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LOCAL SPECTRAL PROPERTY OF

RELATIVELY REGULAR OPERATORS

EUNGIL KO AND MEE-JUNG LEE

(Communicated by J.-C. Bourin)

Abstract. In this paper, we study some relatively regular operators T such that T = TST for
some S ∈ L (H ) . We give some spectral and local spectral properties between T and S .
We also show that some relatively regular operators T have a nontrivial invariant subspace.
Finally, we introduce and study the local spectral property of relatively regular operators modulo
a nilpotent operator.

1. Introduction

Let H be a complex Hilbert space and let L (H ) denote the algebra of all
bounded linear operators on H . As usual, we write σ(T ) , σe(T ) , σp(T ) , and σsu(T )
for the spectrum, the essential spectrum, the point spectrum, and surjective spectrum of
T , respectively.

A subspace M of H is called an invariant subspace for an operator T ∈L (H )
if TM ⊂ M . We say that M ⊂ H is a hyperinvariant subspace for T ∈ L (H ) if
M is an invariant subspace for every S ∈ L (H ) commuting with T .

An operator X in L (H ) is called a quasiaffinity if it has trivial kernel and dense
range. An operator T in L (H ) is said to be a quasiaffine transform of an operator S
in L (H ) if there is a quasiaffinity X in L (H ) such that XT = SX , and this relation
of S and T is denoted by T ≺ S . If both T ≺ S and S ≺ T , then we say that S and T
are quasisimilar .

An operator T ∈ L (H ) is said to have the single-valued extension property,
abbreviated SVEP, if for every open subset G of C and any analytic function f : G →
H such that (T − z) f (z) ≡ 0 on G , it results f (z) ≡ 0 on G . For an operator T ∈
L (H ) and x ∈ H , the resolvent set ρT (x) of T at x is defined to consist of z0 in C

such that there exists an analytic function f (z) on a neighborhood of z0 , with values in
H , which verifies

(T − z) f (z) ≡ x. (1)

We denote the local spectrum of T at x by σT (x) = C \ ρT (x) , and by using local
spectra, we define the local spectral subspace of T by HT (F) = {x∈H : σT (x)⊂F} ,
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where F is a subset of C . An operator T ∈ L (H ) is said to have Dunford’s property
(C) if HT (F) is closed for each closed subset F of C . An operator T ∈L (H ) is said
to have Bishop’s property (β ) if for every open subset G of C and every sequence fn :
G → H of H -valued analytic functions such that (T − z) fn(z) converges uniformly
to 0 in norm on compact subsets of G , then fn(z) converges uniformly to 0 in norm
on compact subsets of G . It is known [10] that

Bishop’s property (β ) ⇒ Dunford’s property (C) ⇒ SVEP.

An operator T ∈ L (H ) is called scalar of order m if it possesses a spectral
distribution of order m , i.e., if there is a continuous unital morphism of topological
algebras

Φ : Cm
0 (C) → L (H )

such that Φ(z) = T , where z stands for the identical function on C and Cm
0 (C) for

the space of all compactly supported functions continuously differentiable of order m ,
0 � m � ∞ . An operator is said to be subscalar of order m if it is similar to the
restriction of a scalar operator of order m to an invariant subspace.

We say that T ∈ L (H ) is relatively regular if TST = T for some S ∈ L (H ) ,
or equivalently, when both the range and kernel of T are closed complemented sub-
space. This concept is well known in ring theory and has been investigated by I.
Kaplansky (see [6]). The relatively regular operators are very useful in solving lin-
ear equations. For example, if Tx = y has a solution x0 for a given y ∈ H , then
TSy = TSTx0 = Tx0 = y . Hence Sy is a solution. Several authors have studied about
these subjects (see [1], [2], [3], and [11], etc.). In this paper, we emphasize on the
local spectral theory (i.e., the single-valued extension property, the property (β ), etc.)
for relatively regular operators. Furthermore, we introduce and study the local spectral
property of relatively regular operators modulo a nilpotent operator.

2. Preliminaries

Let z be the coordinate function in the complex plane C and dμ(z) the planar
Lebegue measure. Consider a bounded (connected) open subset U of C . We shall
denote by L2(U,H ) the Hilbert space of measurable functions f : U → H such that

‖ f‖2,U = (
∫
U
‖ f (z)‖2dμ(z))

1
2 < ∞.

The space of functions f ∈L2(U,H ) which are analytic functions in U is denoted
by

A2(U,H ) = L2(U,H )∩O(U,H )

where O(U,H ) denotes the Fr échet space of H -valued analytic functions on U with
respect to uniform topology. The space A2(U,H ) is called the Bergman space for U ,
and it is a Hilbert space.

