup
r>0,x0∈Rn

(
1

rλ

∫
Q(x0,r)

| f (x)|pdx

)1/p

,

and Q = Q(x0,r) denotes the cube centered at x0 with side length r along the coordi-
nate axes. It is easy to see that Lp,0(Rn) = Lp(Rn) and Lp,n(Rn) = L∞(Rn). If n < λ ,
then we have Lp,λ (Rn) = 0. Hence, we only consider the case 0 < λ < n.

In the sequel, we shall use the notation A � B to mean that there exist a positive
constant C independent of all essential variables such that A � CB.

2. Weak and strong estimates for H̃b
Φ,Ω

We begin this section by stating first the following weak type result for H̃b
Φ,Ω

THEOREM 1. Let 1 < p,q < ∞ , 0 < β < 1 , n > β p and 1/p−β/n = 1/q. If Φ
is a radial function, b ∈ Λ̇β (Rn) and

Cβ ,p =

(∫ ∞

0

|Φ(t)|p′
tn(1−p′)+1

max{1,t−β p′}dt

)1/p′

< ∞,

then

‖H̃b
Φ,Ω f‖Lq,∞(Rn) �

( |Sn−1|
n

)q

Cβ ,p‖b‖Λ̇β (Rn)‖Ω‖Lp′ (Sn−1)‖ f‖Lp(Rn),

where |Sn−1| denotes the volume of unit sphere Sn−1 .

Proof. Note that

|H̃b
Φ,Ω f (x)| �

∣∣∣∣∫
Rn

Φ(|x|/|y|)
|y|n Ω(y′)(b(x)−b(0)) f (y)dy

∣∣∣∣
+
∣∣∣∣∫

Rn

Φ(|x|/|y|)
|y|n Ω(y′)(b(y)−b(0)) f (y)dy

∣∣∣∣
� ‖b‖Λ̇β (Rn)|x|β

∫
Rn

∣∣∣∣Φ(|x|/|y|)
|y|n Ω(y′) f (y)

∣∣∣∣dy

+‖b‖Λ̇β (Rn)

∫
Rn

∣∣∣∣Φ(|x|/|y|)
|y|n−β Ω(y′) f (y)

∣∣∣∣dy

=: I1 + I2.
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We use Hölder’s inequality to approximate I2 as:

I2 � ‖b‖Λ̇β (Rn)

(∫
Rn

∣∣∣∣Φ(|x|/|y|)
|y|n−β Ω(y′)

∣∣∣∣p′ dy

)1/p′

‖ f‖Lp(Rn).

With the help of polar coordinates and change of variables it is easy to see that(∫
Rn

∣∣∣∣Φ(|x|/|y|)
|y|n−β Ω(y′)

∣∣∣∣p′ dy

)1/p′

= ‖Ω‖Lp′(Sn−1)|x|−
n
p+β

(∫ ∞

0

|Φ(t)|p′
tn(1−p′)+1

t−β p′dt

)1/p′

Therefore,

I2 � ‖b‖Λ̇β (Rn)‖Ω‖Lp′ (Sn−1)|x|−
n
p +β

(∫ ∞

0

|Φ(t)|p′
tn(1−p′)+1

t−β p′dt

)1/p′

‖ f‖Lp(Rn).

By a similar argument we estimate I1 as:

I1 � ‖b‖Λ̇β (Rn)‖Ω‖Lp′(Sn−1)|x|−
n
p+β

(∫ ∞

0

|Φ(t)|p′
tn(1−p′)+1

dt

)1/p′

‖ f‖Lp(Rn).

