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TURÁN TYPE OSCILLATION INEQUALITIES IN Lq

NORM ON THE BOUNDARY OF CONVEX DOMAINS

POLINA YU. GLAZYRINA AND SZILÁRD GY. RÉVÉSZ

(Communicated by T. Erdélyi)

Abstract. Some 77 years ago P. Turán was the first to establish lower estimations of the ratio of
the maximum norm of the derivatives of polynomials and the maximum norm of the polynomials
themselves on the interval I := [−1,1] and on the unit disk D := {z ∈ C : |z| � 1} under the
normalization condition that the zeroes of the polynomial p all lie in the interval or in the disk,
respectively. He proved that with n := deg p tending to infinity, the precise growth order of the
minimal possible ratio of the derivative norm and the norm is

√
n for I and n for D .

J. Erőd continued the work of Turán and extended his results to several other domains.
The growth of the minimal possible ratio of the ∞ -norm of the derivative and the polynomial
itself was proved to be of order n for all compact convex domains a decade ago.

Although Turán himself gave comments about the above oscillation question in Lq norms,
till recently results were known only for D and I . Here we prove that in Lq norm the oscillation
order is again n for a certain class of convex domains, including all smooth convex domains and
also convex polygonal domains having no acute angles at their vertices.

1. Introduction

1.1. The oscillation of a polynomial in maximum norm

At the turn of the 19th and 20th centuries, the first estimates of the derivative of a
polynomial via the maximum of its values appeared. They were obtain by V. Markov in
1889, for algebraic polynomials on an interval, by Bernstein and M. Riesz in 1914, for
trigonometric polynomials on [0,2π ] and algebraic polynomials on the unit circle. In
1923, Szegő [52] obtained an estimate for a large class of (not necessarily convex, but
piecewise smooth) domains. Namely, if K ⊂C is a piecewise smooth simply connected
domain, with its boundary consisting of finitely many analytic Jordan arcs, and if the
maximum of the outer angles at the joining vertices of these arcs is1 β ∈ [π ,2π ] , then
the domain admits a Markov type inequality of the form ‖p′‖K � cKnβ/π‖p‖K for any
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1If the domain is bounded, then for all directions it has supporting lines, whence there are points where
the outer angle is at least π .
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polynomial p of degree n . Here the norm ‖·‖ := ‖·‖K denotes sup norm over values
attained on K . This inequality is essentially sharp for all such domains. In particular,
this immediately implies that for analytically smooth convex domains the Markov factor
is O(n) . For the unit disk

D := {z ∈ C : |z| � 1}
even the exact inequality is well-known:∥∥p′

∥∥
D

� n‖p‖
D
. (1)

This was conjectured, and almost proved, by Bernstein [9, 10]; for the first published
proof see [44]. Similarly, the precise result is also classical for the unit interval

I := [−1,1]

then we have Markov’s Inequality ‖p′‖
I
� n2‖p‖

I
, which is sharp2, see [34].

In 1939 Paul Turán started to study converse inequalities of the form∥∥p′
∥∥

K � cKnA‖p‖K .

Clearly such a converse can only hold if further restrictions are imposed on the occur-
ring polynomials p . Turán assumed that all zeroes of the polynomials belong to K . So
denote the set of complex (algebraic) polynomials of degree (exactly) n as Pn , and
the subset with all the n (complex) roots in some set K ⊂ C by Pn(K) . Denote by Γ
the boundary of K . The (normalized) quantity under our study is the “inverse Markov
factor” or “oscillation factor”

Mn,q(K) := inf
p∈Pn(K)

Mq(p) with Mq(p) :=
‖p′‖Lq(Γ)

‖p‖Lq(Γ)
, (2)

where, as usual,

‖p‖q := ‖p‖Lq(Γ) :=
(∫

Γ
|p(z)|q|dz|

)1/q

, (0 < q < ∞)

‖p‖K :=‖p‖∞ := ‖p‖L∞(Γ) := sup
z∈Γ

|p(z)| = sup
z∈K

|p(z)|.

THEOREM A. (Turán, [56, p. 90]) If p ∈ Pn(D) , then we have∥∥p′
∥∥

D
� n

2
‖p‖

D
. (3)

THEOREM B. (Turán, [56, p. 91]) If p ∈ Pn(I) , then we have∥∥p′
∥∥

I
�

√
n

6
‖p‖

I
.

2Note that in this case the outer angles at the break-points of the piecewise smooth boundary are exactly
2π at each end.
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Inequality (3) of Theorem A is best possible. Regarding Theorem B, Turán pointed
out by example of (1− x2)n that the

√
n order is sharp. Some slightly improved con-

stants can be found in [6] and [31], however, the exact value of the constants and the
corresponding extremal polynomials were already computed for all fixed n by Erőd in
[21].

Now we are going to describe results concerning Turán-type inequalities (2) for
general convex sets. To study (2) some geometric parameters of the convex domain K
are involved naturally. We write d := d(K) := diam(K) for the diameter of K , and
w := w(K) := width(K) for the minimal width of K . That is, assuming K closed,

d(K) := max
z′,z′′∈K

|z′ − z′′|, w(K) := min
γ∈[−π ,π ]

(
max
z∈K

ℜ(zeiγ )−min
z∈K

ℜ(zeiγ )
)

.

Note that a (closed) convex domain is a (closed), bounded, convex set K ⊂ C with
nonempty interior, hence 0 < w(K) � d(K) < ∞ .

The key to Theorem A was the following observation, which had already been
present implicitly in [56, the footnote on p. 93] and [21] and was later formulated
explicitly by Levenberg and Poletsky in [31, Proposition 2.1].

LEMMA C. (Turán) Assume that z ∈ ∂K and that there exists a disc DR = {ζ ∈
C : |ζ − z0| � R} of radius R so that z ∈ ∂DR and K ⊂ DR . Then for all p ∈ Pn(K)
we have

|p′(z)| � n
2R

|p(z)|. (4)

The proof of this is really easy, so let us recall it for completeness.

Proof. Let the zeros of the polynomial p∈Pn(K) be denoted as z j ( j = 1, . . . ,n) .

As
p′

p
(z) = ∑ j

1
z− z j

and ℜ
1

1− ζ
� 1/2 (∀|ζ | < 1), if all z j ∈ DR , then

R ·
∣∣∣∣ p′p (z)

∣∣∣∣� ℜ

{
(z− z0)∑

j

1
z− z j

}

= ∑
j

ℜ
z− z0

(z− z0)− (z j − z0)
= ∑

j
ℜ

1

1− z j−z0
z−z0

� n
2
. �

Given this elementary observation, Levenberg and Poletsky found it worthwhile to
formally define the crucial property of convex sets, necessary for drawing such an easy
and direct conclusion on the inverse Markov factors.

DEFINITION 1. A set K � C is called R-circular, if for any z ∈ ∂K there exists
a disk DR of radius R , such that z ∈ ∂DR and DR ⊃ K .

Thus for any R-circular K and p ∈ Pn(K) at the boundary point z ∈ ∂K with
‖p‖K = |p(z)| we can draw the disk DR and it follows
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THEOREM D. (Erőd; Levenberg-Poletsky) For an R-circular K we have∥∥p′
∥∥

K � n
2R

‖p‖K (∀p ∈ Pn(K)) that is Mn,∞(K) � n
2R

.

There are many important examples of R-circular compact sets and domains. E.g.
a union of two circular arcs, joining at a vertex of angle less than π , is always R-circular
with some R . Smooth convex closed curves, together with the encircled convex domain
K , with curvature exceeding κ > 0 are always R-circular with R = 1/κ according to
a classical theorem of Blaschke [11]. Further extensions of the Blaschke Rolling Ball
Theorem allows to realize R-circularity of much more general convex curves γ .