Now let us define a special Sobolev type space. Let U be again a bounded open
subset of C and m be a fixed non-negative integer. The vector-valued Sobolev space
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Wm(U,H ) with respect to ∂ and of order m will be the space of those functions

f ∈ L2(U,H ) whose derivatives ∂ f , · · · ,∂ m
f in the sense of distributions still belong

to L2(U,H ) . Endowed with the norm

‖ f‖2
Wm =

m

∑
i=0

‖∂
i
f‖2

2,U ,

Wm(U,H ) becomes a Hilbert space contained continuously in L2(U,H ) . Note that
the linear operator M of multiplication by z on Wm(U,H ) is continuous and it has a
spectral distribution ΦM :Cm

0 (C)→L (Wm(U,H )) of order m defined by the follow-
ing relation:

ΦM(ϕ) f = ϕ f for ϕ ∈Cm
0 (C) and f ∈Wm(U,H ).

Therefore, M is a scalar operator of order m , 0 � m � ∞ .
An operator T ∈L (H ) is called semi-regular if T has closed range and ker(Tn)

⊆ ran(T ) , for all n � 0. We define the semi-regular spectrum σse(T ) by

σse(T ) = {λ ∈ C : T −λ is not semi-regular}.

An operator T ∈ L (H ) is called upper semi-Fredholm if T has closed range and
dim ker(T ) < ∞ , and T is called lower semi-Fredholm if T has closed range and
dim(H /ran(T ))< ∞ . When T is either upper semi-Fredholm or lower semi-Fredholm,
it is called semi-Fredholm. The index of a semi-Fredholm operator T ∈ L (H ) , de-
noted index(T ) , is given by index(T ) = dim ker(T )−dim(H /ran(T )) and this value
is an integer or ±∞ . Also an operator T ∈ L (H ) is said to be Fredholm if it is both
upper and lower semi-Fredholm. We define the upper semi-Fredholm spectrum σu f (T )
and the semi-Fredholm spectrum σs f (T ) by

σu f (T ) = {λ ∈ C : T −λ is not upper semi-Fredholm}

and
σs f (T ) = {λ ∈ C : T −λ is not semi-Fredholm}.

An operator T ∈L (H ) is said to be Weyl if it is Fredholm of index zero. For an oper-
ator T ∈ L (H) , if we can choose the smallest positive integer m such that ker(Tm) =
ker(Tm+1) , then m is called the ascent of T and T is said to have finite ascent. More-
over, if there is the smallest positive integer n satisfying ran(Tn) = ran(Tn+1) , then n
is called the descent of T and T is said to have finite descent. An operator T ∈L (H )
is called upper semi-Browder if it is Fredholm of finite ascent, and T is called lower
semi-Browder if it is Fredholm of finite decent. When T is either upper semi-Browder
or lower semi-Browder, it is called semi-Browder. Also an operator T ∈ L (H ) is
said to be Browder if it is both upper and lower semi-Browder. Also We define the
Weyl spectrum σw(T ) , the Browder spectrum σb(T ) , the upper semi-Browder spec-
trum σub(T ) by

σw(T ) = {λ ∈ C : T −λ is not Weyl},
σb(T ) = {λ ∈ C : T −λ is not Browder},
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and
σub(T ) = {λ ∈ C : T −λ is not upper semi-Browder}.

It is evident that
σs f (T ) ⊂ σu f (T ) ⊂ σub(T ) ⊂ σb(T ).

We say that Weyl’s theorem holds for T if

σ(T )\π00(T ) = σw(T ), or equivalently, σ(T )\σw(T ) = π00(T )

where π00(T ) := {λ ∈ iso σ(T ) : 0 < dim ker(T −λ ) < ∞} and iso σ(T ) denotes the
set of all isolated points of σ(T ) . We say that Browder’s theorem holds for T ∈L (H )
if σb(T ) = σw(T ).

3. Relatively regular operators

In this section, we study the local spectral property of a relatively regular operator
with the single-valued extension property. The single-valued extension property implies
the existence of a maximal analytic extension f (z) of R(· ;T )x to ρT (x) from (1). First
of all, we begin with the following theorem.

THEOREM 1. Let (S,T ) be solutions of operator equations satisfying TST = T
and STS = S . If there are positive constants c1 and c2 such that c1||Tx|| � ||Sx|| �
c2||Tx|| for all x ∈ H or ker T = ker S , then T has the single-valued extension
property if and only if S has the single-valued extension property.

