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Abstract. Lyapunov-type inequality is established for a fractional differential equation under
Sturm-Liouville boundary conditions. Our results cover many results in the literature.

1. Introduction

The well-known result of Lyapunov [8] states that if u(¢) is a nontrivial solution
of the differential system

") +r(t)u(t) =0, t€(a,b),
u(a) =0 = u(b), M

where r(f) is a continuous and nonnegative function defined in [a, ], then

b 4
/a r(t)de > P 2)
and the constant 4 cannot be replaced by a larger number.

Since the appearance of Lyapunov’s fundamental paper, there are many improve-
ments and generalizations of (2) in some literatures. A thorough literature review of
continuous and discrete Lyapunov-type inequalities and their applications can be found
in the survey articles by Cheng [2], Brown and Hinton [1] and Tiryaki [9].

However, there are few papers to discuss the Lyapunov-type inequality related to
ordinary fractional differential equations.

The study of Lyapunov-type inequalities for the differential equation depends on a
fractional differential operator was initiated by Rui A. C. Ferreira [3]. He first obtained
a Lyapunov-type inequality when the differential equation depends on the Riemann-
Liouville fractional derivative, the main result is as follows.
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THEOREM 1. [fthe following fractional boundary value problem (FBVP)

(D%u)(t)+q()u(t)=0, a<t<b, 1 <o <2, (3)
u(a) =0=u(b), 4)

has a nontrivial solution, where q is a real and continuous function, then

[laoas>rie (7). ®

Meanwhile, a Lyapunov-type inequality when the differential equation depends on
the Caputo fractional derivative was also obtained by Rui A. C. Ferreira [4].

THEOREM 2. If a nontrivial continuous solution of the fractional boundary value
problem (FBVP)

(D)) +q(t)u(t) =0, a<i<b, 1<a<2, (6)

u(a) =0=u(b), (7)
exists, where q is a real and continuous function, then
b I'lo)o”

| taolas > o ®)

Recently, M. Jleli and B. Samet [5] investigated Lyapunov-type inequalities for
fractional differential equation involving the Caputo fractional derivative under two
types of mixed boundary conditions. The results are as follows.

THEOREM 3. [f a nontrivial continuous solution of the fractional boundary value
problem

@Du)(1) +q(u(t) =0, a<1<b 1<a<2 ©)
u(a) =u'(b) =0, (10)
exists, where q is a real and continuous function in [a,b], then

()
max{o—1,2—a}(b—a)’

[ 9" lg(s)as > an

THEOREM 4. If a nontrivial continuous solution of the fractional boundary value
problem

ED%u)(t) +q(t)u(r) =0, a<t<b, 1< <2, (12)
u'(a) = u(b) =0, (13)

exists, where q is a real and continuous function in [a,b], then

[ =9 as)as > T, 14
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Very recently, M. Jleli, L. Ragoub and B. Samet [6] considered a Caputo fractional
differential equation under Robin boundary conditions. They give the following result.

THEOREM 5. If a nontrivial continuous solution of the fractional boundary value
problem

ED%) (1) +q()u(t) =0, a<t<b 1<a<2, (15)
u(a) —u'(a) = u(b) +u'(b) =0, (16)

exists, where q is a real and continuous function in [a,b], then

(b—a+2)T()
x{Z2(b—-a)—1,b—a+1}

b
/ (b—$)2(b—s+a—1)|q(s)|ds > 17

Motivated by the above cited works, the purpose of this paper is to obtain Lyapunov-
type inequality for fractional differential equation involving the Caputo fractional deriva-
tive under Sturm-Liouville-type boundary conditions. More precisely, we consider the
fractional differential equation

ED%) (1) +q()u(t) =0, a<t<b, 1 <a<2, (18)
under the boundary conditions
pu(a) — vi'(a) =0, yu(b) + 8u'(b) =0, (19)

where £t >0, v>0,y>0,86>0and A=uy(b—a)+ud+yv>0.

2. Preliminaries

In this section, we recall the concepts of the Riemann-Liouville fractional integral
and the Caputo fractional derivative of order o > 0. For more details, we refer to [7].

DEFINITION 1. Let o> 0 and f be areal function defined on [a, b]. The Riemann-
Liouville fractional integral of order o is defined by (,I°f) = f and

(W) (1) = ﬁ/at(t—s)aflf(s)ds, @>0,1¢ab]

DEFINITION 2. The Caputo fractional derivative of order ¢ > 0 is defined by

(€DOf) = f and (D%f)(t) = (A" *D™f)(t) for o > 0, where m is the smallest
integer greater or equal to o.

