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ON WEIGHTED INTEGRAL EQUATIONS WITH NEGATIVE EXPONENTS
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(Communicated by J. Pečarić)

Abstract. This paper is concerned with the integral equation

u(x) =
∫

Rn
|x− y|pk(y)uq(y)dy,

where n � 1 , p �= 0 , q < 0 , and the weighted function k(x) is smooth. This equation comes
from the prescribing curvature problems. In addition, it is related to the best functions of the
reversed Hardy-Littlewood-Sobolev inequality. We consider the existence and the estimates of
increasing rates of the positive entire solutions in the case that k(x) is bounded and unbounded
respectively.

1. Introduction

In 2004, Li [9] introduced an integral equation

u(x) =
∫

Rn
|x− y|puq(y)dy (1.1)

with q < 0 which comes from the conformal geometry, and posed whether or not does
(1.1) admit any positive (regular) solutions for all n � 1, p > 0 and q < −1− 2n/p .
In 2007, Xu [13] studied this problem and obtained the positive answers: Eq. (1.1) has
a C1 positive solution if and only if q = −(p+2n)/p . Now, u is given by

u(x) = a(b2 + |x− x0|2)−λ/2 (1.2)

with a,b > 0 and x0 ∈ Rn . In addition, if −n < p < 0 and q < 0, then (1.1) has no C1

positive solution.
Also Xu introduced another integral equation

u(x) =
∫

Rn
|x− y|pk(y)u−(1+2n/p)(y)dy (1.3)
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for any given smooth function k(x) on Rn . It is associated with the study of the Kazdan-
Warner conditions in the study of the prescribing curvature problems (cf. [6]). He
showed that if u > 0 is a smooth solution of the integral equation, then the identity

∫
Rn

[x ·∇k(x)]u−2n/p(x)dx = 0 (1.4)

holds as long as k(x) � a > 0 is a bounded smooth function such that |∇k(x)|� c|x|p−1

for some positive constant c and |x| sufficiently large. In 2015, to investigate the best
functions of the reversed Hardy-Littlewood-Sobolev inequality (cf. [5]), Lei studied
more general integral system of the Euler-Lagrange equations with variational coeffi-
cients in [8] ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u(x) = c1(x)

∫
Rn

|x− y|λdy
vq(y)

, u > 0 in Rn,

v(x) = c2(x)
∫

Rn

|x− y|λdy
up(y)

, v > 0 in Rn,

(1.5)

where p,q,λ > 0, and c1(x) , c2(x) are double bounded functions. A function k(x) is
called double bounded, if there is C > 1 such that C−1 � k(x) � C for all x ∈ Rn .

If we replaced the critical exponent −(1+2n/p) by a general real number q , then
(1.3) becomes

u(x) =
∫

Rn
|x− y|pk(y)uq(y)dy. (1.6)

In this paper, we investigate the existence/nonexistence and the asymptotic behav-
ior of the positive solutions of (1.6).

THEOREM 1. (1) If −n < p < 0 and q < 0 , k(x) is a double bounded function.
Then (1.6) has no continuous positive solution.

(2) If p > 0, and q < −(1 + n
p ), then there exists a radial solution of (1.6) for

some double bounded function k(x) .

REMARK 1.1. For system (1.5), Lei also pointed out in [8] that when λ > 0 and
the Serrin type condition min{p,q} > (n+ λ )/λ holds, there exists a radial solution
for some double bounded functions c1(x),c2(x) . For single equations, the exponent
−(1+ n

p ) is a Serrin’s exponent. Different from the integral equations with positive
exponents, the Serrin’s exponents here are difficult to be verified that they are critical.

THEOREM 2. Let p > 0, q < 0, and k ∈ L∞(Rn)∩C1(Rn) be a positive function.
If u is a continuous positive solution of (1.6), then

(1) u(x) � |x|p when |x| → ∞ . Here u(x) � |x|θ means that there exists C � 1
such that C−1|x|θ � u(x) � C|x|θ when |x| → ∞ .