From these estimates for I1 and I2, one can have

|H̃b
Φ,Ω f (x)| � Cβ ,p‖b‖Λ̇β (Rn)‖Ω‖Lp′ (Sn−1)|x|−

n
q ‖ f‖Lp(Rn),

where we have used the condition 1/p−β/n = 1/q. Now for any λ > 0, we have

|{x ∈ R
n : |H̃b

Φ,Ω f (x)| > λ}|
� |{x ∈ R

n : Cβ ,p‖b‖Λ̇β (Rn)‖Ω‖Lp′ (Sn−1)|x|−
n
q ‖ f‖Lp(Rn) > λ}|

�

∣∣∣∣∣∣
⎧⎨⎩x ∈ R

n : |x|n <
Cq

β ,p‖b‖q
Λ̇β (Rn)

‖Ω‖q

Lp′ (Sn−1)
‖ f‖q

Lp(Rn)

λ q

⎫⎬⎭
∣∣∣∣∣∣ ,

which implies that ‖H̃b
Φ,Ω f‖Lq,∞(Rn) � ‖ f‖Lp(Rn). Thus, we conclude that H̃b

Φ,Ω f is of
weak type (p,q). �

In the next theorem of this section, we are going to prove that strong type estimates
also hold for H̃b

Φ,Ω f .

THEOREM 2. Let 1 < r,s < ∞ , 0 < β < 1 , n > β r , 1/r−β/n = 1/s. If Φ is a
radial function, b ∈ Λ̇β (Rn) and for small ε > 0 , Cβ ,r±ε < ∞, then

‖H̃b
Φ,Ω f‖Ls(Rn) � ‖ f‖Lr(Rn).
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Proof. Since r and s run through open interval, therfore, we can select r1 and
r2 such that r1 = r− ε and r2 = r + ε and choose s1 and s2 such that s1 < s < s2

satisfying
1
ri
− β

n
=

1
si

, (i = 1,2),

then by Theorem 1, we have

‖H̃b
Φ,Ω f‖Lsi ,∞(Rn) � ‖ f‖Lri (Rn), (i = 1,2).

Hence, using Marcinkiewicz interpolation theorem, we obtain

‖H̃b
Φ,Ω f‖Ls(Rn) � ‖ f‖Lr(Rn).

Which is as required. �

REMARK 1. Taking Ω = 1 in Theorem 1, one can deduce the weak type (p,q)
estimates for the commutators of Hardy operators (see, [23] for definitions)

3. Boundedness of Hb
Φ on Morrey space

Given a locally integrable function f and β , 0 � β < n, define the fractional
maximal function by

Mβ f (x) = sup
Q�x

1

|Q|1− β
n

∫
Q
| f (y)|dy,

where the supremum is taken over all cubes Q containing x . When β = 0, then M0 f =
M f denotes the usual Hardy Littlewood maximal function. For the boundedness of Mβ
on Morrey space we have the following lemma from [1].

LEMMA 1. Let 0 < β < n, 1 < p < n/β , 0 < λ < n− β p and 1/q = 1/p−
β/(n−λ ) . Then Mβ is bounded from Lp,λ (Rn) to Lq,λ (Rn).

The next lemma is very useful in proving our main result for this section.

LEMMA 2. ([25]) If b ∈ Λ̇β (Rn) with 0 < β < 1, then for any cube Q ⊂ R
n,

supx∈Q |b(x)−bQ| � C|Q| β
n ‖b‖Λ̇β (Rn) where bQ = 1

|Q|
∫
Q b.

THEOREM 3. Let 0 < β < 1 , 1 < p < n/β , 0 < λ < n−β p and b ∈ Λ̇β (Rn) . If
1/q = 1/p−β/(n−λ ) and

Cβ ,λ ,p =
∫

Rn

|Φ(y)|
|y|n |y| n+λ

p (1+ |y|β)dy < ∞,

then we have
‖Hb

Φ f‖Lq,λ (Rn) � ‖ f‖Lp,λ (Rn).
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Proof. Let b ∈ Λ̇β (Rn) . For any ball Q ⊆ R
n such that z ∈ Q , we have

