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Abstract. We consider a new differential-difference operator Λs on the real line. We study the
harmonic analysis associated with this operator. Next, we prove various mathematical aspects
of the qualitative uncertainty principles, including Hardy’s, Morgan’s, Cowling-Price’s and its
variants, Beurling’s, Gelfand-Shilov’s, Miyachi’s theorems for the generalized Hartley transform
associated to the operator Λs .

1. Introduction

The Hartley transform is an integral transform, attributed to Ralph Vinton Lyon
Hartley (cf. [2, 13]). This transform permits a function to be decomposed into two in-
dependent sets of sinusoidal components, these sets are represented in terms of positive
and negative frequency components, respectively. This is in contrast to the complex
exponential, exp(iλx) , used in classical Fourier analysis. The Hartley transform has
the advantages over the Fourier transform, it transforms real functions to real functions
(as opposed to requiring complex numbers), also this transform has complementary
symmetry properties with respect to its real and imaginary axis and of being its own
inverse. Moreover, is well known that the Hartley transform is in connection with var-
ious applications in mathematical physics. The familiar reciprocal pair of the Hartley
transforms for f in a suitable functions class, is given by

HC( f )(λ ) =
∫

R

f (x)cas(λx)dx

f (x) = 1
2π

∫
R

HC( f )(λ )cas(λx)dλ
(1.1)

where
cas(x) := cosx+ sinx. (1.2)
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The cas function (1.2) can be considered as a generalization of the exponential
function exp . A simple computation shows that the cas function is the unique C∞

solution of the differential-reflection problem

(Yr f )(x) = λ f (x), f (0) = 1, (1.3)

where Yr is the differential-reflection operator defined by

(Yr f )(x) =
(( d

dx
◦ r
)

f
)
(x) := f ′(−x). (1.4)

Here r is the reflection, acting on function f as

r( f )(x) =: f (−x).

Further, the function cas(x) satisfies the product formula

cas(x)cas(y) =
1
2

(
(1− r)cas

)
(x+ y)+

1
2

(
(1+ r)cas

)
(x− y).

This allows us to define the generalized translation operator related to the differential-
reflection operator Yr by

σ r
x f (y) =

1
2

(
(1− r) f

)
(x+ y)+

1
2

(
(1+ r) f

)
(x− y), (1.5)

and the generalized convolution product related to the differential-reflection operator
Yr by

f∗rg(x) =
∫

R

σ r
x f (y)g(y)dy. (1.6)

The Hartley transform has the following properties:

HC(Yr f )(λ ) = −λHC( f )(λ ),
HC(σ r

x f )(λ ) = cas(λx)HC( f )(λ ),
HC( f∗rg)(λ ) = HC( f )(λ )HC(g)(λ ).

In this paper, we consider the first-order singular differential-difference operator on R

Λs f (x) = Yr f (x)+
A′(x)
A(x)

(
f (x)− f (−x)

2

)
− sρ f (−x),

where s ∈ [−1,1]

A(x) = |x|2α+1 B(x), α > −1
2
,

B being a positive C∞ even function on R . We suppose in addition that

i) For all x � 0, A(x) is increasing and lim
x→∞

A(x) = ∞ .

ii) For all x > 0,
A′(x)
A(x)

is decreasing and lim
x→∞

A′(x)
A(x)

= 2ρ � 0.



UNCERTAINTY PRINCIPLES FOR THE GENERALIZED HARTLEY TRANSFORM 59

iii) There exists a constant δ > 0 such that for all x ∈ [x0,∞) , x0 > 0, we have

A′(x)
A(x)

=

{
2ρ + e−δxD(x), if ρ > 0

2α+1
x + e−δxD(x) if ρ = 0.

where D is a C∞ -function, bounded together with its derivatives.

Due to our assumptions on the function A there is a positive constant C such that

∀x ∈ R, A(x) �
{

Ce2ρ |x| if ρ > 0

C|x|2α+1 if ρ = 0.
(1.7)

The purpose of the present paper is twofold. On one hand, we want to provide
a new harmonic analysis on the real line corresponding to the differential-difference
operator Λs . More precisely, we study the generalized Hartley transform associated to
the operator Λs , we prove an inversion formula, a Plancherel and a Paley-Wiener theo-
rem, and we show how the intertwining operator Vs can be used to define generalized
translation operators and a convolution structure naturally associated to the operator
Λs . On the other hand we want to study the qualitative uncertainty principles for the
generalized Hartley transform.

Classical qualitative uncertainty principles are not inequalities, but are theorems
that tell us how a function (and its Fourier transform) behave under certain circum-
stances. For example: Hardy [12], Morgan [18], Cowling and Price [6], Beurling [3],
Miyachi [17] theorems enter within the framework of the qualitative uncertainty prin-
ciples.

The qualitative uncertainty principles has been studied by many authors for various
Fourier transforms, for examples (cf. [10, 15, 25]) and others.

In this paper, we prove Hardy’s theorem, Cowling-Price’s theorem, Morgan’s
theorem, Ray-Sarkar’s theorem, Miyachi’s theorem, Beurling’s theorem and Gelfand-
Shilov’s theorem for the generalized Hartley transform associated to the operator Λs .

The outline of this paper is as follow: In §2, we study the harmonic analysis as-
sociated with the operator Λs . More precisely, we study the eigenfunctions of this
operator. In particular we prove the Laplace integral representation for these eigenfunc-
tions. Next, we prove the inversion theorems and Plancherel’s formula for the Hartley
transform associated to the operator Λs noted HΛs . In §3 we prove an Lp version
of Hardy’s theorem for the generalized Hartley transform. §4 is devoted to generalize
Morgan’s theorem for the generalized Hartley transform HΛs . In §5, we prove the Ray-
Sarkar’s version of the Cowling-Price’s theorem for the generalized Hartley transform
HΛs . §6 is devoted to obtain Beurling’s theorem for HΛs and in the last section, we
establish the Miyachi’s theorem for HΛs .
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2. Harmonic analysis associated with the operator Λs

In this section we study the harmonic analysis related to the operator Λs .

NOTATION. We denote by
Pm(R) the set of homogeneous polynomials of degree m .
Ee(R) the space of even C∞ -functions on R .
E (R) the space of C∞ -functions on R .
S (R) the Schwartz space of rapidly decreasing functions on R .
Se(R) (resp. So(R)) the subspace of S (R) consisting of even (resp. odd) func-

tions.
De(R) the space of even C∞ -functions on R which are of compact support.
D(R) the space of C∞ -functions on R which are of compact support.
D′(R) the space of distributions with compact support on R .

2.1. The eigenfunctions of the operator Λs

To study the eigenfunctions of Λs , we consider first those of the second-order
singular differential operator on R+ defined by

L =
d2

dx2 +
A′(x)
A(x)

d
dx

.

Our basic reference about L will be the papers [22, 24] from which we recall the fol-
lowing result.

LEMMA 1. (i) For each λ ∈ C the differential equation

Lu = −(λ 2 + ρ2)u, u(0) = 1, u′(0) = 0, (2.8)

admits a unique even C∞ solution on R , denoted ϕλ .
(ii) For every x ∈ R , the function λ �→ ϕλ (x) is analytic.
(iii) For every x ∈ R ,

e−ρ |x| � ϕ0(x) � 1. (2.9)

(iv) For all x > 0 and λ ∈ C , the function ϕλ possess the Laplace type integral
representation

ϕ√λ 2−ρ2(x) =
∫ x

0
K (x,y)cos(λy)dy (2.10)

where K (x, .) is a positive continuous function on (−|x|, |x|) , with support in [−|x|, |x|] .
(v) There is a positive constant C such that for all λ ∈ C , x ∈ R and n ∈ N0 , we

have ∣∣∣ dn

dλ n ϕλ (x)
∣∣∣� C|x|ne(|Imλ |−ρ) |x|. (2.11)



UNCERTAINTY PRINCIPLES FOR THE GENERALIZED HARTLEY TRANSFORM 61

REMARK 1. If A(x) = (sinh |x|)2α+1(coshx)2β+1 , α � β � −1
2 , α 
= −1

2 , then
the differential operator L reduced to the so-called Jacobi operator. The eigenfunction
ϕλ is the Jacobi function of index (α,β ) given by

ϕλ (x) = F
(1

2
(ρ + λ ),

1
2
(ρ −λ ); α +1; −(sinh(x))2

)
, (2.12)

where F is the hypergeometric function 2F1 of Gauss.

PROPOSITION 1. For each λ ∈ C the differential-difference equation

Λsu = λu, u(0) = 1, (2.13)

admits a unique C∞ solution on R , denoted Φs(λ , .) and given by

Φs(λ ,x) =

⎧⎨
⎩

ϕ√λ 2−(s2+1)ρ2(x)+ 1
λ−sρYrϕ√λ 2−(s2+1)ρ2(x), if λ 
= sρ

1+ sgn(x) 2sρ
A(x)

∫ |x|

0
A(t)dt, if λ = sρ .

(2.14)

Proof. Write u = ue +uo with

ue(x) =
u(x)+u(−x)

2
and uo(x) =

u(x)−u(−x)
2

.