LEMMA E. (Strantzen) Let the convex domain K have boundary curve Γ = ∂K
and let κ > 0 be a fixed constant. Assume that the convex boundary curve Γ (which is
twice differentiable linearly almost everywhere) satisfies the curvature condition Γ̈ � κ
almost everywhere. Then to each boundary point ζ ∈ ∂K there exists a disk DR of
radius R = 1/κ , such that ζ ∈ ∂DR , and K ⊂ DR . That is, K is R = 1/κ -circular.

Proof. This result is essentially the far-reaching, relatively recent generalization
of Blaschke’s Rolling Ball Theorem by Strantzen. A reference for it is Lemma 9.11 on
p. 83 of [16]. For more details on this, as well as for some new approaches to the proof
of this generalization of the classical Blaschke Rolling Ball Theorem, see [43]. �

Obviously, the above entails an order n oscillation result for all convex domains
with this a.e. condition on the curvature of the boundary curve. This leads us to the
topic of Turán type oscillation problems for more general sets and domains.

Drawing from the work of Turán, Erőd [21, p. 74] already addressed the question:
“For what kind of domains does the method of Turán apply?” Clearly, by “applies” he
meant that it provides order n oscillation for the derivative. Moreover, he introduced
new ideas into the investigation – including the application of Chebyshev’s Inequality
(6) below – so clearly he did not simply pursue the effect of Turán’s original methods,
but was indeed after the right oscillation order of general domains. In particular, he
showed

THEOREM F. (Erőd, [21, p. 73]) Let 0 < b < 1 and let Eb denote the ellipse
domain with major axes [−1,1] and minor axes [−ib, ib] . Then for all p∈ Pn(Eb) we
have ∥∥p′

∥∥
K � b

2
n‖p‖K .

Moreover, he elaborated on the inverse Markov factors belonging to domains with
some favorable geometric properties.The most general domains with M(K)	 n , found
by Erőd, were described on p. 77 of [21].

THEOREM G. (Erőd) Let K be any convex domain bounded by finitely many
Jordan arcs, joining at vertices with angles < π , with all the arcs being C2 -smooth
and being either straight lines of length < Δ(K) , where Δ(K) stands for the transfinite
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diameter of K , or having positive curvature bounded away from 0 by a fixed constant
κ > 0 . Then there is a constant c(K) , such that Mn,∞(K) � c(K)n for all n ∈ N .

Note that this latter result of Erőd incorporates regular k -gons Gk for large enough
k , but not the square Q = G4 , because the side length h of a square is larger than the
quarter of the transfinite diameter Δ : actually, Δ(Q) ≈ 0.59017 . . .h , while for the
regular k -gon of side length h we have

Δ(Gk) =
Γ(1/k)√

π21+2/kΓ(1/2+1/k)
h

(see e.g. [38, p. 135]), so Δ(Gk) > h iff k � 7. This implies Mn,∞(Gk) � ckn for k � 7
(with the constant ck depending only on k ).

In [19], Erdélyi proved order n oscillation for the square3 Q = G4 , too. A result
of [40] also implied Mn,∞(Gk) � ckn for k � 4, but still not for a triangle.

To deal with the flat case of straight line boundary arcs, Erőd involved another
approach, cf. [21, p. 76], appearing later to be essential for obtaining a general answer
formulated in Theorem I below, and playing an essential role in many further devel-
opments, including ours here. Namely, Erőd quoted Faber [22] for the fundamental
result of Chebyshev on the monic polynomial of minimal norm on an interval. Since
this approach will be extensively applied also in our work, we summarized basic facts
regarding this in the below Section 3.

For a few further examples, remarks and open problems regarding inverse Markov
factors for various classes of compact sets which are not necessarily convex, see [31,
41, 42].

A lower estimate of the inverse Markov factor for any compact convex set (and of
the same order as was known for the interval) was obtained in full generality only in
2002, see [31, Theorem 3.2].

THEOREM H. (Levenberg-Poletsky) If K ⊂ C is a compact, convex set with
diameter d = d(K) and p ∈ Pn(K) , then we have

∥∥p′
∥∥

K �
√

n
20d(K)

‖p‖K .

Clearly, assuming boundedness is natural, since all polynomials have ‖pn‖K= ∞
when the set K is unbounded. Also, restricting ourselves to closed bounded sets – i.e.,
to compact sets – does not change the sup norm of polynomials under study, as all
polynomials are continuous.

Recall that the term convex domain stands for a compact, convex subset of C

having nonempty interior. That is, assuming that K is a (bounded, closed) convex
domain, not just a compact convex set, means that we exclude only the case of the
interval, for which already Turán clarified that the order of oscillation is precisely

√
n .

3Erdélyi also proves similar results on rhombuses, under the further condition of some symmetry of the
polynomials in consideration – e.g. if the polynomials are real, or odd. Note also that his work on the topic
preceded [41] and apparently was accomplished without being aware of details of [21].
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So in order to clarify the order of oscillation for all compact convex sets it remains
to clarify the order of oscillation for compact convex domains. The solution of this
general problem4 has been published in 2006, see [41].

THEOREM I. (Halász-Révész) Let K ⊂ C be any bounded convex domain. Then
for all p ∈ Pn(K) we have∥∥p′

∥∥
K � 0.0003

w(K)
d2(K)

n‖p‖K .

REMARK 1. This indeed provides the precise order, for an even larger order than
n cannot occur, not for any particular compact set. Namely, let K ⊂ C be any compact
set with diameter d = d(K) . Then for all n there exists a polynomial p ∈ Pn(K) of
degree exactly n satisfying∥∥p′

∥∥
K � C′(K) n ‖p‖K with C′(K) := 1/d(K).

Indeed, considering a diameter [z0,w0] and the polynomial p(z) = (z− z0)n , the re-
spective norm is ‖p‖∞ = dn while the derivative norm becomes ‖p′‖∞ = ndn−1 , both
attained at w0 ∈ K .

So, this settles the question of the order, but not the precise dependence on the
geometry. However, up to an absolute constant factor, even the dependence on the
geometrical features of the domain was also clarified in [41].

THEOREM J. (Révész) Let K ⊂ C be any compact, connected set with di-
ameter d = d(K) and minimal width w = w(K) . Then for all n > n0 := n0(K) :=
2(d/16w)2 log(d/16w) there exists a polynomial p ∈ Pn(K) of degree exactly n sat-
isfying ∥∥p′

∥∥
K � C′(K)n‖p‖K with C′(K) := 600

w(K)
d2(K)

.

So, interestingly, it turned out that among all convex compacta only intervals can
have an inverse Markov constant of order

√
n , while domains with nonempty interior

have oscillation order n .
One may ask, how useful, how general these results are? One fundamental area of

potential applications is the theory of orthogonal polynomials. Badkov [7, 8] applied
Turán’s inequality (3) for estimations of polynomials orthogonal on the circle with re-
spect to a weight. It is well known that polynomials orthogonal on a circle or on an
interval (with respect to some weight there) have all their zeros on the interval or inside
the circle, respectively. That is, if Pn is the nth orthogonal polynomail, then certainly
we have Pn ∈ Pn(K) and the above oscillation results apply.

Analogous phenomenon takes place in the case of a rectifiable curve or, more
generally, a compact set with a measure. The precise statements can be found in [23,
Satz III], [46], [18, §10.2], [54, Ch XVI, 16.2, (6)], [51].