Proof. If there are positive constants c1 and c2 such that c1||Tx|| � ||Sx|| �
c2||Tx|| for all x ∈ H , then ker T = ker S . Hence it suffices to consider the case
ker T = ker S . Suppose that T has the single-valued extension property. Let λ0 ∈ C

and let G be an open connected set in C containing λ0 . Let f be any H -valued
analytic function on G such that

(S−λ ) f (λ ) ≡ 0 (2)

for any λ ∈ G . Then
(STS−λST) f (λ ) = 0

for any λ ∈ G . Since STS = S , we have

(S−λST) f (λ ) = S(I−λT) f (λ ) ≡ 0. (3)

Then (I−λT ) f (λ ) ∈ ker S = ker T on G . We get that

(I−λT)T f (λ ) = T (I−λT) f (λ ) ≡ 0.

(i) If 0 ∈ G , choose an open connected set G0 such that G0 ⊂ G\ {0} . Then

(T − μ)T f
( 1

μ

)
= (T − μ)T( f ◦ g)(μ)≡ 0
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where g(μ) = 1
μ and μ = 1

λ on G0 . Since T has the single-valued extension property,

T ( f ◦ g)(μ) ≡ 0

on G0 . By Identity Theorem, we obtain that T f (λ ) ≡ 0 on G . Therefore

λST f (λ ) ≡ 0 (4)

on G . By (3) and (4), S f (λ ) = 0. Then from (2), λ f (λ ) = 0 on G , and hence
f (λ ) ≡ 0 on G . Thus S has the single-valued extension property.

(ii) If 0 �∈ G , then we don’t need to choose G0 as in (i). Hence,

(T − μ)T f
( 1

μ

)
= (T − μ)T( f ◦ g)(μ)≡ 0

where g(μ) = 1
μ and μ = 1

λ on G . The remaining part is the same proof with (i).
The converse implication is similar. �
We observe that there are several classes of operators satisfying Theorem 1. For

example, if T is the bilateral shift, more generally, unitary, or invertible, then Theorem
1 holds. We give other examples.

EXAMPLE 1. Let Tα be a diagonal operator with diagonals {
√

n+1
n }∞

n=1 and Sβ

be a diagonal operator with diagonals {
√

n
n+1}∞

n=1 . Then TαSβ Tα = Tα and Sβ TαSβ =
Sβ . Moreover, ker Tα = ker Sβ and Tα and Sβ have the single-valued extension
property.

EXAMPLE 2. If T is the unilateral shift defined by Ten = en+1 for every positive
integer n where {en}∞

n=1 is an orthonormal basis for H , then T is relatively regular
with S = T ∗ . Hence T has the single-valued extension property, but S does not have
it (see [4, Example 1.7]). From Theorem 1, ker T �= ker S . Let’s consider another
example. Let T =U ⊕U∗ and S = U∗⊕U in L (H ⊕H ) where U is the unilateral
shift. Then TST = T and STS = S . Since U∗ does not have the single-valued extension
property, neither T nor S has the single-valued extension property. From Theorem 1,
ker T �= ker S .

COROLLARY 1. Let T ∈ L (H ) have closed range. Then T has the single-
valued extension property if and only if (T |ran T ∗)−1P has the single-valued extension
property where P is an orthogonal projection of H onto ran T .

Proof. Since T has closed range, so does T ∗ by the closed range theorem.
Since H = ker T ⊕ (ker T )⊥ and (ker T )⊥ = ran T ∗ , T |ran T ∗ is one-to-one and
(T |ran T ∗)(ran T ∗) = ran T is closed. Hence T |ran T ∗ is invertible and has an inverse
A : ran T → ran T ∗ . Let P be an orthogonal projection of H onto ran T . Set S = AP .
Then TST = TAPT = T and STS = APTAP = AP = S . Since ker T = ker S , from
Theorem 1 T has the single-valued extension property if and only if AP has the single-
valued extension property. �
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COROLLARY 2. Let T ∈ L (H ) be relatively regular such that TST = T . If
ker T = ker STS or TS = ST , then T has the single-valued extension property if and
only if STS has the single-valued extension property.

Proof. (i) Assume ker T = ker STS . Set S0 = STS . Then

TS0T = T (STS)T = TST = T

and
S0TS0 = (STS)T (STS) = STS = S0.

By Theorem 1, T has the single-valued extension property if and only if S0 = STS has
the single-valued extension property.

(ii) If TS = ST , then ker T = ker STS . Indeed, if Tx = 0, then STSx = S2Tx = 0.
Hence ker T ⊆ ker STS . Conversely, if STSx = 0, then TSx = TSTSx = 0. Hence
Tx = TSTx = T 2Sx = 0. Thus ker STS ⊆ ker T . The proof follows from (i). �

REMARK 1. The converses of Theorem 1 and Corollary 2 do not hold, in general.

EXAMPLE 3. Let T =
(

0 0
I H

)
be in L (H ⊕H ) where H is hyponormal (i.e.,

H∗H � HH∗ , or equivalently, ||H∗x|| � ||Hx|| for x ∈ H ).