LEMMA 1. u € Cla,b] is a solution of the boundary value problem (18)—(19) if
and only if u satisfies the integral equation

u(t) = / Gt 5)a(s)uls)ds,
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where G(t,s) is given by
(b—5)*?[y(b—s)+8(a—1)]

G(t,s) = H(t
o gl(t75)7a<3<l<b»
Hit,9) = {g2<t7s>7a<t<s<b,
At —s)%!

gi(t,s) =v+u(t—a)— y(b—s)*14+8(a—1)(b—s)*=2’

8a2(t,s) = v+ult—a)

Proof. 1t is a standard result within the fractional calculus theory involving the
Caputo differential operator that u € Cla, b is a solution of (18) if and only if

u(t) = co-+c1(t —a)— ﬁ [ =9 atsputsias,

where cg and c; are some real constants. On the other hand, we have

W)= ¢t — ﬁ / (o= 1) (t — 5)%2q(s)u(s)ds.

By the boundary condition pu(a) — vu'(a) =0, yu(b) + éu'(b) = 0, we have

Hco— Ve = O,

—s)+6(a
o+ [(b-a)y+8ler = o [T IESOE D usyas,
obviously,
u -V
A= l y (b—a)y+8 ‘ =uy(b—a)+ud+yv,
thus,
—s)+6(a
=T / v b )q(s)u(s)ds,
y(b—s)+0(o
1= AF / b )q(s)u(s)ds.
Then, we get

u(t)=co+ci(t—a)— ﬁ /at(t — )% Yg(s)u(s)ds
B la) /ub [v—l—u(l—az}[y(b—s)—f—S(a—1)]q(s)u(s)ds

AT b—s)2-@
1 .

T 0 auls)as

:/ub G(t,5)q(s)u(s)ds.

which concludes the proof. [
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LEMMA 2. Forall (t,s) € [a,b] X (a,b), we have

|H(z,s)] Smax{u%(b—a)—v,v+u(b—a)}.

Proof. 1t is easy to see that, for a <7 < s < b, we have
0<ga(t,5) < V+ub—a). (20)

Now, we divide our proof into two parts.
Part . If p =0, for a <s <t < b, we have

g Al —1)(t=9)""2
= = — S
T CE TV
and
_ A(b—s)*"!
gi(b,s)=v— y(b—5) 14+ §(a—1)(b—s5)*2
B Svio—1)
~y(b—s)+8(a—1)
>0,
so we have
0<gi(b,s) <gi(t,s) < gi(s,s) =v<v+0(b—a),
therefore

0<gi(t,s) <v+0(b—a).

Part IL If g >0, for a <s <t < b, we have

dgi B Ala—1)(t—s5)*2
ot (r5) = p = y(b—s)21+8(a—1)(b—s)*=2"
Hence 5 5
i 980 0 o 981 _
;li[\n+ W(I,s) = —oo, (<2, while 5 (s,8) <0, o=2. (21)

Now, for fixed s in (a,b), we want to study the variation of the function 7 +— g (z,s)
for ¢ in [s,b]. First, we have

dgi B Ala—1)
W(I’S) b —H- y(b—s)+6(a—1)

(22)

Let
oy (a=Dp=a)+v]

u
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A calculation shows that

d
s>a" e ulb—s)< (a—D)ub—a)+v]e %(Z,s) <0.
1=b
We distinguish two eventual cases according to the value of a*.
Case 1. If a* < a, in this case, s > a > a*, by above calculation, we have

&(Z,s) <0. se(ab). (23)
dt 1=b

. 0? d . . . . .
Since %(r,s) > 0, then %(Ls) is an increasing function with respect to , from

(21) and (23), we deduce
gl

7(t7s)<07 s<t. (24)
This yields
B o A(b—s)
g1bs) =vHulb—a) == S =)
égl(t,s)Sgl(s,s)gv—l-,u(b—a). (25)

In this case, by a* < a, we get u(b—a)(a—2)+v(ax—1) > 0. So we have

A(b—5)

y(b—s)+06(ax—1)
_ ud(s—b)+6(oc—1)[v+pu(b—a)

y(b—s)+0(ax—1)
- ué(a—>b)+6(a—1)[v+u(b—a))
- y(b—s)+8(a—1)

ud(b—a)(oo—2)+ov(oe—1)
y(b—s)+06(ax—1)