4Preceding this, an intermediate result of order n2/3 oscillation for all compact convex domains has been
worked out in [40] – in view of the later developments, this has not been published in a journal.
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The respective upper estimations, i.e. Bernstein-Markov type inequalities were ex-
tensively studied under analogous constraints for the zeroes [20]. Since the oscillation
results of Turán type are also formulated under zero restrictions, it is of interest to com-
pare the upper and lower estimations of these derivative norm estimates.

The first relevant result were asked about by Erdős and solved by Lax [30]: this
states that if the zeroes of a polynomial are all outside the unit circle, then the classical

Bernstein Inequality (1) can be improved to ‖p′‖D � n
2
‖p‖D . For further study of the

topic of constrained Bernstein-Markov Inequalities we refer the reader to [32, Theorem,
p. 58], [20, 3] and the references therein.

This improvement by the factor 1/2 reminds us the Turán inequality: the common
extremal polynomials are the boundary cases when all the zeroes of pn(z) are precisely
on the circle ∂D . Note that here the Turán type restriction of p ∈ Pn(K) does not
allow any improvement: the extremal zn provides an oscillation of exactly n in regard
of the Bernstein Inequality. Therefore, this very first result in constrained Bernstein-
Markov Inequalities already prompts us to consider classes of polynomials with taking
the norm on one set, while restricting the location of zeroes to another one. Concretely,
the above Lax result talks about the class Pn(C \D) , under the (maximum) norm on
D (or on the boundary circle ∂D). Analogously, we can consider Pn(K) under the
norm on another set L : the respective oscillation factors we may denote by

Mn,L(K) := inf
p∈Pn(K)

M‖·‖L
(p) with M‖·‖L

(p) :=
‖p′‖L

‖p‖L
,

with the norm ‖ · ‖L being the maximum norm5 taken on the set L .
In connection to the Turán topic, this has also been investigated at least when the

set L is a disk: L = DR = {z : |z| � R} .
Malik [32] (R < 1) and Govil [28] (R > 1) showed that

THEOREM K. (Malik, Govil) For any R � 0 we have

Mn,DR(D) =

{
n

1+R , R � 1,
n

1+Rn , R � 1.

See also [1, 4, 36] and the references therein. However, apart from these rather
special choices of concentric disks, we have not found any result in the literature for
more general situations6.

1.2. Pointwise and integral mean estimates of oscillation

There are many papers dealing with the Lq -versions of Turán’s inequality for the
(unit) disk D , the (unit) interval I , or for the period (one dimensional torus or circle)

5Or, more generally, one may even consider Mn,‖·‖(K) := infp∈Pn(K) M‖·‖(p) with M‖·‖(p) := ‖p′‖
‖p‖ being

an arbitrarily fixed norm ‖ ·‖ .
6We thank to Prof. R. Akopyan the nice remark that the result of Malik implies a more general statement in

this spirit: namely, if L � D and K = D , then with R := RL := maxw∈L |w| – and with extremal polynomial(s)

p(z) := (z− z0)n with (any) z0 ∈ L and |z0| = R – the exact value of Mn,L(D) is again
n

1+RL
.
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T := R/2πZ (here with the understanding that we consider real trigonometric polyno-
mials, not complex polynomials). A nice review of the results obtained before 1994 is
given in [35, Ch. 6, 6.2.6, 6.3.1].

The story started by an obvious observation. Namely, already Turán himself men-
tioned in [56] that on the perimeter of the disk D – and, as is easily observed, the same
way under conditions of Theorem A – actually a more general pointwise inequality
holds at all points of ∂D . Namely, for p ∈ Pn(D) we have

|p′(z)| � n
2
|p(z)|, |z| = 1, (5)

and as a corollary, for any q > 0,(∫
|z|=1

|p′(z)|q|dz|
)1/q

� n
2

(∫
|z|=1

|p(z)|q|dz|
)1/q

.

In other words, the Turán result Theorem A extends to all Lq(∂D)-norms, and we have
for all polynomials p ∈ Pn(D)∥∥p′

∥∥
Lq(∂D) � n

2
‖p‖Lq(∂D), Mn,q(D) � n

2
.

The same way, for R-circular domains the result of Theorem D extends as∥∥p′
∥∥

Lq(∂K) � n
2R

‖p‖Lq(∂K), Mn,q(K) � n
2R

.

However, calculating the respective quantities for the function pn(z) := zn −1, it turns
out that this inequality is not the best (at least not for the most symmetric choice pn ),
and the determination of the value of the precise constant, as well as identifying the
extremal functions, remains to be done.

A related question is to compare the maximum norm of p′ to the Lq norm of p
itself. In this regard, the exact constant is known from the work of Malik in [33].

THEOREM L. (Malik) For the unit disc D and any 0 < q < ∞ we have

‖p′‖D �
(

Γ(q/2+1)
2
√

πΓ(q/2+1/2)

)1/q n
2
‖p‖Lq(∂D),

moreover, the inequality is the best possible, equality occurring precisely for all azn +b
with |a| = |b| .

Some other results comparing different norms were obtained by Saff and Sheil-
Small [47], Rubinstein [45], Aziz and Ahemad [4], Paul, Shah and Singh [36].

In the paper [7, Cor. 11.1], another proof of the pointwise Turán inequality (4) is
given. The proof is based on the properties of orthogonal polynomials and the Christof-
fel function.

The classical inequalities of Bernstein and Markov are generalized for various
differential operators, too, see [2]. In this context, also Turán type converses have been
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already investigated: namely, Akopyan [1] studied Turán-type inequalities in L2 -norm
on the circle for some generalization of the operator of differentiation.

The estimation of the Lq norm, or of any weighted Lq -norms, goes the same way
if we have a pointwise estimation for all, (or for linearly almost all), boundary points.
Therefore, as above, we can formulate e.g. the next result, see [42].

THEOREM M. Assume that the boundary curve7 γ : [0,L]→Γ := ∂K of the convex
domain K satisfies at (linearly) almost all points the condition that it has a curvature,
not smaller than a given positive constant κ , i.e. γ̈ � κ(> 0) a.e. Then for any q > 0
and any weighted Lq norm on the boundary curve we have

‖p′‖Lq(Γ,w) � κ
2

n‖p‖Lq(Γ,w), in particular, Mn,q(K) � κ
2

n.

In case we discuss maximum norms, one can assume that p(z) is maximal, and it
suffices to obtain a lower estimation of p′(z) only at such a special point – for general
norms, however, this is not sufficient. The above results work only for we have a point-
wise inequality of the same strength everywhere, or almost everywhere. The situation
becomes considerably more difficult, when such a statement cannot be proved. E.g. if
the domain in question is not strictly convex, i.e. if there is a line segment on the bound-
ary, then the zeroes of the polynomial can be arranged so that even some zeroes of the
derivative lie on the boundary, and at such points p′(z) – even p′(z)/p(z) – can vanish.
As a result, at such points no fixed lower estimation can be guaranteed, and lacking
a uniformly valid pointwise comparision of p′ and p , a direct conclusion cannot be
drawn either.

This explains why the case of the interval I already proved to be much more
complicated for the integral mean norms.

In a series of papers [66, 67, 68, 69, 70], Zhou proved the inequality(∫ 1

−1
|p(k)(x)|pdx

)1/p

� C(k)
p,q(n)

(∫ 1

−1
|p(x)|qdx

)1/q

,

in the case of k = 1 and 0 < p � q � ∞, 1−1/p+1/q� 0 with the constant C(1)
p,q(n) =

cp,q (
√

n)1−1/p+1/q .