(2) The exponent q is critical (i.e. q = −(1+2n/p)) if and only if

∫
Rn

[x ·∇k(x)]u1+q(x)dx = 0. (1.7)



WEIGHTED INTEGRAL EQUATIONS 113

REMARK 1.2. (1) Lei also studied system (1.5) and proved in [8] that if λ > 0 and
max{p,q}> (n+λ )/λ , then u,v are increasing with the fast rate λ : u(x),v(x) � |x|λ
as |x| → ∞ . When p = q and u≡ v , those rates are same as the result of (1) in Theorem
2. In this paper we employ different idea from the paper [8]. In addition, if p < 0
and q > 0 in (1.6), or p,q,λ < 0 in (1.5), then these increasing rates become the
corresponding fast decay rates (cf. [12] and the references therein).

(2) Eq. (1.4) is the same as (1.7) in the critical case. In addition, if (1.7) is true,
then (1.6) has continuous positive solution if and only if q is the critical exponent
−(1+2n/p) .

Next we consider the unbounded weight k(x) . As a representative example, k(x)
can be taken a radial power function. Let k(x) = |x|l in (1.6), then equation (1.6) turns
to

u(x) =
∫

Rn
|x− y|p|y|luq(y)dy. (1.8)

When p < 0, q > 0 and l < 0, this equation is related to the best constant of the Hardy-
Sobolev inequality (cf. [7] and [11]). In addition, when n � 3 and p = 2−n , it appears
in the study of differential geometry (cf. [10] and the reference therein). When l > 0,
it is associated with the study of the fractional order Henon equations (cf. [1] and [2]
with n � 3 and p = 2−n particularly).

THEOREM 3. Eq. (1.8) has no continuous positive solution when either
(1) p > 0 , q > 0 and l � 0 ; or
(2) −n− l < p < 0 and q < 0 .

THEOREM 4. Assume that u is a continuous positive solution of (1.8). Then
u(x) � |x|p when |x| → ∞ if either

(1) −n < l � 0 , p > 0 , q < − n+p
p ; or

(2) p > 0 , q < − n+p+l
p and l > 0 .

2. Results on (1.6)

Proof of Theorem 1. (1) First, by Lemma 3.11.3 in [14], we have that for all r > 0,

1
wnrn

∫
Br(0)

u(x)dx =
∫

Rn

{ 1
wnrn

∫
Br(0)

|x− y|pdx
}

k(y)uq(y)dy

� C
∫

Rn
|y|pk(y)uq(y)dy = Cu(0),

(2.1)

where C is a constant depending only on p and n and independent of r .
Using the Hölder inequality, we obtain

1 =
1

wnrn

∫
Br(0)

u−α(x)uα(x)dx

�
{ 1

wnrn

∫
Br(0)

[u−α(x)]β dx
} 1

β
{ 1

wnrn

∫
Br(0)

uαδ (x)dx
} 1

δ
.

(2.2)
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Let α,β ,δ satisfy αβ = −q , 1
β + 1

δ = 1 and αδ = 1. We get α = q
q−1 , β = 1− q ,

δ = q−1
q . Thus we have

Cquq(0) � 1
wnrn

∫
Br(0)

uq(x)dx. (2.3)

Since p < 0, if |x| < r, then rp < |x|p. Therefore by multiplying both sides of (2.3) by
wnrn+p, we get

Cqwnrn+puq(0) � rp
∫

Br(0)
uq(x)dx

�
∫

Br(0)
|x|puq(x)dx � c

∫
Br(0)

|x|pk(x)uq(x)dx = cu(0).
(2.4)

Noticing that n+ p > 0, and letting r → ∞ , we reach a contradiction.
(2) Set

u(x) = (1+ |x|2)p/2. (2.5)

Clearly, when |x| � 2R for R > 0, we can find c > 1 such that

c−1 � u(x) � c. (2.6)

Write I(x) :=
∫
Rn |x− y|puq(y)dy . By (2.6) it follows that

I(x) �
∫

B2R(x)\BR(x)
|x− y|puq(y)dy � c−1.

On the other hand, ∫
BR(x)

|x− y|puq(y)dy � c.

Noting q < −(1+n/p) , we see that
∫

Bc
R(x)

|x− y|puq(y)dy � c.

