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Abstract. Lyapunov-type inequality is established for a fractional differential equation under
Sturm-Liouville boundary conditions. Our results cover many results in the literature.

1. Introduction

The well-known result of Lyapunov [8] states that if u(t) is a nontrivial solution
of the differential system

u′′(t)+ r(t)u(t) = 0, t ∈ (a,b),
u(a) = 0 = u(b), (1)

where r(t) is a continuous and nonnegative function defined in [a,b] , then

∫ b

a
r(t)dt >

4
b−a

, (2)

and the constant 4 cannot be replaced by a larger number.
Since the appearance of Lyapunov’s fundamental paper, there are many improve-

ments and generalizations of (2) in some literatures. A thorough literature review of
continuous and discrete Lyapunov-type inequalities and their applications can be found
in the survey articles by Cheng [2], Brown and Hinton [1] and Tiryaki [9].

However, there are few papers to discuss the Lyapunov-type inequality related to
ordinary fractional differential equations.

The study of Lyapunov-type inequalities for the differential equation depends on a
fractional differential operator was initiated by Rui A. C. Ferreira [3]. He first obtained
a Lyapunov-type inequality when the differential equation depends on the Riemann-
Liouville fractional derivative, the main result is as follows.
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THEOREM 1. If the following fractional boundary value problem (FBVP)

(aD
αu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, (3)

u(a) = 0 = u(b), (4)

has a nontrivial solution, where q is a real and continuous function, then

∫ b

a
|q(s)|ds > Γ(α)

(
4

b−a

)α−1

. (5)

Meanwhile, a Lyapunov-type inequality when the differential equation depends on
the Caputo fractional derivative was also obtained by Rui A. C. Ferreira [4].

THEOREM 2. If a nontrivial continuous solution of the fractional boundary value
problem (FBVP)

(Ca Dαu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, (6)

u(a) = 0 = u(b), (7)

exists, where q is a real and continuous function, then
∫ b

a
|q(s)|ds >

Γ(α)αα

[(α −1)(b−a)]α−1 . (8)

Recently, M. Jleli and B. Samet [5] investigated Lyapunov-type inequalities for
fractional differential equation involving the Caputo fractional derivative under two
types of mixed boundary conditions. The results are as follows.

THEOREM 3. If a nontrivial continuous solution of the fractional boundary value
problem

(Ca Dαu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, (9)

u(a) = u′(b) = 0, (10)

exists, where q is a real and continuous function in [a,b], then
∫ b

a
(b− s)α−2|q(s)|ds � Γ(α)

max{α −1,2−α}(b−a)
. (11)

THEOREM 4. If a nontrivial continuous solution of the fractional boundary value
problem

(Ca Dαu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, (12)

u′(a) = u(b) = 0, (13)

exists, where q is a real and continuous function in [a,b], then
∫ b

a
(b− s)α−1|q(s)|ds � Γ(α). (14)



A LYAPUNOV-TYPE INEQUALITY FOR A FDE 141

Very recently, M. Jleli, L. Ragoub and B. Samet [6] considered a Caputo fractional
differential equation under Robin boundary conditions. They give the following result.

THEOREM 5. If a nontrivial continuous solution of the fractional boundary value
problem

(Ca Dαu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, (15)

u(a)−u′(a) = u(b)+u′(b) = 0, (16)

exists, where q is a real and continuous function in [a,b], then

∫ b

a
(b− s)α−2(b− s+ α −1)|q(s)|ds � (b−a+2)Γ(α)

max
{ 2−α

α−1 (b−a)−1,b−a+1
}. (17)

Motivated by the above cited works, the purpose of this paper is to obtain Lyapunov-
type inequality for fractional differential equation involving the Caputo fractional deriva-
tive under Sturm-Liouville-type boundary conditions. More precisely, we consider the
fractional differential equation

(Ca Dαu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, (18)

under the boundary conditions

μu(a)−νu′(a) = 0, γu(b)+ δu′(b) = 0, (19)

where μ � 0, ν � 0, γ � 0, δ � 0 and Δ = μγ(b−a)+ μδ + γν > 0.