Then (2.13) is equivalent to the system⎧⎪⎨
⎪⎩

Yruo + A′(x)
A(x) uo = (λ + sρ)ue

Yrue = (λ − sρ)uo

ue(0) = 1.

(2.15)

If λ 
= sρ , the identity (2.14) is now immediate from Lemma 1 and the relation (2.15).
On the other hand we have

Yrϕ√λ 2−(s2+1)ρ2(x) = sgn(x)
(λ 2− s2ρ2)

A(x)

∫ |x|

0
ϕ√λ 2−(s2+1)ρ2(t)A(t)dt.

Then, for λ 
= sρ

1
λ − sρ

Yrϕ√λ 2−(s2+1)ρ2(x) = sgn(x)
(λ + sρ)

A(x)

∫ |x|

0
ϕ√λ 2−(s2+1)ρ2(t)A(t)dt. (2.16)

Thus if λ = sρ , we have

u(x) = ue(x)+uo(x)

= lim
λ→sρ

(
ϕ√λ 2−(s2+1)ρ2(x)+

1
λ − sρ

Yrϕ√λ 2−(s2+1)ρ2(x)
)

= ϕiρ(x)+ sgn(x) 2sρ
A(x)

∫ |x|

0
ϕiρ(t)A(t)dt

= 1+ sgn(x) 2sρ
A(x)

∫ |x|

0
A(t)dt. �
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REMARK 2. For all x ∈ R\ {0} and λ ∈ C , we can write

Φs(λ ,x) = ϕ√λ 2−(s2+1)ρ2(x)+ sgn(x)
λ + sρ
A(x)

∫ |x|

0
ϕ√λ 2−(s2+1)ρ2(t)A(t)dt. (2.17)

The eigenfunctions Φs possesses the following properties:

i) There is a positive constant C such that for all λ ∈ C , x ∈ R and n ∈ N0 , we
have ∣∣∣ dn

dλ n Φs(λ ,x)
∣∣∣� C(1+ |λ |)|x|ne|Imλ | |x|. (2.18)

ii) There exists a positive constant C such that for all x ∈ R and λ ∈ R, with |λ |�√
s2 +1ρ , we have

|Φs(λ ,x)| � C(1+ |x|)(1+ |λ |+ ρ)e−ρ |x|.

iii) There exists a positive constant C such that for all x ∈ R and λ ∈ R, with |λ |�√
s2 +1ρ , we have

|Φs(λ ,x)| � M(1+ |x|)(1+ |λ |+ ρ)e(
√

(s2+1)ρ2−λ 2−ρ) |x|.

The following lemma shall be useful.

LEMMA 2. (i) For all x > 0 and λ ∈ C , we have

ϕ√λ 2−(s2+1)ρ2(x) =
∫ x

0
K (x,y)cos((

√
λ 2− s2ρ2)y)dy (2.19)

where K (x, .) is the positive continuous function on (−|x|, |x|) , with support in [−|x|, |x|]
given in (2.10).

(ii) For all x ∈ R\ {0} and λ ∈ C , we have

λ + sρ
A(x)

∫ |x|

0
ϕ√λ 2−(s2+1)ρ2(t)A(t)dt

=
1

2A(x)

∫ |x|

−|x|

(
sρGK (x,y)− ∂

∂y
GK (x,y)

)
cas(

√
λ 2− s2ρ2 y)dy, (2.20)

where

GK (x,y) =

⎧⎨
⎩
∫ |x|

|y|
K (t,y)A(t)dt if |y| < |x|

0 if |y| � |x|.

Proof. The first assertion (i) is immediately from (2.10).
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Now we want to prove (ii). From the relation (2.19) and Fubini’s theorem, we have

λ+sρ
A(x)

∫ |x|

0
ϕ√λ 2−s2ρ2(t)A(t)dt =

λ+sρ
A(x)

∫ |x|

0

(∫ t

0
cos(

√
λ 2−s2ρ2y)dyK (t,y)

)
A(t)dt

=
λ+sρ
A(x)

∫ |x|

0

(∫ |x|

|y|
K (t,y)A(t)dt

)
cos(

√
λ 2−s2ρ2y)dy

=
λ+sρ
A(x)

∫ |x|

0
GK (x,y)cos(

√
λ 2−s2ρ2y)dy. (2.21)

Moreover, by integration by parts, we obtain

λ
A(x)

∫ |x|

0
GK (x,y)cos(

√
λ 2−s2ρ2 y)dy =

−1
2A(x)

∫ |x|

−|x|
∂
∂y

GK (x,y)sin(
√

λ 2−s2ρ2 y)dy.

On the other hand

sρ
A(x)

∫ |x|

0
GK (x,y)cos(

√
λ 2 − s2ρ2 y)dy =

sρ
2A(x)

∫ |x|

−|x|
GK (x,y)cos(

√
λ 2− s2ρ2 y)dy.

Thus

λ + sρ
A(x)

∫ |x|

0
GK (x,y)cos(

√
λ 2 − s2ρ2 y)dy

=
1

2A(x)

∫ |x|

−|x|

(
sρGK (x,y)− ∂

∂y
GK (x,y)

)
cas(

√
λ 2− s2ρ2 y)dy.

This finishes the proof. �

THEOREM 1. The eigenfunction Φs(λ ,x) have the following Laplace integral
representation

∀x ∈ R\ {0}, ∀λ ∈ C, Φs(λ ,x) =
∫ |x|

−|x|
Ks(x,y)cas((

√
λ 2 − s2ρ2)y)dy (2.22)

where Ks(x,y) is a continuous function on (−|x|, |x|) , with support in [−|x|, |x|] given
by

Ks(x,y) =
1
2
K (x,y)+ sρ

sgn(x)
2A(x)

GK (x,y)− sgn(x)
2A(x)

∂
∂y

GK (x,y). (2.23)

Proof. For all x ∈ R\{0} and λ ∈ C , the relations (2.17), (2.19) and (2.20), give
that

Φs(λ ,x) = ϕ√λ 2−(s2+1)ρ2(x)+ sgn(x) λ+sρ
A(x)

∫ |x|

0
ϕ√λ 2−(s2+1)ρ2(y)A(y)dy

=
∫ |x|

0
K (x,y)cos((

√
λ 2− s2ρ2)y)dy

+sgn(x)λ+sρ
A(x)

∫ |x|

0
ϕ√λ 2−(s2+1)ρ2(y)A(y)dy

=
∫ |x|

−|x|

(1
2
K (x,y)+

sρsgn(x)
2A(x)

GK (x,y)− sgn(x)
2A(x)

∂
∂y

GK (x,y)
)

×cas(
√

λ 2− s2ρ2 y)A(y)dy.
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Thus

Φs(λ ,x) =
∫ |x|

−|x|
Ks(x,y)cas(

√
λ 2− s2ρ2 y)dy. �

We consider the generalized intertwining operator Vs defined on E (R) by

Vs f (x) =

⎧⎨
⎩
∫ |x|

−|x|
Ks(x,y) f (y)dy if x ∈ R\ {0},

f (0) if x = 0,
(2.24)

where Ks(x,y) is the continuous function on (−|x|, |x|) , with support in [−|x|, |x|] de-
fined by relation (2.23).

We have

∀λ ∈ C, ∀x ∈ R, Φs(λ ,x) = Vs (cas(
√

λ 2− s2ρ2))(x). (2.25)

Using the similar method presented in [22, 23, 24], we prove the following results.
The operator Vs is a topological automorphism of E (R) satisfying

∀ f ∈ E (R), Λs (Vs f ) = Vs (Yr f ) . (2.26)

The operator tVs is defined on D(R) by

∀y ∈ R, tVs ( f )(y) =
∫
|x|�|y|

Ks(x,y) f (x)A(x)dx. (2.27)

The operator tVs is a topological automorphism of D(R) . The operators Vs and tVs

possess the following properties:
(i) For all f ∈ D(R) and g ∈ E (R) , we have∫

R

tVs ( f )(y)g(y)dy =
∫

R

f (x)Vs g(x)A(x)dx. (2.28)

(ii) The inverse operator tV−1
s is given by

tV−1
s f = t χ−1( fe)+ (sρI−Yr) t χ−1(J fo), (2.29)

where t χ−1 is the inverse of the transmutation operator associated with operator L and
J is the integral operator defined by

J f (x) =
∫ x

−∞
f (t)dt, x ∈ R. (2.30)

(iii) The generalized intertwining operator Vs and its dual tVs are positive.

COROLLARY 1. For all λ , x ∈ R , and |λ | � sρ we have

|Φs(λ ,x)| � 2. (2.31)

Proof. The relations (2.24), (2.25) and the previous result (iii), give the result. �
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2.2. Generalized Hartley transform associated to the operator Λs

NOTATIONS. We denote by Lp
A(R) , 1 � p � ∞ , the space of measurable functions

f on R satisfying

‖ f‖Lp
A(R) =

(∫
R

| f (x)|pA(x)dx

)1/p

< ∞, if 1 � p < ∞

‖ f‖L∞
A (R) = esssup

x∈R

| f (x)| < ∞.