The best possible constants C(k)
p,q(n) were found by Babenko and Pichugov [5]

for p = q = ∞, k = 2, by Bojanov [12] for 1 � p � ∞, q = ∞ , 1 � k � n , and by
Varma [60] in the case of p = q = 2, k = 1.

Exact Turán-type inequalities for trigonometric polynomials in different Lq -metrics
on T were proved in [5, 6, 13, 57, 58, 29].

Other inequalities on I , D , the positive semiaxes, or on T in various weighted
Lq -metrics can be found in [59, 61, 63, 71, 29, 62].

As said above, we also have a direct result for R-circular domains, and R-circularity
could be ascertained by some conditions on the curvature. However, apart from these,

7In order to express the curvature as γ̈ , we assume here that the curve is parameterized by arc length.
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for general domains, the situation was much less clear. Here is the only result, known
for convex domains in general, and formulated in [31].

THEOREM N. (Levenberg-Poletsky) Asume that K is a compact convex subset
of the complex plane. Let z ∈ ∂K and p ∈ Pn(K) . Then there exists another point
ζ ∈ K , of distance |z− ζ | � cK/

√
n, such that |p′(ζ )| � c′K

√
n|p(z)| .

Clearly, this is too weak for proving anything on ‖p′‖Lq(∂K) , for in general ζ �∈
∂K , and in any case the full set of such ζ points can well be just a finite point set (some
ck/

√
n net of the boundary).
To obtain something in the Lq(∂K) norm, we need to prove pointwise estimates

for much more points, essentially for the “majority” of the points, with the respective
ζ points strictly lying on the boundary ∂K , and in fact essentially we cannot allow ζ
be different from z (and so perhaps coincide for a large set of points z). We undertake
this, also aiming at stronger inequalities, than the

√
n order in the above result.

2. Statement of new results

In the later parts of our paper we will prove a rather general main result, the formu-
lation of which, however, requires some preparations, i.e. certain geometrical notions
and definitions, to be developed first. Therefore, here we give only the two main corol-
laries of the below Theorem 3, which provide us the main motivation for the whole
study.

THEOREM 1. Let K � C be any smooth convex domain on the plane. Then there
exists a positive constant C = CK , such that we have Mn,q(K) > CKn for all n ∈ N .

Recall that we use the terminology of being smooth in the sense that the boundary
curve γ : R→ ∂K is differentiable – i.e. it has a (unique) tangent at each points. In case
of convex domains this also implies that γ ∈C1(R) , but still we did not assume γ to be
C2(R) , as is quite usual in (classical) convex geometry.

That the very nature of this result does not really depend on smoothness, is well
seen from our next result.

THEOREM 2. Let K � C be any convex (non-degenerate, i.e. bounded and with
nonempty interior) polygon on the plane, with no acute angles at its vertices. Then there
exists a positive constant C = CK , such that we have Mn,q(K) > CKn for all n ∈ N .

REMARK 2. For the infinity norm case, clarifying the situation (the order of growth
of Mn,∞(Gk)) for regular k -gons took long. Here we see that for any k � 4 the regular
k -gon has Mn,∞(Gk) > Ckn . However, the regular (and any other) triangle, necessarily
having some acute angles, turns to be an entirely different case, the treatment of which
requires further ideas, too. We hope to return to that in a subsequent paper.

The organization of the material in the current work is as follows. Next we sum-
marize classical results on the Chebyshev constant and transfinite diameter, and then we
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continue in the subsequent section by introducing a few geometrical notions, necessary
to the formulation of our further results.

In Section 5 we formulate and prove our main result, together with a certain point-
wise result of independent interest. The below Theorem 3 directly implies both the
above stated Theorems 1 and 2 as corollaries (which is seen from Proposition 1 and
Corollary 1), whence we may indeed say that Theorem 3 is our main result in this
paper.

Next, in Section 6 we prove that in rather general situations – and surely for all
convex domains – the investigated oscillation factor is at most a constant times n , thus
clarifying at least the order of growth (with the degree n ) of this factor for the domains
discussed in our results.

Finally, in the concluding section we formulate our conjecture about the general
situation, and offer some further comments.

3. Chebyshev estimates and transfinite diameter

In this section we summarize classical, yet powerful results going back to Cheby-
shev.

LEMMA O. (Chebyshev) Let J = [u,v] be any interval on the complex plane with
u �= v. Then for all k ∈ N we have

min
w1,...,wk∈C

max
z∈J

∣∣∣∣∣ k

∏
j=1

(z−wj)

∣∣∣∣∣� 2

( |J|
4

)k

. (6)

Proof. Lemma O is essentially the classical result of Chebyshev for a real interval
[17], cf. [37, Part 6, problem 66], [15, 35]. In fact, it holds for much more general
situations, e.g. it remains valid in exactly the same form for arbitrary J � R . Indeed,

according to [49] we have min
w1,...,wk∈R

max
z∈J

∣∣∣∏k
j=1(z−wj)

∣∣∣ � 2 cap(J)k , which can be

combined with the below result of Pólya, see Lemma Q, to get the statement. �
Recall the well-known basic facts about the Chebyshev constant, the transfinite

diameter Δ(K) , and logarithmic capacity cap(K) , which coincide for all K � C , as
is known from Fekete [24] and Szegő [53]. That also means a weak (i.e. logarithmic)
asymptotical equality of the quantities on the two sides of (6). However, even the same
result as in (6) holds true (perhaps with the unimportant loss of the factor 2) even for
complex compacta. We will use such type of estimations in the following form.

LEMMA P. (Faber, Fekete, Szegő) Let M � C be any compact set. Then for all
k ∈ N we have

min
w1,...,wk∈C

max
z∈M

∣∣∣∣∣ k

∏
j=1

(z−wj)

∣∣∣∣∣� Δ(M)k = cap(M)k, (7)

where Δ(M) = cap(M) is the transfinite diameter and the capacity of the set M .
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Proof. Regarding the formulation in Lemma P cf. Theorem 5.5.4. (a) in [38] or
[48, (3.7) page 46]. Historically, it was first Fekete who proved the inequality and also
that the left and middle quantities are – logarithmically, i.e. after normalizing by tak-
ing kth roots – asymptotically equivalent. Moreover, he showed that in cases when
C \M is a simply connected domain (if considered with the point ∞), then the lim-
its of the kth roots also agree to the so-called conformal radius ρ(M) . Before that,

Faber [22] has already proved maxz∈M

∣∣∣∏k
j=1(z−wj)

∣∣∣ � ρ(M)k for M a Jordan do-

main bounded by a closed analytic Jordan arc. Following Fekete, Szegő showed that
the condition of C \M being simply connected is not necessary, and that with the so-
called Robin constant γ(M) (equivalent to capacity), the stated inequalities hold true,
moreover, γ(M) = Δ(M) in general for all compacta. �

LEMMA Q. (Pólya, see [26, Ch. VII]) Let J ⊂ R be any compact set, |J|∗ be its
outer Jordan measure. Then |J|∗ � 4Δ(J) .

Proof. See [26, Ch. VII]8. To reflect back to the above discussion of general forms
of Chebyshev’s Lemma O, recall that Δ(J) = cap(J) . �

There are several known estimates for capacities and the so-called “Widom fac-
tors” (see e.g. [27, 64] and the references therein) between Chebyshev constants and
corresponding powers of the transfinite diameter: for us, these more precise estimates
are not needed, as (7) suffices. There are some known explicit computations or com-
parisons and estimates of capacities from other geometric parameters of the respective
sets: a few most basic ones can be found e.g. in the survey of Ransford [39] or in his
book [38, page 135].