Set S =
(

0 I
0 0

)
∈ L (H ⊕H ) . Then TST = T and STS = S hold. Moreover, it

is known from [7] that T and STS = S have the single-valued extension property. But
TS �= ST and ker T �= ker S(= ker STS) .

The following corollary states the approximate eigenvalue problem in some sense.

COROLLARY 3. Under the same hypotheses with Theorem 1, if T has the single-
valued extension property, then σap(S∗) = σ(S) = σsu(S) = ∪x∈H σS(x) and σap(S) =
σse(S) .

Proof. From Theorem 1, S has the single-valued extension property. Hence
σ(S) = σsu(S) = ∪x∈H σS(x) . Since σsu(S) = σap(S∗) and σap(S) = σse(S) from [1],
we complete the proof. �

COROLLARY 4. Assume that T is relatively regular such that TST = T . If T is
normal (i.e., T ∗T = TT ∗ ), TS = ST , and |T |2 has dense range, then S is normal.

Proof. Since T is normal and TS = ST , the Fuglede-Putnam theorem implies
T ∗S = ST ∗ . Since T is relatively regular,

0 = TT ∗ −T ∗T
= TSTT ∗S∗T ∗ −T∗S∗T ∗TST
= T ∗T [SS∗−S∗S]T ∗T
= |T |2[SS∗−S∗S]|T |2.
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Hence S is normal on ran |T |2 . �
There is a trivial example for Corollary 4. In fact, if T is invertible normal and

S = T−1 , then T is relatively regular, TS = ST = I , and S is normal. We next consider
another example. Let D be the open unit disk in the complex plane. The space H2(D)
consists of all the analytic functions on D having power series representations with
square summable complex coefficients. If ϕ is an analytic function mapping D into
itself, the composition operator Cϕ is the operator on H2(D) defined by Cϕ f = f ◦ϕ .
For any α ∈D , the function Kα(z) = 1

1−αz is called reproducing kernel for α ∈D such
that f (α) = 〈 f ,Kα 〉 for any f ∈ H2(D) .

EXAMPLE 4. Let ϕ and ψ be analytic maps of the unit disk D to itself. If Cϕ
is normal such that CϕCψCϕ = Cϕ for some Cψ , then Cψ is normal. Indeed, since
C∗

ϕC∗
ψC∗

ϕ = C∗
ϕ , for a reproducing kernel Kα (z) = 1

1−αz , α ∈ D , we get that for any
α ∈ D and f ∈ H2(D) , 〈 f ,C∗

ϕ Kα〉 = 〈Cϕ f ,Kα 〉 = 〈 f ◦ϕ ,Kα〉 = f (ϕ(α)) = 〈 f ,Kϕ(α)〉
and hence C∗

ϕKα = Kϕ(α) and

Kϕ(ψ(ϕ(α)))(z) = C∗
ϕC∗

ψC∗
ϕKα(z) =C∗

ϕKα(z) = Kϕ(α)(z).

Hence ϕ(ψ(ϕ(α))) = ϕ(α) for every α ∈ D . Since Cϕ is normal, it is well known
that ϕ(z) = γz where |γ| � 1. Thus ψ(γα) = α for every α ∈ D . Set ψ(z) = b0 +
b1(z) + · · · . Then α = ψ(γα) = b0 + b1γα + · · · . Hence b1 = 1

γ and bn = 0 where

n �= 1. Thus ψ(z) = 1
γ z . Since ψ(D) ⊆ D , | 1γ | � 1, i.e., |γ| � 1. Thus |γ| = 1.

Therefore, ψ(z) = 1
γ z for |γ| = 1. Hence Cψ is normal. Moreover, it is easy to check

that CψCϕ = CϕCψ and |Cϕ |2 is dense range in H2(D) .

COROLLARY 5. Let Ti be relatively regular such that TiSiTi = Ti and TiSi = SiTi

for i = 1,2 . If T1 and T2 are hyponormal, then S1T1S1⊕S2T2S2 has the single-valued
extension property.

Proof. Since T1 ⊕T2 is hyponormal, it has the single-valued extension property.
Since (T1 ⊕T2)(S1 ⊕S2) = (S1 ⊕S2)(T1 ⊕T2) , S1T1S1 ⊕S2T2S2 has the single-valued
extension property from Corollary 2. �

Recall that an operator T in L (H ) admits a moment sequence if there exists
nonzero vectors x and y in H and a (finite, regular) Borel measure μ supported on
σ(T ) such that

〈Tnx,y〉 =
∫

σ(T)
λ ndμ , n ∈ N∪{0}.

(We use the term measure here in the usual sense of a nonnegative-valued set function.)
An operator T in L (H ) is algebraic if there is a non-zero polynomial p such that
p(T ) = 0.