S 2
s (R) , s ∈ [−1,1] , the space of C∞ -functions on R such that for all m,n ∈ N

qn,m( f ) := sup
x∈R

eρ(1+
√

1−s2)|x|(1+ x2)m
∣∣∣ dn

dxn f (x)
∣∣∣< ∞.

S 2
s,e(R) (resp. S 2

s,o(R)) the subspace of S 2
s (R) consisting of even (resp. odd) func-

tions.

DEFINITION 1. The generalized Hartley transform, associated to Λs , of a func-
tion f ∈ L1

A(R) is defined by

HΛs( f )(λ ) =
∫

R

f (x)Φs(λ ,x)A(x)dx, forall λ ∈ R. (2.32)

PROPOSITION 2. For all f ∈ D(R) we have

HΛs( f ) = Hm ◦ tVs ( f ), (2.33)

where Hm is the modified Hartley transform defined on D(R) by

∀λ ∈ C, Hm( f )(λ ) =
∫

R

f (x)cas(
√

λ 2− s2ρ2x)dx = HC( f )(
√

λ 2− s2ρ2).

(2.34)

Proof. The result is immediately from the relations (2.25) and (2.28). �

PROPOSITION 3. Let f ∈ L1
A (R) . For almost all y , the function

y �−→ tVs( f )(y) =
∫
|x|�|y|

Ks(x,y) f (x)A(x)dx, (2.35)

is defined almost everywhere on R and belongs to L1(R) . Moreover, for all bounded
continuous function g on R , we have the following formula:∫

R

tVs( f )(y)g(y)dy =
∫

R

f (x)Vsg(x)A(x)dx. (2.36)

Proof. The functions (x,y) �→Ks(x,y) f (x)A(x) and (x,y) �→Ks(x,y) f (x)g(y)A(x)
are Lebesgue integrable on R

2 . Then by using Fubini’s theorem, we get the result. �
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PROPOSITION 4. For all f ∈ S 2
s (R) , we have the decomposition

HΛs f (λ ) = 2FL( fe)(
√

λ 2− (s2 +1)ρ2)−2(λ + sρ)FLJ( fo)(
√

λ 2− (s2 +1)ρ2),
(2.37)

where J is the integral operator defined by (2.30) and FL stands for the Fourier trans-
form related to the differential operator L, defined on S 2

s,e(R) by

FL( f )(λ ) =
∫ ∞

0
f (x)ϕλ (x)A(x)dx, λ ∈ R,

ϕλ being the eigenfunction of L as defined by (2.8).

Proof. If f ∈S 2
s,e(R) , identity (2.37) is obvious. Assume f ∈ S 2

s,o(R) . By using
(2.32), (2.14), (2.8), and by integrating by parts we obtain

HΛs f (λ ) =
1

λ − sρ

∫
R

f (x)Yrϕ√λ 2−(s2+1)ρ2(x)A(x)dx

=
1

λ − sρ

∫
R

d
dx

(
A(x)

d
dx

ϕ√λ 2−(s2+1)ρ2(x)
)
J( f )(x)dx

=
1

λ − sρ

∫
R

Lϕ√λ 2−(s2+1)ρ2(x)J( f )(x)A(x)dx

= −(λ + sρ)
∫

R

ϕ√λ 2−(s2+1)ρ2(x)J( f )(x)A(x)dx

= −2(λ + sρ)FL(J f )(
√

λ 2− (s2 +1)ρ2),

which completes the proof. �

Using Bloom-Xu’s approach [4], we prove.

THEOREM 2. The transform HΛs is a bijection from S 2
s (R) to S (R) .

We shall need the following properties.

PROPOSITION 5. (Transmutation formula)

(i) Let f ∈ S 2
s (R) and g a nice function. Then

∫
R

Λs f (x)g(x)A(x)dx =
∫

R

f (x)Λsg(x)A(x)dx. (2.38)

(ii) For f ∈ S 2
s (R)

HΛs (Λs f ) (ξ ) = ξHΛs f (ξ ), ξ ∈ R. (2.39)
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Proof. Let f ∈ S 2
s (R) and g a nice function, and consider the bracket

〈 f ,g〉 =
∫

R

f (x)g(x)A(x)dx.

First, we have

〈Yr f ,g〉 =
∫

R

f ′(−x)g(x)A(x)dx = −
∫

R

f (x)
d
dx

[g(−x)A(x)]dx

= −
∫

R

f (x)g(−x)A′(x)dx+
∫

R

f (x)g′(−x)A(x)dx

= 〈 f ,Yrg〉−
〈

f , ǧ
A′

A

〉
where h̆(x) = h(−x) .

Second, we have〈1
2

A′

A
( f − f̆ ),g

〉
=
∫

R

A′(x)
A(x)

f (x)− f (−x)
2

g(x)A(x)dx

=
∫

R

( f (x)− f (−x)
2

)
g(x)A′(x)dx

=
1
2

∫
R

(A′(x) f (x)g(x)−A′(x) f (−x)g(x))dx

=
1
2

∫
R

(A′(x) f (x)g(x)−A′(−x) f (x)g(−x))dx

=
1
2

∫
R

(A′(x) f (x)g(x)+A′(x) f (x)g(−x))dx

=
1
2

∫
R

A′(x) f (x)(g(−x)+g(x))dx

=
∫

R

A′(x)
A(x)

f (x)
(g(x)+g(−x)

2

)
A(x)dx

=
〈

f ,
1
2

A′

A
(g+ ğ)

〉
.

Finally,

〈(−sρ f̆ ),g〉 = −sρ
∫

R

f (−x)g(x)A(x)dx = −sρ
∫

R

f (x)g(−x)A(x)dx

= 〈 f ,(−sρ ğ)〉.
All together, this gives

〈Λs f ,g〉 =
〈
Yr f +

1
2

A′

A
( f − f̆ )− sρ f̆ ,g

〉
=
〈

f ,Yrg− ğ
A′

A
+

1
2

A′

A
(g+ ğ)− sρ ğ

〉
=
〈

f ,Yrg+
1
2

A′

A
(g− ğ)− sρ ğ

〉
= 〈 f ,Λsg〉.
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Assertion (ii) follows by substituting in (2.38) g by Φs . �

2.3. Inversion formula and Plancherel’s theorem for HΛs

DEFINITION 2. The generalized translation operators τs
x , x ∈ R are defined on

L2
A(R) , by

∀λ ∈ C, HΛs(τ
s
x f )(λ ) = Φs(λ ,x)HΛs( f )(λ ). (2.40)

Using the generalized translation operator, we define the generalized convolution
product of functions as follows.

DEFINITION 3. For f ,g ∈ D(R) , the generalized convolution product f ∗Λs g is
defined by

f ∗Λs g(x) =
∫

R

τs
x f (y)g(y)A(y)dy, for all x ∈ R. (2.41)

PROPOSITION 6. (i) Let f and g be in D(R) . Then the generalized convolution
product f ∗Λs g belongs to D(R) and we have

HΛs( f ∗Λs g)(ξ ) = HΛs( f )(ξ )HΛs (g)(ξ ), for all ξ ∈ R. (2.42)

(ii) We have the relation

∀ f ,g ∈ D(R), tVs( f ∗Λs g) = tVs( f )∗r
tVs(g), (2.43)

where ∗r is the convolution product on R given by (1.6).

Proof. We obtain the result by the similar ideas as on the context of Chébli-
Trimèche hypergroup (cf. [22]). �

DEFINITION 4. Let f ∈ L∞
A (R) , f is called HΛs -function of positive type if for

all ϕ ∈ D(R) , we have ∫
R

f (x)ϕ ∗Λs ϕ(x)A(x)dx � 0.

LEMMA 3. Let u in D′(R) . The following assertions are equivalents:
(i) For all ϕ ∈ D(R) , we have 〈u,ϕ2〉 � 0 .
(ii) u is a positive distribution.
(iii) u is a positive measure.

Proof. By using the proof of Theorem XVIII of [21] p. 276–277, we obtain the
result. �

THEOREM 3. (Böckner’s theorem) Let f ∈ L∞
A (R) , if f is HΛs -function of posi-

tive type, there exists a positive boundedmeasure μ on R , such that f (x)= H −1
Λs

(μ)(x) ,
for all x ∈ R .
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Proof. Let f ∈ L∞
A (R) , of positive type and putting u = HΛs( f ) . For all ϕ ∈

D(R) , we have
〈u,ϕ2〉 = 〈HΛs( f ),ϕ2〉

= 〈 f ,H −1
Λs

(ϕ2)〉
= 〈 f ,HΛs

−1(ϕ)∗Λs HΛs
−1(ϕ)〉 � 0.