>0. (26)

gi(b,s)=v+ub—a)—

From (25) and (26), we deduce
0<gi(r,s) <v+u(b—a). (27)

Case 2. If a < a* < b, in this case, we have two possibilities.
(i) If a* < s < b, in this case, we have

dgi
2 < .
> (t,s) . <0 (28)

Therefore, we conclude that

gl(b,s)égl(t,s)égl(s,s)Sv—ku(b—a). (29)
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In this case, by a* <s, we get (o —1)[v+u(b—a)] > u(b—s). So we have

A(b—s)
y(b—s)+0(0c—1)
_ vtub—a)lyb—s)+d(a—1)| - Alb—s)
Y(b—s)+6(a—1)
po(s— )+ (a—D[v+u—a)

gibys)=v+ub—a)—

> 0. (30)
From (29) and (30), we deduce
0<gi(t,s) <v+ulb—a). (€2Y)

(i) If a < s < a*, in this case, we have

dgi
——(1,s) > 0. (32)
ot 1=b
Hence, there would exist 1* € (s,b) such that
dg
Zles)|  =o. (33)
ot g

In this case, it is easy to verify that g (s,s) >0, and by s < a*, we get u(s—b)+ (o —
1)[v+u(b—a)] <0, so we have

A(b—y)
y(b—s)+0(oc—1)
_ M8(s—b)+d(a— v+ u(b—a))

y(b—s)+06(oc—1)

g1(bys) =v+u(b—a)—-

<0. (34
This yields
g1(t%,s) < g1(b,s) <0< gi(s,s) <v+u(b—a). 35)
Then
|g1(t,s)|<max{—gl(t*,s),v+u(b—a)}. (36)
Observe that ai‘ (,s) =0 is equivalent to

t=t*

Alor—1)(1* — )% 2
y(b—s)% 1 8(a—1)(b—s)*2

.LL:
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Therefore, we get

) . Alt* — )2

git’ss) =v+plt'—a)- y(b—5) 1+ 8(a—1)(b—s)22
:v+u0ﬂﬂﬁ—5%;%ﬁ
=V Hat uica—_lz)’* + au—sl
> v—ua+uixa__12)b+ ali_al

Finally, using the above inequality and (36), we obtain

2—o

gl(ns)<max{uﬁ(b—a)—v,vw(b—a)}. (37)

which makes end to the proof. [J

3. Main results

Our main result is as follows.

THEOREM 6. [f a nontrivial continuous solution of the fractional boundary value
problem (18)—(19) exists, then

(uy(b—a)+pd+yvil(e)
max {t2=%(b—a)—v,v+u(b—a)}
(38)

[ =9 2109+ 8@ Dlla(o)as >

Proof. Let B=Cla, b] be the Banach space endowed with norm ||x|| = sup |x()|.
t€la,b]
From Lemma 1, for all ¢ € [a,b], we have

1

u(t) = m /ab(b - s)a_z[y(b —s)+6(a—1)]H(z,5)q(s)u(s)ds.

Now, an application of Lemma 2 yields

max{u%(b—a) — V,V"Hi(b_a)}}
[uy(b—a)+pd+yvil(a)

<[ -9 At 5)+ 8@ V)la(s)ias,

[Jull <

e

from which inequality in (38) follows. [
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REMARK 1. Let y =v =y=0 =1 in Theorem 6, then we get inequality (17).

Let y=0, § =1 in Theorem 6, then we obtain the following result.

COROLLARY 1. If a nontrivial continuous solution of the fractional boundary
value problem

ED%) (1) +q()u(t) =0, a<t<b, 1<a<2,
uu(a) —vi'(a) =0, u'(b) =0,

exists, where > 0,v >0, q is a real and continuous function in |a,b], then

/ b(b—s)“—2|q(s)|ds > ail (@)

a max {u2=%(b—a)—v,v+ulb—a)} 69

REMARK 2. Note that one obtains Lyapunov-type inequality (11) when u =1,v =
0 in (39).

Let u =0, v =1 in Theorem 6, then we obtain the following result.

COROLLARY 2. If a nontrivial continuous solution of the fractional boundary
value problem

CD) () +q()u(t) =0, a<t<b, 1<a<2,
u'(a) =0, yu(b)+ 6u'(b) =0,

exists, where ¥y >0, 0 >0, q is a real and continuous function in [a,b], then
b
[ brto=5)+ 8@ 1))(b —9)* ig(s)lds > 1T (@0). (40)

REMARK 3. Note that one obtains Lyapunov-type inequality (14) when y =1,
6 =0 in (40).
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