2. Preliminaries

In this section, we recall the concepts of the Riemann-Liouville fractional integral
and the Caputo fractional derivative of order α � 0. For more details, we refer to [7].

DEFINITION 1. Let α � 0 and f be a real function defined on [a,b] . The Riemann-
Liouville fractional integral of order α is defined by (aI0 f ) ≡ f and

(aI
α f )(t) =

1
Γ(α)

∫ t

a
(t− s)α−1 f (s)ds, α > 0, t ∈ [a,b].

DEFINITION 2. The Caputo fractional derivative of order α � 0 is defined by
(Ca D0 f ) ≡ f and (Ca Dα f )(t) = (aIm−αDm f )(t) for α > 0, where m is the smallest
integer greater or equal to α .

LEMMA 1. u ∈ C[a,b] is a solution of the boundary value problem (18)–(19) if
and only if u satisfies the integral equation

u(t) =
∫ b

a
G(t,s)q(s)u(s)ds,
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where G(t,s) is given by

G(t,s) =
(b− s)α−2[γ(b− s)+ δ (α −1)]

ΔΓ(α)
H(t,s),

H(t,s) =
{

g1(t,s), a � s � t � b,
g2(t,s), a � t � s � b,

g1(t,s) = ν + μ(t−a)− Δ(t− s)α−1

γ(b− s)α−1 + δ (α −1)(b− s)α−2 ,

g2(t,s) = ν + μ(t−a).

Proof. It is a standard result within the fractional calculus theory involving the
Caputo differential operator that u ∈C[a,b] is a solution of (18) if and only if

u(t) = c0 + c1(t −a)− 1
Γ(α)

∫ t

a
(t − s)α−1q(s)u(s)ds,

where c0 and c1 are some real constants. On the other hand, we have

u′(t) = c1− 1
Γ(α)

∫ t

a
(α −1)(t− s)α−2q(s)u(s)ds.

By the boundary condition μu(a)−νu′(a) = 0, γu(b)+ δu′(b) = 0, we have

μc0−νc1 = 0,

γc0 +[(b−a)γ + δ ]c1 =
1

Γ(α)

∫ b

a

γ(b− s)+ δ (α −1)
(b− s)2−α q(s)u(s)ds,

obviously,

Δ =
∣∣∣∣ μ −ν

γ (b−a)γ + δ

∣∣∣∣ = μγ(b−a)+ μδ + γν,

thus,

c0 =
ν

ΔΓ(α)

∫ b

a

γ(b− s)+ δ (α −1)
(b− s)2−α q(s)u(s)ds,

c1 =
μ

ΔΓ(α)

∫ b

a

γ(b− s)+ δ (α −1)
(b− s)2−α q(s)u(s)ds.

Then, we get

u(t) = c0 + c1(t−a)− 1
Γ(α)

∫ t

a
(t− s)α−1q(s)u(s)ds

=
1

ΔΓ(α)

∫ b

a

[ν + μ(t−a)][γ(b− s)+ δ (α −1)]
(b− s)2−α q(s)u(s)ds

− 1
Γ(α)

∫ t

a
(t − s)α−1q(s)u(s)ds

=
∫ b

a
G(t,s)q(s)u(s)ds.

which concludes the proof. �
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LEMMA 2. For all (t,s) ∈ [a,b]× (a,b) , we have

|H(t,s)| � max

{
μ

2−α
α −1

(b−a)−ν,ν + μ(b−a)
}

.

Proof. It is easy to see that, for a � t � s � b , we have

0 � g2(t,s) � ν + μ(b−a). (20)

Now, we divide our proof into two parts.
Part I. If μ = 0, for a � s � t � b , we have

∂g1

∂ t
(t,s) = − Δ(α −1)(t− s)α−2

γ(b− s)α−1 + δ (α −1)(b− s)α−2 � 0,

and

g1(b,s) = ν − Δ(b− s)α−1

γ(b− s)α−1 + δ (α −1)(b− s)α−2

=
δν(α −1)

γ(b− s)+ δ (α −1)
> 0,

so we have
0 < g1(b,s) � g1(t,s) � g1(s,s) = ν � ν +0(b−a),

therefore
0 � g1(t,s) � ν +0(b−a).