THEOREM 2. Assume that T ∈ L (H ) is relatively regular such that TST = T .
Then the following statements hold.
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(i) If T �= 0 and TS �= I , then T has a nontrivial invariant subspace ran T , T =(
T1 T2

0 T3

)
: ran T ⊕ker T ∗ → ran T ⊕ker T ∗ , where T1 = T |ran T , and admits a moment

sequence.
(ii) ST and TS are subscalar, and have the property (β ) , Dunford property (C) ,

and the single-valued extension property. Hence HS T (F) and HT S (F) are hyper-
invariant under ST and TS, respectively, where F is closed.

Proof. (i) Since (I−TS)T = 0, {0} �= ran T ⊆ ker (I−TS) �= H . Hence ran T
is a nontrivial invariant subspace for T . Hence T can be written with respect to the

decomposition H = ran T ⊕ ker T ∗ as T =
(

T |ran T T2

0 T3

)
. Choose x ∈ ranT and

y ∈ kerT ∗ . If we define μ ≡ 0 on σ(T ) , then 〈Tnx,y〉 = 0 =
∫

σ(T) λ ndμ . Hence T
admits a moment sequence.

(ii) Since (ST )2 = ST and (TS)2 = TS , ST and TS are algebraic such that
p(ST ) = p(TS) = 0 where p(z) = z2 − z . Hence ST and TS are subscalar from [8,
Corollary 4.8]. Thus ST and TS have the property (β ) , Dunford property (C) , and
the single-valued extension property. Since HS T (F) and HT S (F) are closed, the
proof follows from [4]. �

As some applications of Theorem 2, we get the following corollaries.

COROLLARY 6. If T ∈ L (H ) has closed range such that T �= 0 and TS �= I
where S = (T |ran T ∗)−1P and P is an orthogonal projection of H onto ran T , then it
has a nontrivial invariant subspace.

Proof. Since T ∈ L (H ) has closed range, it is relatively regular from the proof
of Corollary 1. Hence the proof follows from Theorem 2. �

COROLLARY 7. Assume that T ∈L (H ) is relatively regular such that TST = T
and TS = ST where T �= 0 and TS �= I . If TST has the single-valued extension
property and T (ran T ) = ran T , then T is bijective on ran T .

Proof. From Corollary 2, we know that T has the single-valued extension property.
Since ran T is a nontrivial invariant subspace for T from Theorem 2 and T (ran T ) =
ran T , the proof follows from [9]. �

COROLLARY 8. If T ∈ L (H ) is a relatively regular operator such that T =
TST , then both Weyl’s theorem and Browder’s theorem hold for f (ST ) and σω ( f (ST ))
= σb( f (ST )) = f (σω (ST )) = f (σb(ST )) where f is any function analytic on a neigh-
borhood of σ(ST ) .

Proof. Let f be any function analytic on a neighborhood of σ(ST ) . Since ST is
subscalar from Theorem 2, so is f (ST ) and thus Weyl’s theorem holds for f (ST ) from
[1]. Moreover, since f (ST ) has the single-valued extension property by Theorem 2,
Browder’s theorem holds for f (ST ) and the given equalities are satisfied from [1]. �
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COROLLARY 9. Assume that T ∈ L (H ) is relatively regular such that TST =
T . Then σ((ST )|HST (F)) ⊂ σ(ST )∩F and σ((TS)|HTS(F)) ⊂ σ(TS)∩F .

Proof. Since TS and ST have the Dunford property (C) from Theorem 2, the
proof follows from [4]. �

PROPOSITION 1. Let T ∈L (H ) be a relatively regular operator such that TST
= T . If M ∈ Lat T ∩Lat S , then T |M is a relatively regular operator.

Proof. Let P be the orthogonal projection of H onto M . Since TST = T ,
P[TST −T ]P = 0. Since PTP = TP and PSP = SP ,

0 = P[TST −T ]P = PTSTP−PTP = (PTP)(PSP)(PTP)−PTP.

Hence PTP = TP is relatively regular. �

The following proposition provides some spectral relations.

PROPOSITION 2. Assume that T ∈L (H ) is relatively regular such that TST =
T . The following statements hold.

(i) ST −λ is bounded below for all λ �= 1 if and only if T is bounded below.
(ii) ST −λ is one-to-one for all λ �= 1 if and only if T is one-to-one.
(iii) If T is invertible, then S is invertible.

Proof. (i) If ST −λ is not bounded below for λ �= 1, then λ ∈ σap(ST ) for λ �= 1
and there is a sequence {xn} of unit vectors in H such that

lim
n→∞

‖(ST −λ )xn‖ = 0.

Hence we get that,

0 = lim
n→∞

‖T (ST −λ )xn‖
= lim

n→∞
‖(TST −λT)xn‖

= lim
n→∞

‖T (1−λ )xn‖.