Hence u is a positive distribution. Again, by using lemma 3 it is a measure of positive
type. As u ∈ HΛs(L

∞
A (R)) , by a standard analysis, we prove this measure is bounded

and we deduce the result. �

DEFINITION 5. Let u ∈ D′(R) , u is called HΛs -distribution of positive type if
for all ϕ ∈ D(R) , we have

〈u,ϕ ∗Λs ϕ〉 � 0.

THEOREM 4. (Böckner-Schwartz’s theorem)
Let u ∈ D′(R) . The following assertions are equivalents:
(i) u is of positive type.
(ii) u is a tempered distribution, and there exists a tempered positive measure μ

on R , such that u = H −1
Λs

(μ) .

Proof. We want to prove that (i) ⇒ (ii).
It is easy to see that for all ϕ ∈D(R) , the function ϕ �→ u∗Λs ϕ ∗Λs ϕ is of positive

type. Then by the Theorem 3, there exists a bounded positive measure μϕ such that
μϕ = HΛs(u ∗Λs ϕ ∗Λs ϕ) . Let χ ∈ D(R) such that HΛs(χ)(λ ) 
= 0, for all λ ∈ R .
We consider the measure μ defined by μ = μχ

|HΛs (χ)(λ )|2 . It is clear that μ is a positive

measure, we can write:

HΛs(u ∗Λs ϕ ∗Λs ϕ ∗Λs χ ∗Λs χ) =
(
HΛs(χ)

)2μϕ =
(
HΛs(ϕ)

)2μχ .

Thus
μϕ =

(
HΛs(ϕ)

)2μ , for all ϕ ∈ D(R).

Then, we have
〈u,ϕ ∗Λs ϕ〉 = 〈u ∗Λs ϕ ∗Λs ϕ ,δ 〉

= H −1
Λs

(μϕ )(0)

=
∫

R

(
HΛs(ϕ)

)2
(λ )dμ(λ ).

Thus, we deduce that

〈u,ψ〉 =
∫

R

HΛs(ψ)(λ )dμ(λ ) = 〈H −1
Λs

(μ),ψ〉.

So the result follows.
Now we want to prove that (ii) ⇒ (i).
If μ = HΛs(u) , we have for all ϕ ∈ D(R) ,

〈H −1
Λs

(μ),ϕ ∗Λs ϕ〉 = 〈μ ,HΛs(ϕ ∗Λs ϕ)〉
= 〈μ ,

(
HΛs(ϕ)

)2〉 � 0.
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The theorem is then proved. �

REMARK 3. As above, we prove the Böckner and Böckner-Schwartz’s theorems
for the classical Hartley transform HC defined by (1.1).

NOTATION. We denote by Lp
c (R+) , 1 � p � ∞ , the space of measurable functions

f on R+ satisfying

‖ f‖Lp
c (R+) =

(∫
R+

| f (x)|p dx
|c(x)|2

)1/p

< ∞, if 1 � p < ∞

‖ f‖L∞
c (R+) = ess sup

x∈R+

| f (x)| < ∞,

where c(s) is a continuous function on (0,∞) such that

c−1(s) ∼ k1 sα+ 1
2 , as s → ∞, (2.44)

c−1(s) ∼
{

k2 s, as s → 0 if ρ > 0
k3 s2α+1, as s → 0 if ρ = 0

(2.45)

for some k1 k2,k3 ∈ C .
Lp

νs(R) , 1 � p � ∞ , the space of measurable functions f on R satisfying

‖ f‖Lp
νs (R) =

(∫
R

| f (x)|pdνs(x)
)1/p

< ∞, if 1 � p < ∞

‖ f‖L∞
νs (R) = esssup

x∈R

| f (x)| < ∞,

where dνs is the measure given by

dνs(λ ) =
|λ |

4
√

λ 2 − (s2 +1)ρ2|c(
√

λ 2− (s2 +1)ρ2)|2 1
R\(−

√
s2+1ρ ,

√
s2+1ρ)

dλ ,

(2.46)
with 1

R\(−
√

(s2+1)ρ ,
√

(s2+1)ρ) is the characteristic function of

R\ (−
√

(s2 +1)ρ ,
√

(s2 +1)ρ).

THEOREM 5. For all f ∈ D(R) , we have

f (x) =
∫

R

HΛs( f )(λ )Φs(λ ,x)dνs(λ ),

where dνs is given by (2.46).

Proof. By using Proposition 6 we see that the functional

〈S, f 〉 = tV−1
s ( f )(0), f ∈ D(R)
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is HC - positive type distribution in D′(R) . From Remark 3, we have the Böchner-
Schwartz theorem for HC . Thus, we deduce that there exists a positive measure νs ,
such that for all f in D(R), we have

f (0) =
∫

R

Hm(t Vs( f ))(λ )dνs(λ ).

Using the relation (2.33) we obtain

f (0) =
∫

R

HΛs( f )(λ )dνs(λ ).

By substituting in this relation f by τs
x f , x ∈ R , and by using (2.40) we obtain

f (x) =
∫

R

HΛs(τ
s
x f )(λ )dνs(λ ) =

∫
R

HΛs( f )(λ )Φs(λ ,x)dνs(λ ). (2.47)

If we suppose that f is even, then by the inversion formula for the transform FL (see
[22]), we have

f (x) =
∫

R

FL( f )(μ)ϕμ(x)
dμ

2|c(μ)|2 . (2.48)

But the parametrization μ2 = λ 2 − (s2 + 1)ρ2 , shows that μ ∈ [0,∞) if and only if
λ ∈ R \ (−√(s2 +1)ρ ,

√
(s2 +1)ρ) , thus from (2.37) we deduce that (2.48) can also

be written in the form

f (x) =
∫

R\(−
√

(s2+1)ρ ,
√

(s2+1)ρ)
HΛs( f )(λ )Φs(λ ,x)

× |λ |dλ
4
√

λ 2− (s2 +1)ρ2|c(√λ 2− (s2 +1)ρ2)|2 .

Using the relation (2.47) we deduce that the measure dνs is supported by

R\ (−
√

(s2 +1)ρ ,
√

(s2 +1)ρ)

and given by (2.46). �

THEOREM 6. Let f ∈ L1
A(R) such that HΛs( f ) belongs to L1

νs
(R) . Then we have

the following inversion formula

f (x) =
∫

R

HΛs( f )(λ )Φs(λ ,x)dνs(λ ) a.e. x ∈ R.

Proof. It is easy to see that if HΛs( f ) belongs to L1
νs

(R) then FL( fe) belongs

to L1
c(R+) , where fe is the even part of f . For |λ | �

√
(s2 +1)ρ the function λ �→

HΛs ( f )(λ )−HΛs( f )(−λ )
λ belongs to L1

νs
(R) , then FL(J fo) ∈ L1

c(R+) , where fo is the odd
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part of f and J the transform given by (2.30). On the other hand using (2.31) we obtain
for μ2 = λ 2− (s2 +1)ρ2

|Yrϕμ(x)| � |(λ − sρ)
Φs(λ ,x)−Φλ (−x)

2
| � 2(|λ |+ |s|ρ).

Furthermore, the function μ �→√
μ2 +(s2 +1)ρ2FL(J fo)(μ) is in L1

c(R+) , so by the
dominated convergence theorem we obtain∫

R+
FL(J fo)(λ )Yrϕμ(x)

dμ
|c(μ)|2 = Yr

(∫
R+

FL(J fo)(λ )ϕμ(x)
dμ

|c(μ)|2
)
.

We get the result by using the relation∫
R

HΛs( f )(λ )Φs(λ ,x)dνs(λ )

=
∫

R+
FL( fe)(μ)ϕμ(x)

dμ
|c(μ)|2 −Yr

(∫
R+

FL(J fo)(μ)ϕμ(x)
dμ

|c(μ)|2
)

and the analogous theorem corresponding to FL . �

THEOREM 7. (Plancherel formula) For all f ∈ S 2(R) , we have∫
R

|HΛs( f )(λ )|2dνs(λ ) (2.49)

=
∫

R

| f (x)|2A(x)dx+2s2ρ2
∫

R

|J fo(x)|2A(x)dx−2sρRe
(∫

R

fe(x)J fo(x)A(x)dx
)
,

where dνs is the measure given by (2.46).

Proof. By (2.37)∫
R

|HΛs( f )(λ )|2dνs(λ )

= 4
∫

R

|FL( fe)(
√

λ 2 − (s2 +1)ρ2)|2dνs(λ )

+4
∫

R

(λ + sρ)2|FL(J fo)(
√

λ 2 − (s2 +1)ρ2)|2dνs(λ )

−8sρRe
(∫

R

FL( fe)(
√

λ 2− (s2 +1)ρ2)FL(J fo)(
√

λ 2− (s2 +1)ρ2)dνs(λ )
)

= I1 + I2 + I3.

By a Plancherel formula for the Fourier transform FL

I1 =
∫

R

| fe(x)|2A(x)dx, and I3 = −2sρRe
(∫

R

fe(x)J fo(x)A(x)dx
)
.