Thus c−1 � I(x) � c . Combining with (2.6) yields c−1 � u(x)
I(x) � c . We set R(x) = u(x)

I(x) ,

then R(x) is double bounded, and

u(x) = R(x)
∫

Rn
|x− y|puq(y)dy.

Write w(x) = u(x)
R(x) and k(x) = Rq(x) , then k(x) is a double bounded function, and w(x)

is a solution of (1.6).
Next, we consider the case of |x| > 2R .
By the condition of Theorem 1, we see

q < −n+ p
p

. (2.7)
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Clearly,
∫

Rn
|x− y|puq(y)dy =

∫
B1(0)

|x− y|puq(y)dy+
∫
B2|x|(0)\B1(0)

|x− y|puq(y)dy

+
∫

Rn\B2|x|(0)
|x− y|puq(y)dy := I1 + I2 + I3.

First, there exists C > 0 such that

|x|p
C

� I1 � C|x|p.

Next, from |x− y|� 3|x| as |y| � 2|x| , we get by (2.5) that

I2 � C|x|p
∫ 2|x|

1
rn+pq dr

r
� C|x|p.

Finally, from |y|/2 � |x− y|� 3|y|/2 as |y| � 2|x| , we get by q < − n+p
p that

I3 � C
∫ ∞

2|x|
rn+p+pq dr

r
� C.

Combining the estimates of I1, I2, I3 , we see that

|x|p
C

�
∫

Rn
|x− y|puq(y)dy � C|x|p (2.8)

for some C > 1. By (2.5) and (2.8), we obtain

1
C

∫
Rn
|x− y|puq(y)dy � u(x) � C

∫
Rn
|x− y|puq(y)dy.

Write R(x) = u(x)[
∫
Rn |x− y|pk(y)uq(y)dy]−1 . Then, R(x) is double bounded and

u(x) = R(x)
∫

Rn
|x− y|puq(y)dy.

Set w(x) = u(x)
R(x) and k(x) = Rq(x) , then k(x) is a double bounded function, and

w(x) is also a solution of (1.6). �

Proof of Theorem 2. (1) Assume that u is a positive solution of (1.6). We claim
u(x) � |x|p when |x| → ∞ .

To see this, first we observe
∫

Rn\B1(0)
uq(y)k(y)dy �

∫
Rn\B1(0)

uq(y)|y|pk(y)dy � u(0) < ∞.

Therefore kuq ∈ L1(Rn) since kuq ∈ L1(B1(0)) is clear.
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From (1.6) we have

|x|pu
(

x
|x|2

)
=

∫
Rn
|x|p| x

|x|2 − y|puq(y)k(y)dy

=
∫

Rn
|y|p|x− y

|y|2 |
puq(y)k(y)dy.

(2.9)

Letting |x| → 0, we obtain

lim
|x|→0

[
|x|pu

(
x
|x|2

)]
=

∫
Rn

uq(y)k(y)dy < ∞. (2.10)

We should point out that here we can take the limit by using the dominated convergence
theorem. In fact, when p > 0 and |x| � 1,

|x− y
|y|2 |

p � (|x|+1/|y|)p � (1+1/|y|)p

and hence |y|p(1+1/|y|)puq(y)k(y) ∈ L1(Rn) .
By doing variable change in (2.10), we can see that there are constants R > 0 large

and C > 0 such that
0 < C−1|x|p � u(x) � C|x|p (2.11)

for all |x| � R .
(2) Assume that u is a positive solution of (1.6).
By (2.11), we have

∫
Rn\BR(0)

uq+1(x)k(x)dx =
∫

Rn\BR(0)
uq(x)u(x)k(x)dx

� C
∫

Rn\BR(0)
uq(x)|x|pk(x)dx � Cu(0).

This implies kuq+1 ∈ L1(Rn) .
Denote

∇u(x) =
∫

Rn
p|x− y|p−2(x− y)uq(y)k(y)dy.

In order to see this is well defined, we have to show that

v(x) :=
∫

Rn
|x− y|p−1uq(y)k(y)dy < ∞.