Hence limn→∞ ‖Txn‖ = 0 and 0 ∈ σap(T ) , i.e., T is not bounded below.
If T is not bounded below, then 0 ∈ σap(T ) and there is a sequence {xn} of unit

vectors in H such that
lim
n→∞

‖Txn‖ = 0.

Hence we get that, for λ �= 1,

0 = lim
n→∞

‖T (1−λ )xn‖
= lim

n→∞
‖(TST −λT)xn‖

= lim
n→∞

‖T (ST −λ )xn‖.
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Hence limn→∞ ‖(ST −λ )xn‖ = 0 for λ �= 1 and λ ∈ σap(ST ) for λ �= 1 , i.e., ST −λ
is not bounded below.

(ii) The proof follows from the same argument as (i) with a constant sequence
{xn} .

(iii) If T is invertible, then there is an operator T−1 ∈ L (H ) . Since T = TST ,
we have ST = TS = I by multiplying T−1 to both sides. Therefore S is invertible. �

The following proposition provides some spectral relations.

PROPOSITION 3. Assume that T ∈L (H ) is relatively regular such that TST =
T . The following statements hold.

(i) σ(ST ) = ∪x∈H σST (x) and σ(TS) = ∪x∈H σTS(x) . In particular, if T is in-
vertible, ∪x∈H σST (x) = ∪x∈H σTS(x) .

(ii) σI(Tx) ⊆ σST (x) , σTS(Tx) ⊆ σST (x) , and σI(STx) ⊆ σST (x) .
(iii) ∪x∈H σI(Tx) ⊆ σ(ST ) .
(iv) THST (F) ⊆ HI(F) , STHST (F) ⊆ HT (F) , and THST (F) ⊆ HTS(F) for

all closed set F ⊂ C .

Proof. (i) Since ST and TS have the single-valued extension property from
Theorem 2, σ(ST ) = ∪x∈H σST (x) and σ(TS) = ∪x∈H σTS(x) by [1]. In particu-
lar, if T is invertible, then TS and ST are invertible from Proposition 2. Hence
σ(ST ) = σ(TS) = ∪x∈H σST (x) = ∪x∈H σTS(x) .

(ii) If z �∈ σST (x) , there exists an analytic function f defined on a neighborhood
of z such that

(ST − z) f (z) ≡ x.

Multiplying both sides by T , we get that

Tx ≡ (TST − zT ) f (z)
= (I− z)T f (z). (5)

Hence z �∈ σI(Tx) . Thus σI(Tx) ⊆ σST (x) . Since

(TS− z)T f (z) ≡ Tx (6)

by (5), then z �∈ σTS(Tx) . Hence σTS(Tx) ⊆ σST (x) . If we multiply both sides of (5)
with S , then

STx ≡ (I− z)ST f (z). (7)

Hence z �∈ σI(STx) . Thus σI(STx) ⊆ σST (x) .
(iii) From (ii), ∪x∈H σI(Tx) ⊆ ∪x∈H σST (x) . Since ST is the single-valued ex-

tension property by Theorem 2, ∪x∈H σST (x) = σ(ST ) from [10].
(iv) If x ∈ HST (F) for all closed F set of C , then σST (x) ⊂ F . By (i), σI(Tx) ⊂

F . Thus Tx ∈ HI(F) . Therefore THST (F) ⊆ HI(F) for all closed set F ⊂ C . Sim-
ilarly, we get that STHST (F) ⊆ HT (F) and THST (F) ⊆ HTS(F) for all closed set
F ⊂ C . �
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4. Relatively regular operators modulo a nilpotent operator

In this section, we introduce and study the relatively regular operators modulo
a nilpotent operator. In particular, we focus on the local spectral property of such
operators.

DEFINITION 1. If TST −T = N where Nk = 0 and NT = TN , we say that T is
relatively regular modulo N with order k .

We next give an example for Definition 1.

EXAMPLE 5. Let T =
(

U U
0 U

)
be in L (H ⊕H ) where U is the unilateral

shift. Then U is a relatively regular operators such that UU∗U = U . Moreover, T is

relatively regular modulo N =
(

0 U
0 0

)
with order 2 where S = U∗ ⊕U∗ .

THEOREM 3. Let T ∈ L (H ) be relatively regular modulo N with order k for
some S ∈ L (H ) . If 0 �∈ σap(Tk) , then ST and TS have the property (β ) .