Moreover

I2 = 4
∫

R

(λ + sρ)2|FL(J fo)(
√

λ 2− (s2 +1)ρ2)|2dνs(λ )

= 4
∫

R

(λ 2 + s2ρ2)|FL(J fo)(
√

λ 2 − (s2 +1)ρ2)|2dνs(λ )

=
∫

R

(μ2 + ρ2)|FL(J fo)(μ)|2 dμ
|c(μ)|2 +2s2ρ2

∫
R

|FL(J fo)(μ)|2 dμ
|c(μ)|2 .
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Using now the identity

FL(Lh)(μ) = −(μ2 + ρ2)FL(h)(μ), h ∈ S 2
e (R)

and, by integration by parts, we deduce that

I2 = −
∫

R

FL(LJ fo)(μ)FL(J fo)(μ)
dμ

|c(μ)|2 +2s2ρ2
∫

R

|FL(J fo)(μ)|2 dμ
|c(μ)|2

= −
∫

R

LJ fo(x)J fo(x)A(x)dx+2s2ρ2
∫

R

|J fo(x)|2A(x)dx

= −
∫

R

d
dx

(
A(x)

d
dx

J fo(x)
)
J fo(x)dx+2s2ρ2

∫
R

|J fo(x)|2A(x)dx

=
∫

R

| fo(x))|2A(x)dx+2s2ρ2
∫

R

|J fo(x)|2A(x)dx.

Hence

I1 + I2 + I3 =
∫

R

| fe(x)|2A(x)dx+
∫

R

| fo(x))|2A(x)dx+2s2ρ2
∫

R

|J fo(x)|2A(x)dx

−2sρRe
(∫

R

fe(x)J fo(x)A(x)dx
)

=
∫

R

| f (x)|2A(x)dx+2s2ρ2
∫

R

|J fo(x)|2 −2sρRe
(∫

R

fe(x)J fo(x)A(x)dx
)
.

This completes the proof. �
In the rest of this article, we assume that s = 0.

2.4. The generalized heat kernel

DEFINITION 6. Let t > 0. The heat kernel Et associated with the operator Λs is
defined by

∀x ∈ R, Et(x) = H −1
Λs

(e−tλ 2
)(x). (2.50)

REMARK 4. As the function λ �→ e−tλ 2
is an even function on R , then from the

relation (2.37), we deduce that

∀x ∈ R, Et(x) =
1
2
F−1

L (e−t(λ 2+ρ2))(x). (2.51)

We introduce also the generalized heat functions Nn(t, .) , n ∈ N are defined on R

by

Nn(t,x) = (2π)−1
∫

R

λ ne−tλ 2
Φs(λ ,x)dνs (λ ). (2.52)

These functions satisfies the following properties.
i) For all t > 0, Nn(t, .) is an C∞ -function on R .
ii) For all t > 0 and ∀x ∈ R, N0(t,x) = Et(x) > 0.

iii) For all t > 0, ∀λ ∈ R , HΛs

(
Nn(t, .)

)
(λ ) = λ ne−tλ 2

.
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PROPOSITION 7. Let t > 0 . We have

∀y ∈ R, tVs (Et)(y) =
1

2
√

πt
e−

y2
4t . (2.53)

Proof. From the relations (2.50) and (2.33), we have

∀y ∈ R, tVs (Et)(y) = H −1
C (e−tλ 2

)(y) =
1

2
√

πt
e−

y2
4t . �

PROPOSITION 8. Let p ∈ [1,∞) . There exists a positive constant C(p, t) such
that

∀x ∈ R, (Et(x))
p � C(p,t)E t

p
(x). (2.54)

Proof. From [9], p. 251, there exist two real numbers μ1 and μ2 , such that

∀x ∈ R,
eμ1t

22α+1Γ(α +1)tα+1

e−
x2
4t√

B(x)
� Et(x) � eμ2t

22α+1Γ(α +1)tα+1

e−
x2
4t√

B(x)
.

(2.55)
Using the hypothesis on the function A , there exist C > 0 such that for all x∈R, B(x)�
C . Thus, according (2.55), we obtain (2.54). �

3. An Lp version of Hardy’s theorem

PROPOSITION 9. Let p ∈ [1,∞] and f a measurable function on R such that

eax2
f belongs to Lp

A (R) for some a > 0 . Then the function HΛs( f ) given for all
λ ∈ C by

HΛs( f )(λ ) =
∫

R

f (x)Φs(λ ,x)A(x)dx,

is well defined, entire on C , and there exists a positive constant C such that

∀ξ , η ∈ R, |HΛs( f )(ξ + iη)| � Ce
η2
4a . (3.56)

Proof. The first assertion follows from Hölder’s inequality, the relation (2.18), and
the derivation theorem under the integral sign.

If p = 1, we deduce from Remark 2 that for all ξ ,η ∈ R

|HΛs( f )(ξ + iη)| �
∫

R

| f (x)||Φs(ξ + iη ,x)|A(x)dx

� C
∫

R

eax2 | f (x)|e−ax2
e|η||x|A(x)dx

� Ce
|η|2
4a

∫
R

e−a(x− |η|
2a )2 | f (x)|A(x)dx � e

|η|2
4a ||eax2

f ||L1
A (R).

(3.57)
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If p∈ (1,∞] , we deduce from Remark 2 and Hölder’s inequality that for all ξ ,η ∈
R

|HΛs( f )(ξ + iη)| �
∫

R

| f (x)||Φs(ξ + iη ,x)|A(x)dx

� C
∫

R

eax2 | f (x)|e−ax2
e|η||x|A(x)dx

� Ce
|η|2
4a (
∫

R

e−ap′(x− |η|
2a )2A(x)dx)

1
p′ ||eax2

f ||Lp
A (R),

where p′ is the conjugate exponent of p . By using the properties of the function A , the
integral of the right member is finite. So, as the function eax2

f belongs to Lp
A (R) , we

obtain (3.56). �

THEOREM 8. Let f be a measurable function on R such that

eax2
f ∈ Lp

A (R) and ebλ 2
HΛs( f ) ∈ Lq

νs(R), (3.58)

for some constants a,b > 0, 1 � p,q � ∞ , and at least one of p and q is finite. Then

• If ab � 1
4 , we have f = 0 , almost everywhere.

• If ab < 1
4 , for all t ∈ (b, 1

4a ) , the functions f = Et , satisfy the relations (3.58).

For prove this theorem we need the following lemmas.

LEMMA 4. ([10]) Let h be an entire function on C such that

∀z ∈ C, |h(z)| � C(1+ |z|)mea(Rez)2 (3.59)

and
∀x ∈ R, |h(x)| � C, (3.60)

for some m ∈ N , a,C > 0 . Then h is constant on C .

LEMMA 5. ([10]) Let q ∈ [1,∞) and h an entire function on C such that

∀z ∈ C, |h(z)| � M(1+ |z|)mea(Rez)2 (3.61)

and
‖h|R‖Lq

νs (R) < ∞, (3.62)

for some m ∈ N , a,M > 0 . Then h ≡ 0 .

Proof of Theorem 8. We will divide the proof in several steps.
1st step: If ab > 1

4 . We consider the function h defined on C by

h(λ ) = e
λ2
4a HΛs( f )(λ ). (3.63)
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From Proposition 9, there exist a positive constant C such that for all ξ , η ∈ R , we

have |h(ξ + iη)| � Ce
ξ2

4a .
i) If 1 � q < ∞ , we have

‖h|R‖q
Lq

νs (R)
=
∫

R

|ebλ 2
HΛs( f )(λ )|qeq( 1

4a−b)λ 2
dνs (λ ).

The inequality ab > 1
4 implies

‖h|R‖Lq
νs (R) � ‖ebλ 2

HΛs( f )‖Lq
νs (R) < ∞.

We deduce from Lemma 5 that for all λ ∈ C, h(λ ) = 0.
It follows that for all λ ∈ R , HΛs( f )(λ ) = 0 and then from the injectivity of the

transform HΛs , we have
f = 0, a.e., on R.

ii) If q = ∞ , we have

‖h|R‖L∞
ν (R) = ‖ebλ 2

HΛs( f ) e( 1
4a−b)λ 2‖L∞

ν (R) � ‖ebλ 2
HΛs( f )‖L∞

ν (R) < ∞.

From Lemma 4, there exists a constant C such that for all λ ∈ C, h(λ ) = C .

It follows that for all λ ∈ R, HΛs( f )(λ ) =Ce−
λ2
4a . The assumption on HΛs( f )

is expressed as

|HΛs( f )(λ )| � Me−bλ 2
, a.e. λ ∈ R,

for some constant M > 0.
The continuity of HΛs( f ) on R shows that for all λ ∈ R, |HΛs( f )(λ )| �

Me−bλ 2
. Then for all λ ∈ R, |C| � Me( 1

4a−b)λ 2
. It follows from the inequality

ab > 1
4 , that C = 0. Therefore

f = 0, a.e., on R.