One remarkable fact to be noted also here is that the values of the diameter and the
transfinite diameter are within a constant factor: for any compact set E ⊂ C we have
Δ(E) � diam(E)/2, and if E is also connected, then Δ(E) � diam(E)/4, too, the disk
D and the interval I showing sharpness of both estimates, respectively. See e.g. [39,
§1.7.1.]9.

4. Some geometrical notions and definitions

We start with a convex, compact domain K � C . Then its interior intK �= /0 and
K = intK , while its boundary Γ := ∂K is a convex Jordan curve. More precisely,
Γ = R(γ) is the range of a continuous, convex, closed Jordan curve γ on the complex
plane C .

If the parameter interval of the Jordan curve γ is [0,L] , then this means, that
γ : [0,L] → C is continuous, convex, and one-to-one on [0,L) , while γ(L) = γ(0) .
While this is the most used setup for curves, we need the two, essentially equivalent

8Of course, the Lebesgue measure |J| of the compact set J � R does not exceed its outer Jordan mesure
|J|∗

9However, note a disturbing misprint in this fundamental reference: in §1.7.2. the first two displayed
formulas must be corrected to have the opposite direction of the inequality sign.
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interpretations i.e. this compact interval parametrization and also the periodically ex-
tended interpretation with γ(t) := γ(t − [t/L]L) defined periodically all over R . If we
need to distinguish, we will say that γ : R → C and γ∗ : T := R/LZ → C , or equiva-
lently, γ∗ : [0,L] → C with γ∗(L) = γ∗(0) .

Curves can be parameterized equivalently various ways. However, in this work
we will restrict ourselves to parametrization with respect to arc length: as the curves
are convex, whence rectifiable curves, they always have finite arc length L := |γ∗| , and
parametrization is possible with respect to arc length. Whence also

L := |γ∗| = |Γ|
is the arc length of Γ , i.e. the perimeter of K . The parametrization γ : R → ∂K defines
a unique ordering of points, which we assume to be positive in the counterclockwise
direction, as usual.

This has an immediate consequence also regarding the derivative, which must then
have |γ̇| = 1, whenever it exists, i.e. (linearly) a.e. on [0,L) ∼ T . Since γ̇ : R →
∂D , we can as well describe the value by its angle or argument: the derivative angle
function will be denoted by α := arg γ̇ : R → R . Since, however, the argument cannot
be defined on the unit circle without a jump, we decide to fix one value and then define
the extension continuously: this way α will not be periodic, but we will have rotational
angles depending on the number of (positive or negative) revolutions, if started from the
given point. With this interpretation, α is an a.e. defined nondecreasing real function
with α(t)− 2π

L t periodic (by L ) and bounded. With the usual left- and right limits α−
and α+ are the left- resp. right-continuous extensions of α . The geometrical meaning
is that if for a parameter value τ the corresponding boundary point is γ(τ) = ζ , then
[α−(τ),α+(τ)] is precisely the interval of values β ∈ T such that the straight lines
{ζ + eiβ s : s ∈ R} are supporting lines to K at ζ ∈ ∂K . We will also talk about
half-tangents: the left- resp. right- half-tangents are the half-lines emanating from ζ
and progressing towards −eiα−(τ) and eiα+(τ) , resp. The union of the half-lines {ζ +
eiβ s : s � 0} for all β ∈ [α+(τ),π +α−(τ)] is precisely the smallest cone with vertex
at ζ and containing K .

We will interpret α as a multi-valued function, assuming all the values in the
interval [α−(τ),α+(τ)] at the point τ . Restricting to the periodic (finite interval) in-
terpretation of γ∗ : [0,L) → C , without loss of generality we may assume that α∗ :=
arg(γ̇∗) : [0,L] → [0,2π ] . In this regard, we can say that α∗ : R/LZ → T is of bounded
variation, with total variation (i.e. total increase) 2π – the same holds for α : R → R

over one period.
The curve γ is differentiable at ζ = γ(θ ) if and only if α−(θ ) = α+(θ ) ; in this

case the unique tangent of γ at ζ is ζ + eiαR with α = α−(θ ) = α+(θ ) .
It is clear that interpreting α as a function on the boundary points ζ ∈ ∂K , we

obtain a parametrization-independent function: to be fully precise, we would have to
talk about γ̃ , γ̃∗ , α̃ and α̃∗ . In line with the above, we consider α̃ , resp. α̃∗ multival-
ued functions, all admissible supporting line directions belonging to [α−(τ),α+(τ)] at
ζ = γ(τ) ∈ ∂K being considered as α̃ -function values at ζ . At points of discontinuity
α± or α∗± and similarly α̃± resp. α̃∗± are the left-, or right continuous extensions of
the same functions.
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A convex domain K is called smooth, if it has a unique supporting line at each
boundary point of K . This occurs iff α± := α is continuously defined for all values
of the parameter. For a supporting line ζ + eiβ R the outer normal vector is νννν(ζ ) :=
eiβ−iπ/2 , and the (outer) normal vectors are precisely the vectors νννν satisfying the in-
equality 〈z− ζ ,νννν〉 � 0 (∀z ∈ K ) with the usual R2 scalar product, or equivalently,
ℜ((z− ζ )νννν)) � 0.

For obvious geometric reasons we call the jump function Ω := α+ −α− the sup-
plementary angle function. This is identically zero almost everywhere (and in fact ex-
cept for a countable set), and has positive values such that the total sum of the (possibly
countable number of) jumps does not exceed the total variation of α , i.e. 2π .

In the sequel we use some local quantities like the local depth hK(ζ ) at boundary
points ζ ∈ ∂K . Take any boundary point ζ ∈ ∂K , and a supporting line at ζ to K with
corresponding normal vector νννν = νννν(ζ ) . It is easy to see10 that at least for some normal
directions νννν we have

ζ + ννννR∩K = [ζ ,ζ −hνννν] (8)

with some positive length h (provided that we have intK = /0 and K convex). Further
(in view of compactness and convexity), the supremum of all such positive lengths in
(8) is actually a maximum. This maximum is denoted as h := hK(ζ ) , and is called the
(local) depth of K at ζ .

With this, we can as well define the (global) depth of the convex domain K .

DEFINITION 2. A convex body K has depth hK with

hK := inf{hK(ζ ) : ζ ∈ ∂K} . (9)

The convex domain K has fixed depth or positive depth, if hK > 0.

Note that this quantity is not always a minimum, and it can as well be zero, as e.g.
in case of the regular triangle.

It is easy to see that if a convex domain has a boundary point ζ ∈ ∂K , where
Ω(ζ ) > π/2, then the convex domain cannot have positive depth. On the other hand
there cannot be too many of such boundary points, since the sum of the jumps of α±
at these points cannot exceed the total variation 2π of α± . So there exist at most three
points with obtuse supplementary angles, and at most four points with Ω(ζ ) > 2π/5,
etc. It is then clear that the largest supplementary angle exists as the maximum of the
nonnegative function Ω over the boundary ∂K . We can thus define

DEFINITION 3. For any convex domain K the largest supplementary angle is

ΩK := max
∂K

Ω = max
∂K

(α+ −α−).

10For if with some normal νννν and the normal line � := ζ + ννννR we have � ∩K = {ζ} , then (due to
convexity) there cannot be interior points on both sides of this line; the same being true for the supporting
line t := ζ + iννννR , we find that intK �= /0 lies strictly inside one quadrant of the plane, whence by the fatness
of K also K is in one closed quadrant, and so to any interior point w∈ intK the direction of ζ −w is normal
to K at ζ .
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Note that ΩK = 0 if and only if K is smooth. Also note that the Szegő type outer
angle of a say convex domain is ΩK + π .