Part II. If μ > 0, for a � s � t � b , we have

∂g1

∂ t
(t,s) = μ − Δ(α −1)(t− s)α−2

γ(b− s)α−1 + δ (α −1)(b− s)α−2 .

Hence

lim
t→s+

∂g1

∂ t
(t,s) = −∞, α < 2, while

∂g1

∂ t
(s,s) < 0, α = 2. (21)

Now, for fixed s in (a,b) , we want to study the variation of the function t �→ g1(t,s)
for t in [s,b] . First, we have

∂g1

∂ t
(t,s)

∣∣∣∣
t=b

= μ − Δ(α −1)
γ(b− s)+ δ (α −1)

. (22)

Let

a∗ = b− (α −1)[μ(b−a)+ ν]
μ

.



144 Y. WANG, S. LIANG AND C. XIA

A calculation shows that

s � a∗ ⇔ μ(b− s) � (α −1)[μ(b−a)+ ν]⇔ ∂g1

∂ t
(t,s)

∣∣∣∣
t=b

� 0.

We distinguish two eventual cases according to the value of a∗ .
Case 1. If a∗ � a , in this case, s > a � a∗ , by above calculation, we have

∂g1

∂ t
(t,s)

∣∣∣∣
t=b

� 0. s ∈ (a,b). (23)

Since
∂ 2g1

∂ t2
(t,s) � 0, then

∂g1

∂ t
(t,s) is an increasing function with respect to t , from

(21) and (23), we deduce
∂g1

∂ t
(t,s) � 0, s < t. (24)

This yields

g1(b,s) = ν + μ(b−a)− Δ(b− s)
γ(b− s)+ δ (α −1)

� g1(t,s) � g1(s,s) � ν + μ(b−a). (25)

In this case, by a∗ � a , we get μ(b−a)(α −2)+ ν(α −1) � 0. So we have

g1(b,s) = ν + μ(b−a)− Δ(b− s)
γ(b− s)+ δ (α −1)

=
μδ (s−b)+ δ (α −1)[ν + μ(b−a)]

γ(b− s)+ δ (α −1)

� μδ (a−b)+ δ (α −1)[ν + μ(b−a)]
γ(b− s)+ δ (α −1)

=
μδ (b−a)(α −2)+ δν(α −1)

γ(b− s)+ δ (α −1)
� 0. (26)

From (25) and (26) , we deduce

0 � g1(t,s) � ν + μ(b−a). (27)

Case 2. If a < a∗ � b , in this case, we have two possibilities.
(i) If a∗ � s < b , in this case, we have

∂g1

∂ t
(t,s)

∣∣∣∣
t=b

� 0. (28)

Therefore, we conclude that

g1(b,s) � g1(t,s) � g1(s,s) � ν + μ(b−a). (29)
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In this case, by a∗ � s , we get (α −1)[ν + μ(b−a)] � μ(b− s) . So we have

g1(b,s) = ν + μ(b−a)− Δ(b− s)
γ(b− s)+ δ (α −1)

=
[ν + μ(b−a)][γ(b− s)+ δ (α−1)]−Δ(b− s)

γ(b− s)+ δ (α −1)

=
μδ (s−b)+ δ (α −1)[ν + μ(b−a)]

γ(b− s)+ δ (α −1)
� 0. (30)

From (29) and (30) , we deduce

0 � g1(t,s) � ν + μ(b−a). (31)

(ii) If a < s < a∗ , in this case, we have

∂g1

∂ t
(t,s)

∣∣∣∣
t=b

> 0. (32)

Hence, there would exist t∗ ∈ (s,b) such that

∂g1

∂ t
(t,s)

∣∣∣∣
t=t∗

= 0. (33)