2nd step: If ab = 1
4 , we have

i) If 1 � q < ∞ . With the same proof as for the point i) of the first step, we
deduce that

f = 0, a.e., on R.

ii) If q = ∞ . We have ‖h|R‖Lq
νs (R) < ∞ . Then by Lemma 4, the relation (3.63)

and the property (iii) of the generalized heat function N0( 1
4a , .) , we deduce that

∀ξ ∈ R, HΛs( f )(ξ ) = Ce
−ξ2

4a = CHΛs(E 1
4a

)(ξ ) (3.64)

for some constant C . Thus from the injectivity of the transform HΛs , we obtain

∀x ∈ R, f (x) = CE 1
4a

(x) a.e. (3.65)
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By using this relation and (2.55), we have

∀x ∈ R,
Ce

μ1
4a 2aα+1

Γ(α +1)
√

B(x)
� eax2

f (x).

From the properties of the functions A and B , we see that for finite p , || 1√
B(x)

||Lp
A (R) =

∞. In contrast from equation (3.58) we have ||eax2
f ||Lp

A (R) < ∞ , this is impossible un-
less C = 0. Then, we deduce from equation (3.65) that f = 0 a.e.

3rd step: If ab < 1
4 . Let t ∈ (b, 1

4a) and f = Et . From the relation (2.55), we get

∀x ∈ R, K1e
−( 1

4t −a)x2 � eax2
f (x) � K2e

−( 1
4t −a)x2

,

for some constants K1, K2 > 0. As t < 1
4a , we deduce that eax2

f ∈ Lp
A (R) . Using the

relation (2.50), we get

∀λ ∈ R, ebλ 2
HΛs( f )(λ ) = e−(t−b)λ 2

.

The condition t > b and the relations (2.44) and (2.45), imply that ebλ 2
HΛs( f ) ∈

Lq
νs(R) . This completes the proof of the theorem. �

We determine, in this section, the functions f satisfying the relations (3.58) in the
special case p = q = ∞ . The result obtained for the generalized Hartley transform is an
analogue of the classical Hardy’s theorem.

THEOREM 9. Let f be a measurable function on R such that

| f (x)| � Me−ax2
, a.e. x ∈ R and |HΛs( f )(λ )| � Me−bλ 2

, for all λ ∈ R, (3.66)

for some constants a,b,M > 0 . Then

• If ab > 1
4 , we have f = 0 , almost everywhere.

• If ab = 1
4 , the function f is of the form f = C0E 1

4a
, for some real constant C0 .

• If ab < 1
4 , there are infinitely many nonzero functions f satisfying the conditions

(3.66).

Proof. 1st step: If ab > 1
4 , the point ii) of the first step of the proof of Theorem

8 gives the result.
2nd step: If ab = 1

4 , we obtain ‖ebλ 2
HΛs( f )‖L∞

ν (R) < ∞ from the relation (3.64).
In contrast, as B(x) � 1, we get from (2.55) that

∀x ∈ R, eax2 | f (x)| � Ce
μ2
4a 2aα+1

Γ(α +1)
√

B(x)
a.e.

Thus ||eax2
f ||L∞

A (R) < ∞ . This completes the proof of the theorem.

3rd step: If ab < 1
4 , the functions f = Et , t ∈ (b, 1

4a) , satisfy the conditions (3.66).
This completes the proof of the theorem. �
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4. Morgan’s theorem for the generalized Hartley transform

Let θ1,θ2 ∈ [0,2π ] , Ω be the open angle in C defined by

Ω :=
{

reiθ , r > 0, θ1 < θ < θ2

}
and Ω be the closure of Ω . Let g : Ω → C be a continuous holomorphic on C .

The order of g is defined by

r(g) = inf
{

γ > 0, g(z) = O(e|z|
γ
), |z| → ∞, z ∈ Ω

}
.

Suppose that 0 < r(g) < ∞ . The type of g on Ω is defined by

τ(g) = inf
{

γ > 0, g(z) = O(eγ|z|r(g)
), |z| → ∞, z ∈ Ω

}
.

Before stating the main result of this section, we give the following lemma which we
prove by the same way as Lemma 2.3 in [1].

LEMMA 6. Suppose r ∈ (1,2) , q ∈ [1,∞] , τ > 0 and B > τ sin(π
2 (r−1)) . If g is

an entire function on C satisfying the following conditions

|g(x+ iy)|� Ceτ|y|r , f orany x,y R (4.67)

and
eB|x|r g|R ∈ Lq

A(R), (4.68)

then g = 0 .

PROPOSITION 10. Let p ∈ [1,∞] , a > 0 and γ > 2 and f a measurable function
on R such that

ea|x|γ f ∈ Lp
A(R). (4.69)

Then HΛs ( f ) is well defined on C , entire and we have

∀λ ∈ C, HΛs f (λ ) =
∫

R

f (x)Φs(λ ,x)A(x)dx, λ ∈ R. (4.70)

Proof. The first assertion follows from Hölder’s inequality, the relation (2.18), and
the derivation theorem under the integral sign. �

THEOREM 10. Let f be a measurable function on R such that

ea|x|γ f ∈ Lp
A (R) and ebλ δ

HΛs ( f ) ∈ Lq
νs(R), (4.71)

for some constants a,b > 0, 1 � p,q � ∞ , and γ,δ be positive real numbers satisfying

γ > 2 and 1
γ + 1

δ = 1 . If (aγ)
1
γ (bδ )

1
δ >

(
sin(π

2 (δ −1))
) 1

δ
, then f = 0 .
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Proof. From the relations (2.18) and (4.70), we have

∀λ ∈ C, |HΛs f (λ )| �
∫

R

| f (x)|e|Imλ | |x|A(x)dx. (4.72)

First case p = 1

Let R ∈ I :=
(
(bδ )

−1
δ
(

sin(π
2 (δ − 1))

) 1
δ
,(aγ)

1
γ
)

. The inequality (4.72) and the

convexity inequality

|Imλ | |x| � Rγ

γ
|x|γ +

1

δRδ |Imλ |δ ,

imply that for all λ ∈ C , we have

|HΛs f (λ )| �
∫

R

ea|x|γ | f (x)|e−a|x|γ e|Imλ | |x|A(x)dx

� e
1

δRδ |Imλ |δ
∫

R

ea|x|γ | f (x)|e( Rγ
γ −a)|x|γ A(x)dx.

As a > Rγ

γ , we obtain

∀λ ∈ C, |HΛs f (λ )| � Ce
1

δRδ |Imλ |δ
. (4.73)

Second case p ∈ (1,∞]
By applying Hölder’s inequality to the relation (4.72) we get

∀λ ∈ C, |HΛs f (λ )| �
∫

R

ea|x|γ | f (x)|e−a|x|γ e|Imλ | |x|A(x)dx

�
(∫

R

e−ap′|x|γ ep′|Imλ | |x|A(x)dx
) 1

p′
(∫

R

eap|x|γ | f (x)|pA(x)dx
) 1

p
,

where p′ is the conjugate exponent of p .

As above, let R ∈ I :=
(
(bδ )

−1
δ

(
sin(π

2 (δ − 1))
) 1

δ
,(aγ)

1
γ
)

. The convexity in-

equality

|Imλ | |x| � Rγ

γ
|x|γ +

1

δRδ |Imλ |δ ,

imply that∫
R

e−ap′|x|γ ep′|Imλ | |x|A(x)dx � Ce
p′

δRδ |Imλ |δ
∫

R

ep′( Rγ
γ −a)|x|γ A(x)dx. (4.74)

As a > Rγ

γ , we obtain

∀λ ∈ C, |HΛs f (λ )| � Ce
1

δRδ |Imλ |δ
. (4.75)

Condition (4.71), inequalities (4.73) and (4.75) imply that the function HΛs( f ) satisfies
the assumptions (4.67) and (4.68) of Lemma 6 with r = δ , τ = 1

δRδ and B = b . The
condition K ∈ I implies that

b >
1

δRδ sin
(π

2
(δ −1)

)
,

which gives HΛs( f ) = 0 by Lemma 6. �
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5. Generalized Cowling-Price theorem for the generalized Hartley transform

In this section we assume that ρ = 0.

THEOREM 11. Let f be a measurable function on R such that

∫
R

(
E 1

4a
(x)
)−p| f (x)|p

(1+ |x|)n A(x)dx < ∞ (5.76)

and ∫
R

ebqξ 2 |HΛs( f )(ξ )|q
(1+ |ξ |)m dξ < ∞, (5.77)

for some constants a,b,n > 0 , m > 1 and 1 � p,q < ∞ . Then
i) If ab > 1

4 , we have f = 0 almost everywhere.

ii) If ab = 1
4 , then f is of the form f =

d

∑
j=0

CjNj(b, .) where d � min( n
p + 2α+1

2p′ , m−1
q ) ,

where p′ is the conjugate of p. Especially, if

n � 1+ pmin(
n
p

+
2α +1

2p′
,
m−1

q
),

then f = 0 almost everywhere. Furthermore, if n > 1 and m ∈ (1,q+1] , then f is a
constant multiple of Eb .

iii) If ab < 1
4 , for all δ ∈ (b, 1

4a) , the functions of the form f =
d

∑
j=0

CjNj(δ , .) ,

d ∈ N , satisfy (5.76) and (5.77).