Finally, let us introduce a version of the modulus of continuity function of the nor-
mal direction(s) argνννν(ζ ) (with respect to distance, i.e. chord length) on the boundary
∂K . Let dT(θ ,τ) denote the usual distance on the circle, i.e. the distance of θ −τ from
2πZ . Then the modulus of continuity of the normal vectors of the boundary is defined
the following parametrization-free way.

DEFINITION 4. The modulus of continuity of the (say: outer) normal directions
of the boundary of K is defined for 0 � t < w as

ωK(t) := sup{dT(argνννν,argμμμμ) :

νννν , μμμμ are normal to K at z, z′ resp., |z− z′| � t
}

.
(10)

This is equivalent to the modulus of continuity of the tangent directions α(τ) with
respect to chord length or distance, i.e.

ωK(t) = sup{dT(α∗(σ),α∗(τ)) : τ,σ ∈ R, |γ(σ)− γ(τ)| � t}.

Further, ωK can be expressed the following (also parametrization-free) way, too:

ωK(t) = sup{dT(α̃∗(ζ ), α̃∗(ζ ′)) : ζ ,ζ ′ ∈ ∂K, |ζ − ζ ′| � t}.

Observe that by the definition of the width w = wK , precisely when the chord
length reaches w , then there are points z,z′ ∈ ∂K with parallel supporting lines, i.e.
with opposite normals, achieving dT(νννν,νννν ′) = π . From that distance on, any definition
of the modulus of continuity can only say that ωK(t) = π for t � w .

Note that ωK : [0,w) → [0,π) is a nondecreasing function with possible jumps:
in particular, if ω := ωK is not continuous, then ωK(0) = ΩK is the very first jump
(compared to 0), and all jumps have to be between zero and ΩK . Now defining 11

ω−(0) := 0, ω+(w) = ωL(w) = π ,

ω−(t) := sup
s<t

ωK(s) = limsup
s→t−0

ωK(s) = lim
s→t−0

ωK(s),

and
ω+(s) := inf

s>t
ωK(s) = liminf

s→t+0
ωK(s) = lim

s→t+0
ω(s) (s < w),

we can consider the modulus of continuity function a multivalued function with ωK(s)=
[ω−(s),ω+(s)] . This way ωK becomes a surjective mapping from [0,w] → [0,π ] (the
full set of possible distances on T) and, again allowing a multivalued interpretation, its
inverse can be defined as ω−1(σ) := {s ∈ [0,w] : ωK(s) = σ} – again, in general, a
multivalued function mapping [0,π ] surjectively to [0,w] .

11Observe that now, because we have defined ωK with the � sign, we in fact have ωK(t) = ω+(t) ;
defining the modulus of continuity with respect to the condition |ζ −ζ ′| < t would provide ω−(t) .
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A version of the modulus of continuity on the boundary curve can also be consid-
ered according to arc length, or, equivalently, according to parametrization: this will
be the ordinary modulus of continuity of the composite function νννν ◦ γ , interpreting νννν
as a multi-valued function assuming all admissible values of outer normal directions;
equivalently, the modulus of continuity of α = α̃ ◦ γ on R . Note that – as we parame-
terize the boundary curve γ with respect to arc length – the arc length of the subarc of
γ in the counterclockwise direction between points corresponding to parameter values
τ < σ is

∫ σ
τ |dγ| = τ −σ .

DEFINITION 5. The modulus of continuity of normal directions (or tangent direc-
tions) with respect to arc length on the boundary curve is

ωγ(s) := ω(νννν ◦ γ;s) = ω(α̃ ◦ γ;s) = ω(α;s) = sup{α(σ)−α(τ) : τ � σ � τ + s}.
Note that ω(α,s) : [0,L) → [0,2π) monotonically. The main difference between

the two definitions is lying not in the different measurement of the distances between
the points – which is already an essential difference, though – but in the fact that the
distance of values is measured not in T , but in R , thus allowing ωγ to increase all
over [0,∞) . Still, after reaching the period L there is not much point to consider this
modulus, for there we only add the number of full revolutions times 2π , i.e. we have
ωγ(t) = ωγ(t − [t/L]L)+ [t/L]2π .

5. A result for domains with positive depth

5.1. Statement of the result

The aim of this section is to prove the following theorem on the order of the os-
cillation in Lq norm for a class of domains defined by the property of having positive
depth.

THEOREM 3. Assume that K � C is a compact convex domain with positive depth
hK > 0 . Then for any q � 1 , any n ∈ N and p ∈ Pn(K) it holds

‖p′‖q,K � h4
K

3000d5 n ‖p‖q,K . (11)

REMARK 3. Note the generality of the statement. E.g. a regular k -gon Gk is
always of positive depth from k = 4 on; the only (and essential) exception being the
regular triangle. More generally, a polygonal domain has fixed depth iff it has no acute
angles.

The whole section is devoted to the proof of this result. In the course of proof we
will work out various intermediate steps and results, which will be used later.

In Section 6 we will show that this order of oscillation is again the best possible,
like in the case q = ∞ , thus settling the question of the order of the oscillation in Lq

norms for all these domains.
Before starting the main argument, we first give a geometrical discussion of the

property that hK > 0.
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5.2. A characterization of fixed depth

We have already remarked that ΩK > π/2 implies that hK = 0. When ΩK = π/2,
the situation is a little ambiguous.

REMARK 4. Observe that in particular in case ΩK = π/2 a rectangle R has pos-
itive depth, but the upper semi-disk U := {z, |z| � 1 and ℜz � 0} admits zero depth.
This is easy to see directly, observing that local depths of boundary points on the di-
ameter tend to zero as the points approach the vertices at ±1. In particular, in case
ΩK = π/2, both hK > 0 and hK = 0 can occur.

Still, a precise characterization of positive depth is possible. The following must
be well-known in geometry, but finding no reference to that, we decided to describe this
characterization also here.

PROPOSITION 1. Let K be any convex domain. Then there are the following
cases.

(i) If for all boundary points the supplementary angles Ω(ζ ) admit Ω(ζ ) < π/2 ,
– that is, if ΩK < π/2 – then the domain K has a fixed positive depth hK > 0 .

(ii) If for some boundary point(s) the supplementary angle(s) satisfy Ω(ζ ) > π/2 ,
then hK = 0 .

(iii) If ΩK = π/2 , but at each boundary point with Ω(ζ ) = π/2 the tangent angle
function α is constant α−(ζ ) resp. α+(ζ ) in a small left, resp. right neighbor-
hood of ζ – i.e. if the point ζ ∈ ∂K is a vertex, with two orthogonal straight line
segment pieces of the boundary joining at ζ – then the domain K has a fixed
positive depth hK > 0 .

(iv) If ΩK = π/2 , but there exists a maximum point of Ω , in any neighborhood of
which either the left or the right neighboring piece of the boundary fails to be a
straight line segment, then hK = 0 .

COROLLARY 1. If K is smooth – i.e. ∂K is a smooth convex Jordan curve – then
hK > 0 .