Proof. Let G be any open set of C , and let { fn}∞
n=1 be a sequence of H -valued

analytic function on G such that

lim
n→∞

(ST −λ ) fn(λ ) = 0

uniformly on compact subsets K of G . Then

lim
n→∞

(TST −λT) fn(λ ) = lim
n→∞

(T +N−λT) fn(λ ) = 0

uniformly on compact subsets K of G . Hence

lim
n→∞

[(I−λ )T +N] fn(λ ) = 0 (8)

uniformly on compact subsets K of G . Since Nk = 0,

lim
n→∞

[(I−λ )Nk−1T +Nk] fn(λ ) = lim
n→∞

(I−λ )Nk−1T fn(λ ) = 0

uniformly on compact subsets K of G . Since I has the property (β ) ,

lim
n→∞

Nk−1T fn(λ ) = 0 (9)

uniformly on compact subsets K of G . From (8),

lim
n→∞

[(I−λ )T 2 +NT ] fn(λ ) = 0

uniformly on compact subsets K of G . Therefore from (9) we have

lim
n→∞

[(I−λ )T 2Nk−2 +Nk−1T ] fn(λ ) = lim
n→∞

(I−λ )T 2Nk−2 fn(λ ) = 0
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uniformly on compact subsets K of G . Since I has the property (β ) , we get that
limn→∞ T 2Nk−2 fn(λ ) = 0.

Assume that limn→∞ T jNk− j fn(λ ) = 0 for all j = 1,2, · · · ,k−1. Then from (8)

lim
n→∞

[(I−λ )T j+1Nk−( j+1) +T jNk− j] fn(λ ) = 0

uniformly on compact subsets K of G . Hence

lim
n→∞

(I−λ )T j+1Nk−( j+1) fn(λ ) = 0

uniformly on compact subsets K of G . Since I has the property (β ) ,

lim
n→∞

T j+1Nk−( j+1) fn(λ ) = 0

for all j = 1,2, · · · ,k−1. Hence by the induction, we get that

lim
n→∞

T jNk− j fn(λ ) = 0 (10)

for all j = 1,2, · · · ,k , where N0 = I . In particular, when j = k , limn→∞ Tk fn(λ ) = 0
uniformly on compact subsets K of G . Since 0 �∈ σap(Tk) , we get that limn→∞ fn(λ ) =
0 uniformly on compact subsets K of G . Hence ST has the property (β ) .

Let G be any open set of C , and let { fn}∞
n=1 be a sequence of H -valued analytic

function on G such that
lim
n→∞

(TS−λ ) fn(λ ) = 0 (11)

uniformly on compact subsets K of G . Then

lim
n→∞

(TSTS−λTS) fn(λ ) = lim
n→∞

[(T +N)−λT ]S fn(λ ) = 0

uniformly on compact subsets K of G . Hence

lim
n→∞

[(I−λ )T +N]S fn(λ ) = 0

uniformly on compact subsets K of G . Repeating the process from (8) to (10), we get
that

lim
n→∞

T jNk− jS fn(λ ) = 0

for all j = 1,2, · · · ,k . In particular, limn→∞ TkS fn(λ ) = 0 uniformly on compact sub-
sets K of G . Since 0 �∈ σap(Tk) , limn→∞ S fn(λ ) = 0 uniformly on compact subsets
K of G . Thus limn→∞ TS fn(λ ) = 0 uniformly on compact subsets K of G . From
(11), limn→∞ λ fn(λ ) = 0 uniformly on compact subsets K of G , and since a zero op-
erator has the property (β ) , limn→∞ fn(λ ) = 0 uniformly on compact subsets K of G .
Therefore TS has the property (β ) . �

REMARK 2. We observe that we can replace 0 �∈ σap(Tk) by 0 �∈ σp(Tk) for the
single-valued extension property of ST and TS in Theorem 3.
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COROLLARY 10. Under the same hypotheses with Theorem 3, then following
statements hold.

(i) ST and TS have the Dunford’s property (C) and the single-valued extension
property.

(ii) If ST and TS are quasisimilar, then σ(ST ) = σ(TS) and σe(ST ) = σe(TS) .
(iii) If σ(ST ) has nonempty interior in the complex plane, then ST and TS have

nontrivial invariant subspaces.

Proof. (i) Since ST and TS have the property (β ) by Theorem 3, the proof
follows from [1].

(ii) The proof follows from [1].
(iii) Since σ(ST )∪{0} = σ(TS)∪ {0} , the proof follows from Theorem 3 and

[10]. �

COROLLARY 11. Let T =
(

T1 T3

0 T2

)
be in L (H ⊕H ) where T1 and T2 are

commuting relatively regular operators such that Ti = TiSiTi for i = 1,2 . If

T 2
1 S1T3 +T1T3S2T2 −T1T3 = T1S1T3T2 +T3S2T

2
2 −T3T2 (12)

and 0 �∈ σap(T 2) , then TS and ST have the property (β ) where S = S1⊕S2 .