1
|Q|

∫
Q
|Hb

Φ f (x)|dx � 1
|Q|

∫
Q

∫
Rn

|Φ(y)|
|y|n |(b(x)−b(x|y|−1)) f (x|y|−1)|dydx

=
1
|Q|

∫
Rn

|Φ(y)|
|y|n

∫
Q
|(b(x)−b(x|y|−1)) f (x|y|−1)|dxdy

� 1
|Q|

∫
Rn

|Φ(y)|
|y|n

∫
Q
|(b(x)−bQ)) f (x|y|−1)|dxdy

+
1
|Q|

∫
Rn

|Φ(y)|
|y|n

∫
Q
|(bQ −b|y|−1Q) f (x|y|−1)|dxdy

+
1
|Q|

∫
Rn

|Φ(y)|
|y|n

∫
Q
|b(x|y|−1)−b|y|−1Q) f (x|y|−1)|dxdy

= I + II + III.

Using lemma 2, we approximate I as

I � C‖b‖Λ̇β (Rn)

∫
Rn

|Φ(y)|
|y|n

(
1

|Q|1−β/n

∫
Q
| f (x|y|−1)|dx

)
dy

� C‖b‖Λ̇β (Rn)

∫
Rn

|Φ(y)|
|y|n |y|β (Mβ f (|y|−1z)

)
dy.

Similarly, for III , we have

III � C‖b‖Λ̇β (Rn)

∫
Rn

|Φ(y)|
|y|n

(
Mβ f (|y|−1z)

)
dy.

It remain to estimate II . For 0 < β < 1, we first compute

|bQ−b|y|−1Q| �
1
|Q|

∫
Q
|b(x)−b|y|−1Q|dx

� 1
|Q|

1
|y−1Q|

∫
Q

∫
|y|−1Q

|b(x)−b(t)|dtdx

� ‖b‖Λ̇β (Rn)

(
1
|Q|

∫
Q
|x|β dx+

1
|y−1Q|

∫
|y|−1Q

|t|β dt

)
� C|Q|β/n‖b‖Λ̇β (Rn)(1+ |y|−β )

Therefore.

II � C‖b‖Λ̇β (Rn)

∫
Rn

|Φ(y)|
|y|n (1+ |y|−β)

(
1

|Q|1−β/n

∫
Q
| f (x|y|−1)|dx

)
dy

� C‖b‖Λ̇β (Rn)

∫
Rn

|Φ(y)|
|y|n (1+ |y|β)

(
Mβ f (|y|−1z)

)
dy.

We combine the estimates for I, II and III, to have

1
|Q|

∫
Q
|Hb

Φ f (x)|dx � C‖b‖Λ̇β (Rn)

∫
Rn

|Φ(y)|
|y|n (1+ |y|β)

(
Mβ f (|y|−1z)

)
dy.
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Taking the supremum over all Q such that x ∈ Q along with Lq,λ (Rn) norm on
both sides and using the Minkowski inequality, we obtain

‖M(Hb
Φ f )(·)‖Lq,λ (Rn) � C‖b‖Λ̇β (Rn)

∫
Rn

|Φ(y)|
|y|n (1+ |y|β)‖Mβ f (|y|−1·)‖Lq,λ (Rn)dy

= C‖b‖Λ̇β (Rn)

∫
Rn

|Φ(y)|
|y|n (1+ |y|β)|y|n/p+λ/pdy‖Mβ f (·)‖Lq,λ (Rn).

Since Hb
Φ f ∈L1

loc(R
n) , therefore, by Lebesgue differentiation theorem |Hb

Φ f (z)|�
M
(
Hb

Φ f
)
(z) a.e. Finally, an application of Lemma 1 yields the desired result. �

Now the question of (Lp,Lq) boundedness of Hb
Φ can be answered by stating the

following theorem:

THEOREM 4. Let 0 < β < 1 , 1 < p < n/β , and b∈ Λ̇β (Rn) . If 1/q = 1/p−β/n
and

C′
β ,p =

∫
Rn

|Φ(y)|
|y|n |y| n

p (1+ |y|β )dy < ∞,

then we have
‖Hb

Φ f‖Lq(Rn) � ‖ f‖Lp(Rn).

Proof. The proof is similar to the proof of Theorem 3, so we omit the details. �
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