Proof. First note that Cases (i)–(iv) indeed give a full list of possibilities.
Let us first consider Case (i). We argue by contradiction. Take any boundary points

ζn with corresponding normal vectors ννννn and satisfying

ζn + ννννnR∩K = [ζn,ζn −hnννννn] . (12)

with hn < 1/n . Let ωn := ζn − hnννννn and any corresponding outer normal vector be
μμμμn . After selecting a subsequence, if necessary, by compactness we may assume that
these points and vectors converge. Hence let ζn → ζ , ννννn → νννν and μμμμn → μμμμ . Since
hn → 0, it follows that ωn → ζ , too.
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Observe that for any point z ∈ K normality of ννννn at ζn means 〈ννννn,z− ζn〉 � 0,
and normality of μμμμn at ωn means 〈μμμμn,z−ωn〉 � 0, hence by the above convergence
we must have 〈νννν,z− ζ 〉 � 0, and also 〈μμμμ ,z− ζ 〉 � 0. In other words, both νννν and μμμμ
are normal vectors at ζ ∈ ∂K .

However, ζn −ωn = hnννννn is parallel to ννννn , hence normality of μμμμn at ωn yields
〈μμμμn,ννννn〉 � 0. Again by continuity this entails 〈μμμμ ,νννν〉 � 0, that is, the angle between
these two normal vectors is at least π/2. Clearly then Ω(ζ ) � π/2, a contradiction to
our assumption. This concludes the proof of Case (i).

Case (ii) is obvious, and even (iv) can be proved easily, but we give the proof
here. So let us take a point ζ ∈ ∂K with the given property, and assume, as we may,
that ζ = 0, and α−(ζ ) = 3π/2, and α+(ζ ) = 0, i.e., the two extremal half-tangents
at ζ are the (positively directed) imaginary axis and the (positively directed) real axis.
Also let us assume e.g. that no non-degenerate segment piece of the positive imaginary
half-axis (i.e. the left half-tangent) belong to the boundary.

Put a := max{ℜz : z ∈K} . It can happen that there are several points of K where
this maximum is attained; however, for 0 the condition that the imaginary axis is a
tangent and that no straight line piece of it belongs to K , implies that K ∩ iR = {0} .
Consider now any x ∈ [0,a] , and the intersection {ℜz = x}∩K . This vertical segment
has to be above (not below) the positive real axis, since R is a tangent with α+(0) = 0,
and so we can write {ℜz = x}∩K = [x + ig(x),x + i f (x)] with two continuous, non-
negative functions 0 � g � f satisfying g(0) = f (0) = 0 and g convex, f concave (i.e.
“convex from below”), both continuous and in particular limx→0+0 f (x) = 0, moreover,
both g and f are nondecreasing in a right neighborhood of 0.

Now let us show that at z := x + ig(x) the normal vector νννν has angle argνννν ∈
[3π/2,2π) . First, 0 ∈ K implies that 〈−z,νννν〉 � 0, entailing argνννν � arg(−z)+ π/2 =
argz+3π/2 � 3π/2. Then again, argνννν achieves 2π only when the boundary point is
in rightmost position (i.e. of maximal real part value) in K , and thus argνννν ∈ [3π/2,2π)
for 0 < x < a . So these mean that the normal line z+ ννννR to z = x+ ig(x) intersects
the boundary of K at some point z′ := x′ + i f (x′) with some 0 � x′ � x , and thus
f (x′) � f (x) → 0 implies that the length of intersection of K and this normal line tends
to 0 together with x . This completes the proof of hK = 0.

Finally, Case (iii) is again easy to prove. First, a little thought shows that the
condition is equivalent to the statement that the modulus of continuity satisfies ω+(0) =
π/2 and ωK(t) = π/2 for all 0 � t � t0 with some positive value 0 < t0 < w .

So we prove now that if ω(t0) = π/2, or, more generally, if π/2∈ ω(t0) for some
t0 > 0, then for any boundary point z ∈ ∂K and any normal line m := z+ννννR to K at z ,
the length of the intersection of m∩K = [z,z′] is at least t0 (and so even hK � t0 > 0).

Obviously, the chord vector between z and z′ is in inner normal direction, whence
has an angle (argument) exactly π/2 above the angle of the positively directed tangent,
orthogonal to νννν at z .

Assume, as we may, that z = 0, z′ = iy′ (with some y′ > 0) and m is just the
imaginary axis. By definition of the width w = w(K) , as w > t0 , there exists a point
z0 = x0 + iy0 ∈ K with y0 � w : if x0 = 0, then we would have z0 = iy0 ∈ [z,z′] =
[0,y′] and we would get y′ � w > t0 , concluding the argument. So it remains to deal
with 0 < y′ < w and x0 �= 0. Let e.g. x0 < 0: then the three points z,z′,z0 cut the
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boundary Γ of K into three parts, each of them extending between two of them and
not containing the third one, and following in the counterclockwise direction as z ≺
z′ ≺ z0 and Γ(z,z′) ≺ Γ(z′,z0) ≺ Γ(z0,z) . According to these normalizations, α(z′) �
arg(z0 − z′) ∈ (π/2,π) , for the latter chord vector is x0 + i(y0 − y′) with x0 < 0 and
y0 � w > y′ . It follows that for any further points z∗ ∈ Γ(z′,z0) we necessarily have
π � α(z∗) � α+(z′) . Note that (unless z∗ = z′ ) we cannot have z∗ ∈ m , but only
ℜz∗ < 0 and arg(z∗ − z) > arg(z′ − z) = π/2. Whence π � α(z∗) � arg(z∗ − z) > π/2,
so that ωK(|z∗ − z|) > π/2. As now z∗ can be arbitrarily close to z′ , for any value
t∗ > |z′ − z| = y′ we have ωK(t∗) > π/2, i.e., any such t∗ must satisfy t∗ > t0 . So if
t∗ > y′ then we have t∗ > t0 , whence |z′ − z| = y′ � t0 , and hK � t0 , as needed. �

PROPOSITION 2. For a convex, compact domain K we have hK > 0 if and only if
the modulus of continuity function has ωK(τ) � π/2 for all 0 � τ � t with some t > 0 .

Furthermore, with the above extended interpretation of the inverse function of the
modulus of continuity function, we have hK � μK := maxω−1(π/2) .

Proof. Consider the four cases in the above Proposition 1. A little thought shows
that Case (i) is equivalent to state ωK(τ) < π/2 (0 � τ � t ) for sufficiently small
t > 0, and (iii) is exactly the case when ωK(τ) = π/2 (0 � τ � t ) for sufficiently
small t > 0. So these cases with hK > 0 are such that ωK(τ) � π/2 for all 0 � τ � t
with some t > 0. Moreover, Case (ii) means ωK(0) > π/2, and Case (iv) means that
ωK(0) = π/2, but for all τ > 0 already ωK(τ) > π/2, whence the cases with hK = 0
are the ones with ωK(τ) > π/2 for all τ > 0. This proves the first assertion of the
Proposition.

As for the last assertion, there is nothing to prove for μK = 0, so we may take
μK > 0, meaning that there are points 0 < t0 ∈ ω−1

K (π) . Recalling the last argument
of the proof of the previous Proposition 1, we can then see that for any such t0 also
hK � t0 holds. Taking t0 := maxω−1

K (π/2) thus provides hK � μK , too. �

REMARK 5. To see that the inequality hK > ω−1
K (π/2) is possible, it suffices to

consider a regular hexagon G6 of side length h , say. Then hK(G6) =
√

3h , while
ω−(h) = π/3, ω+(h) = 2π/3 and ω−1

K (π/2) = {h} , μK = h .

5.3. Technical preparations for the investigation of Lq(∂K) norms

First, we will prove a Nikolskii-type estimate, which is similar to the well-known
analogous inequality on the real line, found in the book of Timan [55, 4.9.6 (36)].