In fact, let us fix a point x ∈ Rn .
If p � 1, then |x− y|� (|x|+ |y|) , hence |x− y|p−1 � (|x|+ |y|)p−1 .
When |x| � 1, we have |x− y|p−1 � (1+ |y|)p and (1+ |y|)puq(y)k(y) ∈ L1(Rn)

as we have already seen.
When |x| � 1, observing that |x− y|p−1 � 2p(|x|p + |y|p) , we conclude that v(x)

is finite for any given x ∈ Rn , since kuq , |y|puq(y)k(y) ∈ L1(Rn) .
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If 0 < p < 1, we can obtain that

v(x) =
∫
|x−y|�1

|x− y|p−1uq(y)k(y)dy+
∫
|x−y|�1

|x− y|p−1uq(y)k(y)dy

� C
∫ 1

0
rp+n−2dr+

∫
Rn

uq(y)k(y)dy < ∞.

So ∇u is well defined.
We claim that if (1.6) has a continuous positive solution for p > 0, then (1.7) holds

if and only if q = −(1+2n/p) .
For λ �= 0, there holds

u(λx) =
∫

Rn
|λx− y|pk(y)uq(y)dy =

∫
Rn

λ p|x− z|pk(λ z)uq(λ z)λ ndz

= λ p+n
∫

Rn
|x− z|pk(λ z)uq(λ z)dz.

Differentiating with respect to λ yields

x ·∇u(λx) = (p+n)λ p+n−1
∫

Rn
|x− z|pk(λ z)uq(λ z)dz

+λ p+n
∫

Rn
|x− z|p[z ·∇k(λ z)uq(λ z)+qk(λ z)uq−1(λ z)z ·∇u(λ z)]dz.

(2.12)
Let λ = 1, then (2.12) turns to

x ·∇u(x) = (p+n)u(x)+
∫
Rn
|x− z|p[z ·∇k(z)uq(z)+ k(z)z ·∇uq(z)]dz. (2.13)

Multiplying by k(x)uq(x) on both sides of (2.13) and integrating over Rn , we have

1
q+1

∫
Rn

k(x)x ·∇uq+1(x)dx− (p+n)
∫
Rn

uq+1(x)k(x)dx

=
∫

Rn

∫
Rn
|x− z|puq(x)k(x)[z ·∇(uq(z)k(z))]dzdx

=
∫

Rn
z ·∇(uq(z)k(z))

∫
Rn
|x− z|puq(x)k(x)dxdz

=
∫

Rn
z ·∇(uq(z)k(z))u(z)dz

=
∫

Rn
k(z)z ·∇uq(z)u(z)dz+

∫
Rn

z ·∇k(z)uq+1(z)dz.

(2.14)

If (1.7) holds, (2.14) turns to

1
q+1

∫
Rn

k(x)x ·∇uq+1(x)dx− (p+n)
∫
Rn

uq+1(x)k(x)dx

=
∫

Rn
k(z)z ·∇uq(z)u(z)dz =

q
q+1

∫
Rn

k(z)z ·∇uq+1(z)dz.
(2.15)



118 L. HUANG

Clearly, (2.15) is equivalent to

q−1
q+1

lim
R→∞

∫
BR

k(x)x ·∇uq+1(x)dx+(p+n) lim
R→∞

∫
BR

uq+1(x)k(x)dx = 0.

Integrating by parts, we get

q−1
q+1

lim
R→∞

∫
∂BR

Rk(x)uq+1(x)ds− q−1
q+1

lim
R→∞

∫
BR

(x ·∇k(x))uq+1(x)dx

−n(q−1)
q+1

lim
R→∞

∫
BR

k(x)uq+1(x)dx+(p+n) lim
R→∞

∫
BR

uq+1(x)k(x)dx = 0.

(2.16)

Due to the fact that kuq+1 ∈ L1(Rn) , we know

lim
Rj→∞

Rj

∫
∂BRj

kuq+1ds = 0.

By (1.7), (2.16) turns to

[(n+ p)− n(q−1)
q+1

] lim
R→∞

∫
BR

k(x)uq+1(x)dx = 0.