In this case, it is easy to verify that g1(s,s) � 0, and by s < a∗ , we get μ(s−b)+(α −
1)[ν + μ(b−a)] < 0, so we have

g1(b,s) = ν + μ(b−a)− Δ(b− s)
γ(b− s)+ δ (α −1)

=
μδ (s−b)+ δ (α −1)[ν + μ(b−a)]

γ(b− s)+ δ (α −1)
< 0. (34)

This yields

g1(t∗,s) � g1(b,s) � 0 � g1(s,s) � ν + μ(b−a). (35)

Then

|g1(t,s)| � max{−g1(t∗,s),ν + μ(b−a)}. (36)

Observe that ∂g1
∂ t (t,s)

∣∣∣
t=t∗

= 0 is equivalent to

μ =
Δ(α −1)(t∗− s)α−2

γ(b− s)α−1 + δ (α −1)(b− s)α−2 .
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Therefore, we get

g1(t∗,s) = ν + μ(t∗−a)− Δ(t∗ − s)α−1

γ(b− s)α−1 + δ (α −1)(b− s)α−2

= ν + μ(t∗−a)− μ(t∗ − s)
α −1

= ν − μa+
μ(α −2)

α −1
t∗ +

μs
α −1

� ν − μa+
μ(α −2)

α −1
b+

μa
α −1

= ν + μ
α −2
α −1

(b−a).

Finally, using the above inequality and (36), we obtain

|g1(t,s)| � max

{
μ

2−α
α −1

(b−a)−ν,ν + μ(b−a)
}

. (37)

which makes end to the proof. �

3. Main results

Our main result is as follows.

THEOREM 6. If a nontrivial continuous solution of the fractional boundary value
problem (18)–(19) exists, then

∫ b

a
(b− s)α−2[γ(b− s)+ δ (α −1)]|q(s)|ds � [μγ(b−a)+ μδ + γν]Γ(α)

max
{

μ 2−α
α−1(b−a)−ν,ν + μ(b−a)

}.

(38)

Proof. Let B=C[a,b] be the Banach space endowed with norm ‖x‖= sup
t∈[a,b]

|x(t)| .
From Lemma 1, for all t ∈ [a,b] , we have

u(t) =
1

ΔΓ(α)

∫ b

a
(b− s)α−2[γ(b− s)+ δ (α −1)]H(t,s)q(s)u(s)ds.

Now, an application of Lemma 2 yields

‖u‖ �
max

{
μ 2−α

α−1(b−a)−ν,ν + μ(b−a)
}}

[μγ(b−a)+ μδ + γν]Γ(α)
‖u‖

×
∫ b

a
(b− s)α−2[γ(b− s)+ δ (α −1)]|q(s)|ds,

from which inequality in (38) follows. �
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REMARK 1. Let μ = ν = γ = δ = 1 in Theorem 6, then we get inequality (17).

Let γ = 0, δ = 1 in Theorem 6, then we obtain the following result.

COROLLARY 1. If a nontrivial continuous solution of the fractional boundary
value problem

(Ca Dαu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2,

μu(a)−νu′(a) = 0, u′(b) = 0,

exists, where μ > 0,ν � 0 , q is a real and continuous function in [a,b] , then

∫ b

a
(b− s)α−2|q(s)|ds �

μ
α−1Γ(α)

max
{

μ 2−α
α−1(b−a)−ν,ν + μ(b−a)

}. (39)

REMARK 2. Note that one obtains Lyapunov-type inequality (11) when μ = 1,ν =
0 in (39).

Let μ = 0, ν = 1 in Theorem 6, then we obtain the following result.

COROLLARY 2. If a nontrivial continuous solution of the fractional boundary
value problem

(Ca Dαu)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2,

u′(a) = 0, γu(b)+ δu′(b) = 0,

exists, where γ > 0 , δ � 0 , q is a real and continuous function in [a,b] , then

∫ b

a
[γ(b− s)+ δ (α −1)](b− s)α−2|q(s)|ds � γΓ(α). (40)

REMARK 3. Note that one obtains Lyapunov-type inequality (14) when γ = 1,
δ = 0 in (40).
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