Proof. Set S = S1⊕S2 . Then TST −T = N where

N =
(

0 T1S1T3 +T3S2T2−T3

0 0

)

is nilpotent of order 2. Since TN = NT by the hypothesis, T is relatively regular
modulo N with order 2. Since 0 �∈ σap(T 2) , TS and ST have the property (β ) from
Theorem 3. �

EXAMPLE 6. Let T =
(

U U
0 U

)
be in L (H ⊕H ) where U is the unilateral

shift. Since 0 �∈ σap(T 2) , TS =
(

UU∗ UU∗
0 UU∗

)
and ST =

(
I I
0 I

)
have the property (β )

from Corollary 11 where S = U∗ ⊕U∗ .

THEOREM 4. Let T ∈ L (H ) be relatively regular modulo N with order k for
some S ∈ L (H ) . If 0 �∈ σp(Tk) , S has the single-valued extension property, and
Nk−1S = SNk−1 , then T has the single-valued extension property.

Proof. Assume S has the single-valued extension property. Let λ0 ∈ C and let
G be an open connected set in C containing λ0 . Let f be any H -valued analytic
function on G such that

(T −λ ) f (λ ) ≡ 0.

Then
(TST −λTS) f (λ ) = (T +N−λTS) f (λ ) ≡ 0. (13)
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Since Nk = 0, we obtain that

(Nk−1T +Nk −λNk−1TS) f (λ ) = Nk−1T (I−λS) f (λ ) ≡ 0

on G . Since TN = NT , TkNk−1(I − λS) f (λ ) ≡ 0. Since 0 �∈ σp(Tk) , Nk−1(I −
λS) f (λ ) ≡ 0. Since Nk−1S = SNk−1 , (I−λS)Nk−1 f (λ ) ≡ 0.

(i) If 0 ∈ G , choose an open connected set G0 such that G0 ⊂ G\ {0} . Then

(S− μ)Nk−1( f ◦ g)(μ) ≡ 0

where g(μ) = 1
μ and μ = 1

λ on G0 . Since S has the single-valued extension property,

Nk−1( f ◦ g)(μ)≡ 0 (14)

on G0 . By the Identity Theorem, we obtain that Nk−1 f (λ ) ≡ 0 on G . If we apply (13)
to (14), then

(Nk−2T +Nk−1−λNk−2TS) f (λ ) = Nk−2T (I−λS) f (λ )≡ 0.

By the similar method above,
Nk−2 f (λ ) ≡ 0

on G . By the induction, we get that f (λ ) ≡ 0 on G . Hence T has the single-valued
extension property.

(ii) If 0 �∈ G , then we don’t need to choose G0 as in (i). Hence,

(S− μ)Nk−1( f ◦ g)(μ) ≡ 0

where g(μ) = 1
μ and μ = 1

λ on G . The remaining part is the same proof with (i). �

COROLLARY 12. Let T =
(

T1 T3

0 T2

)
be in L (H ⊕H ) where T1 and T2 are

commuting relatively regular operators such that Ti = TiSiTi for i = 1,2 , T1T3 = T3T2 ,
and the condition (12) is satisfied. If 0 �∈ σp(T 2) , S1 and S2 have the single-valued
extension property, and S1(T1S1T3 +T3S2T2−T3) = (T1S1T3 +T3S2T2 −T3)S2 , then T
has the single-valued extension property.

Proof. From the proof of Corollary 11, T is relatively regular modulo N with
order 2 where

N =
(

0 T1S1T3 +T3S2T2−T3

0 0

)

and S = S1 ⊕ S2 . Since 0 �∈ σp(T 2) , S has the single-valued extension property, and
SN = NS by the hypotheses, T has the single-valued extension property from Theorem
4. �

EXAMPLE 7. Let T =
(

T1 T2

0 T1

)
in L (H ⊕H ) where T1 and T2 are commut-

ing unitary operators. Then T1 and T2 are relatively regular operators. Moreover, the
condition (12) is satisfied and T ∗

1 T2 = T2T ∗
1 by using the Fuglede-Putnam theorem.

Since S = T ∗
1 ⊕ T ∗

1 has the single-valued extension property and 0 �∈ σp(T 2) , T has
the single-valued extension property from Corollary 12.
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COROLLARY 13. Under the same hypotheses with Corollary 11, if S1 and S2

have the single-valued extension property,

S1(T1S1T3 +T3S2T2 −T3) = (T1S1T3 +T3S2T2−T3)S2,

and T1T3 = T3T2 , then σ(T1)∪σ(T2) = σ(T ) and σe(T1)∪σe(T2) = σe(T ) .

Proof. By Corollary 12, it is known that T has the single-valued extension prop-
erty. Since T1T3 = T3T2 , T1 and T2 have the single-valued extension property from [7].
Hence the proof follows from [5]. �
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