Therefore we get q = −(1+2n/p).
If q = −(1 + 2n/p) holds, we can also deduce (1.7) by the same calculation

above. �

3. Results on (1.8)

Proof of Theorem 3. (1) When |x| � 1, there holds

u(x) �
∫

B1(0)\B 1
2
(0)

|x− y|p|y|luq(y)dy

� c(minB1(0)\B 1
2
(0) u

q)
∫

B1(0)\B 1
2
(0)

|x− y|p|y|ldy � c|x|p.
(3.1)

So we get

u(x) �
∫

Rn\B2|x|(0)
|x− y|p|y|luq(y)dy

� C|x|p
∫

Rn\B2|x|(0)
|y|l+pqdy � C|x|p

∫ ∞

2|x|
rn+l+pq dr

r
.

(3.2)

Noting n+ l + pq > 0, we see that u blows up.
(2) The proof of (2) in Theorem 3 is the same as the proof of (1) in Theorem 1. The

different one is multiplying both sides of (2.3) by wnrn+p+l instead of wnrn+p . �
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Proof of Theorem 4. (1) First we have the following lower bound estimate for
large |x|

u(x) �
∫

B1(0)\B 1
2
(0)

|x− y|p|y|luq(y)dy

� c(minB1(0)\B 1
2
(0) u

q)
∫

B1(0)\B 1
2
(0)

|x− y|p|y|ldy � c|x|p.
(3.3)

(2) Next, consider the case of −n < l � 0. When |x| � 1, there holds

u1(x) :=
∫

B1(0)
|x− y|p|y|luq(y)dy

� C(maxB1(0) u
q)

∫
B1(0)

|x− y|p|y|ldy

� C|x|p
∫ 1

0
rn+l−1dr

� C|x|p.

(3.4)

When y ∈ B2|x|(0) , |x− y| � |x|+ |y| � 3|x| . Therefore, by (3.3) and q < − n+p
p

we get

u2(x) :=
∫

B2|x|(0)\B1(0)
|x− y|p|y|luq(y)dy

� C|x|p
∫

B2|x|(0)\B1(0)
|y|l|y|pqdy

� C|x|p
∫ 2|x|

1
rn+l+pq dr

r
� C|x|p.

(3.5)

When y ∈ Rn \B2|x|(0) , |x− y| � |x|+ |y| � 3|y|/2. Therefore, by (3.3) and q <

− n+p
p we get

u3(x) :=
∫

Rn\B2|x|(0)
|x− y|p|y|luq(y)dy

� C
∫

Rn\B2|x|(0)
|y|p+l+pqdy

� C|x|n+p+l+pq.

(3.6)

Noting n+ p+ l + pq < 0 which is implied by q < − n+p
p , from the estimates of

(3.4)–(3.6), it follows
u(x) � C|x|p. (3.7)

Combining this result with (3.3) we have

u(x) � |x|p

when |x| → ∞ .
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(3) Finally consider the case of l > 0. When |x| � 1, there holds

u1(x) :=
∫

BR(0)
|x− y|p|y|luq(y)dy

� C(maxBR(0) u
q)

∫
BR(0)

|x− y|p|y|ldy

� C|x|p.

(3.8)

When y ∈ B2|x|(0) , |x− y| � |x|+ |y| � 3|x| . Therefore, by (3.3) and q < − n+p+l
p

we get

u2(x) :=
∫

B2|x|(0)\BR(0)
|x− y|p|y|luq(y)dy

� C|x|p
∫ 2|x|

R
rn+l+pq dr

r
� C|x|p.

(3.9)

When y ∈ Rn \B2|x|(0) , |x− y| � |x|+ |y| � 3|y|/2. Therefore, by (3.3) and q <

− n+p+l
p we get

u3(x) :=
∫

Rn\B2|x|(0)
|x− y|p|y|luq(y)dy

� C
∫

Rn\B2|x|(0)
|y|p+l+pqdy � C|x|n+p+l+pq.

(3.10)

Noting n+ p+ l + pq < 0 which is implied by q < − n+p+l
p , from the estimates

of (3.8)–(3.10), it follows
u(x) � C|x|p. (3.11)

Combining this result with (3.3) we have

u(x) � |x|p

when |x| → ∞ . �
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