Proof. We shall show that HΛs( f )(z) exists and is an entire function in z ∈ C and

|HΛs( f )(z)| � Ce
1
4a |Imz|2(1+ |Imz|)s, for all z ∈ C, for some s > 0. (5.78)

The first assertion follows from the hypothesis on the function f and Hölder’s inequal-
ity using (5.76) and the derivation theorem under the integral sign. We want to prove
(5.78). Actually, it follows from (2.18) that for all z = ξ + iη ∈ C ,

|HΛs( f )(ξ + iη)| �
∫

R

| f (x)||Φs(ξ + iη ,x)|A(x)dx

� C
∫

R

(
E 1

4a
(x)
)−1| f (x)|

(1+ |x|) n
p

(1+ |x|) n
p E 1

4a
(x)e|η||x|A(x)dx

� Ce
|η|2
4a

∫
R

(
E 1

4a
(x)
)−1| f (x)|

(1+ |x|) n
p

(1+ |x|) n
p e−a(|x|− |η|

2a )2A(x)dx.
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Then by using the Hölder inequality, and the relations (5.76) and (1.7), we can obtain

|HΛs( f )(ξ + iη)| � Ce
|η|2
4a

(∫
R

(1+ |x|) np′
p e−ap′(|x|− |η|

2a )2A(x)dx
) 1

p′

� Ce
|η|2
4a

(∫ ∞

0
(1+ t)

np′
p +2α+1e−ap′(t− |η|

2a )2dt
) 1

p′

� Ce
1
4a |Imz|2(1+ |Imz|)

n
p + 2α+1

2p′ .

Thus (5.78) is proved.
If ab = 1

4 , then

|HΛs( f )(ξ + iη)| � Ceb|Imz|2(1+ |Imz|)
n
p+ 2α+1

2p′ .

Therefore, if we let g(z) = ebz2HΛs( f )(z) , then

|g(z)| � Ceb(Rez)2(1+ |Imz|)
n
p+ 2α+1

2p′ .

Hence it follows from (5.77) that∫
R

|g(ξ )|q
(1+ |ξ |)m dξ < ∞.

Here we use the following lemma.

LEMMA 7. ([20]) Let h be an entire function on C such that

|h(z)| � Cea|Rez|2(1+ |Imz|)m

for some m > 0 , a > 0 and ∫
R

|h(x)|q
(1+ |x|)s |Q(x)|dx < ∞

for some q � 1 , s > 1 and Q ∈ PM(R) . Then h is a polynomial with degh �
min{m, s−M−1

q } and, if s � q+M+1 , then h is a constant.

Hence by this lemma g is a polynomial, we say Pb , with degPb := d � min{ n
p +

2α+1
2p′ , m−1

q } . Then

HΛs( f )(x) = Pb(x)e−bx2

and thus,

f (x) =
d

∑
j=0

CjNj(b, .) for all x ∈ R.

Therefore, nonzero f satisfies (5.76) provided that

n > 1+ pmin
{ n

p
+

2α +1
2p′

,
m−1

q

}
.
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Furthermore, if m � q+1, then g is a constant by the Lemma 7 and thus

HΛs( f )(x) = Ce−bx2
and f (x) = CbEb(x).

When n > 1 and m > 1, these functions satisfy (5.77) and (5.76) respectively. This
proves ii).

If ab > 1
4 , then we can choose positive constants, a1,b1 such that a > a1 = 1

4b1
>

1
4b . Then f and HΛs( f ) also satisfy (5.76) and (5.77) with a and b replaced by a1

and b1 respectively. Therefore, it follows that HΛs( f )(x) = Pb1(x)e
−b1x

2
. But then

HΛs( f ) cannot satisfy (5.77) unless Pb1 ≡ 0, which implies f ≡ 0. This proves i).

If ab < 1
4 , then for all δ ∈ (b, 1

4a ) , the functions of the form f (x) =
d

∑
j=0

CjNj(δ , .) ,

where d ∈ N , satisfy (5.76) and (5.77). This proves iii). �

6. Beurling’s theorem for the generalized Hartley transform

Beurling’s theorem and Bonami, Demange, and Jaming’s extension are general-
ized for the generalized Hartley transform as follows.

THEOREM 12. Let N ∈ N , δ > 0 and f ∈ L2
A (R) satisfy

∫
R

∫
R

| f (x)||HΛs( f )(y)||R(y)|δ
(1+ |x|+ |y|)N e|x| |y|A(x)dxdνs(y) < ∞, (6.79)

where R is a polynomial of degree m. If N � mδ +3 , then

f (x) = ∑
j< N−mδ−1

2

a jNj(r,x) a.e., (6.80)

where r > 0 , a j ∈ C . Otherwise, f (x) = 0 almost everywhere.

Proof. We start the following lemma.

LEMMA 8. We suppose that f ∈ L2
A (R) satisfies (6.79). Then f ∈ L1

A (R) .

Proof. We may suppose that f is not negligible. (6.79) and the Fubini theorem
imply that for almost every (t,y) ∈ R ,

|HΛs( f )(y)||R(y)|δ
(1+ |y|)N

∫
R

| f (x)|
(1+ |x|)N e|x| |y|A(x)dx < ∞.

Since f and thus, HΛs( f ) are not negligible, there exist y0 ∈ R , y0 
= 0, such that

HΛs( f )(y0)R(y0) 
= 0.
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Therefore, ∫
R

| f (x)|
(1+ |x|)N e|x| |y0|A(x)dx < ∞.

Since
e|x| |y0|

(1+ |x|)N � 1 for large x , it follows that
∫

R

| f (x)|A(x)dx < ∞ . �

This lemma and Proposition 3 imply that tVs ( f ) is well-defined almost every-
where on R . By the same techniques used in [15], we can deduce that

∫
R

∫
R

e|x| |y||tVs ( f )(x)||HC (tVs )( f )(y)||R(y)|δ
(1+ |x|+ |y|)N dxdy < ∞.

According to Theorem 2.3 in [19], we conclude that for all x ∈ R ,

tVs ( f )(x) = P(x)e−
x2
4r ,

where r > 0 and P a polynomial of degree strictly lower than N−mδ−1
2 . Then by (2.33),

HΛs( f )(y) = HC ◦ tVs ( f )(y) = HC

(
P(x)e−

x2
4r

)
(y) = Q(y)e−ry2

,

where Q is a polynomial of degree degP . Then by using properties of the generalized
heat kernels functions we can find constants a j such that

HΛs( f )(y) = HΛs

(
∑

j< N−mδ−1
2

a jNj(r, .)
)
(y).

By the injectivity of HΛs the desired result follows. �
As an application of Theorem 12, we want to prove the following Gelfand-Shilov

type theorem for the generalized Hartley transform.

COROLLARY 2. Let N,m ∈ N , δ > 0 , a,b > 0 with ab � 1
4 , and 1 < p,q < ∞

with 1
p + 1

q = 1 . Let f ∈ L2
A (R) satisfy

∫
R

| f (x)|e (2a)p
p |x|p

(1+ |x|)N A(x)dx < ∞ (6.81)

and

∫
R

|HΛs( f )(y)|e (2b)q
q |y|q |R(y)|δ

(1+ |y|)N dνs(y) < ∞ (6.82)

for some R ∈ Pm .
i) If ab > 1

4 or (p,q) 
= (2,2) , then f (x) = 0 almost everywhere.

ii) If ab = 1
4 and (p,q) = (2,2) , then f is of the form (6.80) whenever N � mδ+3

2
and r = 2b2 . Otherwise, f (x) = 0 almost everywhere.
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Proof. Since

4ab|x||y|� (2a)p

p
|x|p +

(2b)q

q
|y|q,

it follows from (6.81) and (6.82) that

∫
R

∫
R

| f (x)||HΛs( f )(y)||R(y)|δ
(1+ |x|+ |y|)2N e4ab|x| |y|A(x)dxdνs(y) < ∞.

Then (6.79) is satisfied, because 4ab� 1. Therefore, according to the proof of Theorem
12, we can deduce that

∫
R

∫
R

e4ab|x| |y||tVs ( f )(x)||HC (tVs )( f )(y)||R(y)|δ
(1+ |x|+ |y|)2N dxdy < ∞,

and tVs ( f ) and f are of the forms

tVs ( f )(x) = P(x)e−
x2
4r and HΛs( f )(y) = Q(y)e−ry2

,

where r > 0 and P,Q are polynomials of the same degree strictly lower than 2N−mδ−1
2 .

Therefore, substituting these from, we can deduce that

∫
R

∫
R

e
−(

√
r|y|− 1

2
√

r
|x|)2

e(4ab−1)|x| |y||P(x)||Q(x)||R(y)|δ
(1+ |x|+ |y|)2N dxdy < ∞.

When 4ab > 1, this integral is not finite unless f = 0 almost everywhere. Moreover, it
follows from (6.81) and (6.82) that

∫
R

|P(x)|e− 1
4r x2

e
(2a)p

p |x|p

(1+ |x|)N A(x)dx < ∞

and

∫
R

|Q(y)|e−ry2
e

(2b)q
q |y|q |R(y)|δ

(1+ |y|)N dνs(y) < ∞.

Hence, one of these integrals is not finite unless (p,q) = (2,2) . When 4ab = 1 and
(p,q) = (2,2) , the finiteness of above integrals implies that r = 2b2 and the rest follows
from Theorem 12. �

7. Miyachi’s theorem for the generalized Hartley transform

THEOREM 13. Let f be a measurable function on R such that

(
E 1

4a

)−1
f ∈ Lp

A (R)+Lq
A (R) (7.83)
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and ∫
R

log+ ebξ 2 |HΛs( f )(ξ )|
λ

dξ < ∞, (7.84)

for some constants a,b,λ > 0, 1 � p,q � ∞ . Then
i) If ab > 1

4 , we have f = 0 almost everywhere.
ii) If ab = 1

4 , we have f = CEb with |C| � λ .

iii) If ab < 1
4 , for all δ ∈ (b, 1

4a) , the functions of the form f =
d

∑
j=0

CjNj(δ , .) ,

d ∈ N , satisfy (7.83) and (7.84).

To prove this result we need the following lemmas.

LEMMA 9. ([16]) Let h be an entire on C function such that

|h(z)| � AeB|Rez|2 and
∫

R

log+ |h(y)|dy < ∞, (7.85)

for some positive constants A,B. Then h is a constant on C .

LEMMA 10. Let p∈ [1,∞] and f a measurable function on R such that
(
E 1

4a

)−1
f

belongs to Lp
A (R) for some a > 0 . Then

eay2
(

tVs ( f )
)
∈ Lp(R).

Proof. We consider two cases.
1st case: If p ∈ [1,∞[ , from (2.27), we have∥∥∥eay2
(

tVs( f )
)∥∥∥p

Lp(R)
�
∫

R

eapy2
(∫

|x|�|y|
Ks(x,y)

[(
E 1

4a

)−1(x)| f (x)|
]
E 1

4a
(x)A(x)dx

)p

dy.

By applying Hölder’s inequality to the middle integral, we obtain∥∥∥eay2
(

tVs ( f )
)∥∥∥p

Lp(R)
�
∫

R

eapy2 tVs

(
|(E 1

4a

)−1
f |p
)

(y)
[
tVs

[(
E 1

4a

)p′
]
(y)
] p

p′ dy,

where p′ is the conjugate exponent of p . By the relations (2.54), (2.53), and (2.36), we
deduce that ∥∥∥eay2

(
tVs ( f )

)∥∥∥
Lp(R)

� M
∥∥∥(E 1

4a

)−1
f
∥∥∥

Lp
A (R)

< ∞,

where M =

(
C
(

p′,
1
4a

)√ p′a
π

) 1
p′

.

2nd case: If p = ∞ , using (2.27), we obtain for almost all y in R :

|tVs ( f )(y)| �
∫
|x|�|y|

Ks(x,y)
((

E 1
4a

)−1(x)| f (x)|
)

E 1
4a

(x)A(x)dx

� ‖(E 1
4a

)−1
f‖L∞

A (R)
tV (E 1

4a
)(y).
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By the relation (2.53), we deduce that

‖eay2 tVs ( f )(y)‖L∞
A (R) � M0‖

(
E 1

4a

)−1
f‖L∞

A (R) < ∞,

where M0 =
√ a

π . This completes the proof. �

LEMMA 11. Let r be in [1,∞] . We consider a function g in Lr
A (R) . Then there

exists a positive constant C such that:

||eax2 tVs(E 1
4a

g)||Lr(R) � C||g||Lr
A (R)),

where || · ||Lr(R) is the norm of the usual Lebesgue space Lr(R) and a > 0 .

Proof. The proof is immediately from Lemma 10. �

LEMMA 12. Let p,q in [1,∞] and f a measurable function on R such that(
E 1

4a

)−1
f ∈ Lp

A (R)+Lq
A(R), (7.86)

for some a > 0 . Then the function defined on C by

HΛs( f )(λ ) =
∫

R

f (x)Φs(λ ,x)A(x)dx, (7.87)

is well defined and entire on C . Moreover there exists a positive constant C such that
for all ξ ,η in R we have

|HΛs( f )(ξ + iη)|� Ce
η2
4a . (7.88)

Proof. The first assertion follows from the hypothesis on the function f and Höl-
der’s inequality using (7.86) and the derivation theorem under the integral sign. We
want to prove (7.88).

The condition (7.86) implies that the function f belongs to L1
A (R) . Hence we

deduce from (2.33) that for all ξ ,η in R we have

|HΛs( f )(ξ + iη)|= |
∫

R

tVs ( f )(y)cas(y(ξ + iη))dy|.

�
∫

R

∣∣∣ tVs ( f )(y)
∣∣∣(eyη + e−yη)dy.

The integral of the second member can also be estimate in the form

e
η2
4a

∫
R

eay2 |tVs ( f )(y)|(e−a(y− η
2a )2 + e−a(y+ η

2a )2)dy.

Indeed from (7.86) there exists u in Lp
A (R) and v in Lq

A (R) such that

f = E 1
4a

(u+ v).
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Thus using the Lemma 11 and Hölder’s inequality we obtain∫
R

eay2 |tVs ( f )(y)|(e−a(y− η
2a )

2

+ e−a(y+ η
2a)

2

)dy � C(||u||Lp
A (R) + ||v||Lq

A (R)) < ∞.

Therefore, the desired result follows. �
Proof of Theorem 13. We will divide the proof in several cases.
First case: ab > 1

4 .
Consider the function h defined on C by

h(z) = e
z2
4a HΛs( f )(z). (7.89)

This function is entire on C and using (7.88) we obtain:

|h(ξ + iη)| � Ce
ξ2

4a , (7.90)

for all ξ ,η ∈ R . On the other hand we have∫
R+

log+ |h(y)|dy =
∫

R+
log+ |e y2

4a HΛs( f )(y)|dy,

=
∫

R

log+ |λe( 1
4a−b)y2 eby2

HΛs( f )(y)
λ

|dy

�
∫

R

log+
∣∣∣eby2

HΛs( f )(y)
λ

∣∣∣dy+
∫

R

e( 1
4a−b)y2

dy

because log+(cd) � log+(c)+d for all c,d > 0. Since ab > 1
4 , (7.84) implies that∫

R

log+ |h(y)|dy < ∞. (7.91)

From the relations (7.90) and (7.91), it follows from Lemma 9 that there exists a
constant C such that

h(ξ + iη) = C, ξ ,η ∈ R.

Thus

HΛs( f )(y) =Ce−
y2
4a .

Using now the condition (7.84) and that ab > 1
4 , we deduce that C = 0 and hence from

the injectivity of HΛs( f ) we deduce that f = 0.
Second case: ab = 1

4 .
The same proof as for the the first step give that

HΛs( f )(y) =Ce−
y2
4a .

Thus (7.84) holds whenever |C| � λ . Hence

f = Ce−
y2
4a , with |C| � λ .



88 H. MEJJAOLI

Third case: ab < 1
4 .

If f is a given form, then

HΛs( f )(y) = Q(y)e−
y2
4a

for some Q ∈ P . These functions clearly satisfy the conditions (7.83),(7.84) for all
δ ∈ (b, 1

4a) . The proof of the Theorem is complete. �

The following is an immediate corollary of Theorem 13.

COROLLARY 3. Let f be a measurable function on R such that

(
E 1

4a

)−1
f ∈ Lp

A (R)+Lq
A (R) (7.92)

and ∫
R

|HΛs( f )(ξ )|rebrξ 2
dξ < ∞, (7.93)

for some constants a,b,r > 0 and 1 � p,q � ∞ . Then
i) If ab � 1

4 , we have f = 0 almost everywhere.

ii) If ab < 1
4 , then for all δ ∈ (b, 1

4a ) , all the functions of the form f =
d

∑
j=0

CjNj(δ , .) ,

d ∈ N , satisfy (7.92) and (7.93).
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[10] L. GALLARDO AND K. TRIMÈCHE, An Lp version of Hardy’s theorem for the Dunkl transform, J.

Austr. Math. Soc. Volume 77, Issue 03, (2004), 371–386.



UNCERTAINTY PRINCIPLES FOR THE GENERALIZED HARTLEY TRANSFORM 89

[11] J. M. GELFAND AND N. YA. VILENKIN, Les distributions, tome 4, Application de l’analyse har-
monique, Dunod, Paris, 1967.

[12] G. H. HARDY, A theorem concerning Fourier transform, J. London Math. Soc., 8 (1933), 227–231.
[13] R. V. L. HARTLEY, A more symmetrical Fourier analysis applied to transmission problems, Proc IRE.

30, (1942) 144–150.
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