LEMMA 1. For any q > 0 and any polynomial p of degree at most n we have
that

‖p‖Lq(∂K) �
(

d
2(q+1)

)1/q

‖p‖L∞(∂K) n−2/q. (13)

Proof. We first prove a Bernstein-Markov type estimate in the maximum norm.
Let z ∈ K be arbitrary. Then we always have a chord J := [z,z∗] ⊂ K of length at least
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d/2, for we can take any diameter I of K , and for z∗ take the endpoint of I , which is
situated farthest from z – which is of course at least of distance d/2 from z . Applying
Markov’s Inequality on J , we obtain

|p′(z)| � n2

|J|/2
‖p‖L∞(J) � 4n2

d
‖p‖L∞(∂K).

Therefore, it holds

‖p′‖L∞(∂K) � 4
d

n2‖p‖L∞(∂K). (14)

Consider now a point z0 = γ(t0) ∈ ∂K , where ‖p‖∞ is attained. Then – using also
convexity of K – at each point z ∈ K we have

|p(z)| =
∣∣∣∣p(z0)+

∫ z

z0
p′(ζ )dζ

∣∣∣∣ � ‖p‖∞−|z− z0|‖p′‖∞ � ‖p‖∞

(
1− 4|z− z0|

d
n2
)

,

whence with the common notation x+ := max(0,x) also

|p(z)| � ‖p‖∞

(
1− 4|z− z0|

d
n2
)

+
. (15)

Now, from (15) we can estimate the q -integral of p as follows. Take12 r0 = d/(4n2) ,
U := D(z0,r0) and Γ0 := Γ∩U . More precisely, in case there are several pieces of arcs
in this intersection (which can only happen for small n , though) then we take only one
arc which passes through the point z0 and extends to the circumference of U in both
directions – and drop the remaining pieces. Let us denote the points, falling on the cir-
cumference ∂U right preceding and following z0 = γ(t0) on γ as z± := γ(t±) . Recall-
ing that γ is parameterized according to arc length, and writing for the parametrization
γ : [t−, t+] → Γ0 , and so in particular γ− : [t−,t0] → Γ− and γ+ : [t0,t+] → Γ+ , we get∫

γ+
|p|q|dγ| �

∫ t+

t0

(
1− 4|γ(t)− z0|

d
n2
)q

‖p‖q
∞dt

� ‖p‖q
∞

∫ t+

t0

(
1−4|γ[t0,t]|

d
n2
)q

+
dt

(
where |γ[t0,t]| =

∫ t

t0
|γ̇(τ)| dτ = t−t0

)
= ‖p‖q

∞

∫ t0+ d
4n2

t0

(
1− 4(t− t0)

d
n2
)q

dt = ‖p‖q
∞

d
4n2

∫ 1

0
(1− s)q ds

and similarly for γ− , whence
∫

γ0
|p|q|dγ| � ‖p‖q

∞
d

2(q+1)n2 . As a result, we get

‖p‖Lq(∂K) �
(∫

γ0

|p|q|dγ|
)1/q

�
(

d
2(q+1)

)1/q

‖p‖∞n−2/q,

and the result follows. �
12Throughout the paper we use the standard notation D(a,b) := {z ∈ C : |z−a| � b} for disks.
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Next, let us define the subset H := H q
K (p) ⊂ ∂K the following way.

H := H q
K (p) := {ζ ∈ ∂K : |p(ζ )| > cn−2/q‖p‖∞}, c := (8π(q+1))−1/q . (16)

Then we can restrict ourselves to the points of H and neglect whatever happens for
points belonging to

H c = Γ\H .

Indeed, Γ is contained in a disk of radius d around any point of K , whence by the
well-known property13 of convex curves, L := |γ| � 2πd , and the above Lemma 1
furnishes ∫

Γ\H
|p(z)|q|dz| � 2πdcq

n2 ‖p‖q
∞ � 4π(q+1)cq‖p‖q

q =
1
2
‖p‖q

q.

That leads to∫
H

|p|q|dz| =
∫

γ
|p|q|dz|−

∫
γ\H

|p|q|dz| � ‖p‖q
q−

1
2
‖p‖q

q � 1
2
‖p‖q

q.

Therefore we can restrict to (lower) estimations of |p′(ζ )| on the set H where p is
assumed to be relatively large (compared to its maximum norm), so that we can assume
that

log
‖p‖∞

|p(ζ )| � log(c−1n2/q) =
log(1+q)

q
+

log(8π)
q

+
2
q

logn � log(16π)+2logn.

for any q � 1 and n ∈ N . Summing up we have

LEMMA 2. Let H ⊂ ∂K be defined according to (16). Then for all p ∈ Pn we
have ∫

H
|p|q � 1

2
‖p‖q

Lq(∂K). (17)

Furthermore, for any point ζ ∈ H , and for any p ∈ Pn(K) we also have

log
‖p‖∞

|p(ζ )| � log(16π)+2logn (∀n ∈ N). (18)

For relatively small values of the degree n we may get better constants if using
an entirely different argument, not suitable to analyze the order regarding the degree,
but yielding better numerical values for small n . We will base our calculation on the
following classical result of Gabriel [25, Theorem 5.1].

LEMMA R. (Gabriel) If Γ is any convex (closed) curve and C is any convex curve
inside Γ , and if f (z) is regular inside and on Γ , then∫

C
| f λ (z)||dz| � (π(e+1)+ e)

∫
Γ
| f λ (z)||dz|, (λ � 0).

With this we can now state the next.
13A reference is [14, p. 52, Property 5] about surface area, presented as a consequence of the Cauchy

Formula for surface area.
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LEMMA 3. For arbitrary q � 1 , for any function p analytic on the compact con-
vex domain K and having a zero on K , and for any point ζ ∈ ∂K we have the estimate

|p(ζ )| � d

(
π(e+1)+ e

2

)1/q

‖p′‖q. (19)

As a direct consequence, we also have

‖p′‖q >
1

45.3
1
d
‖p‖q > 0.022

1
d
‖p‖q. (20)

Proof. Evidently, it is enough to consider the case 1 < q < ∞ . Let z0 ∈ K be any
zero of p . Then for any ζ ∈ Γ := ∂K the interval [z0,ζ ] ⊂ K (by convexity), and so
Hölder’s inequality furnishes

|p(ζ )| =
∣∣∣∣∫[z0,ζ ]

p′(z)dz

∣∣∣∣� (∫[z0,ζ ]
|dz|
)(q−1)/q(∫

[z0,ζ ]
|p′(z)|q|dz|

)1/q

.

Noting that |ζ −z0|� d and applying Lemma R to the integral of |p′(z)|q over the con-
vex curve C := [z0,ζ ]∪ [ζ ,z0] (the degenerate closed convex curve encircling around
the points ζ and z0 ) we get

|p(ζ )| � d
q−1
q

(
1
2
(π(e+1)+ e)

∫
Γ
|p′(z)|q|dz|

)1/q

= d
q−1
q

(
π(e+1)+ e

2

)1/q

‖p′‖q,

proving (19).
Now integrating on q -th power, and using again L � 2πd leads to

‖p‖q
q � dq−1 π(e+1)+ e

2
‖p′‖q

q L � dq π(π(e+1)+ e)‖p′‖q
q < 45.3 dq ‖p′‖q

q.

Taking q -th root, a small rearrangement finally furnishes even the last assertion, as
from here

‖p′‖q >

(
1

45.3

)1/q 1
d
‖p‖q � 1

45.3
1
d
‖p‖q > 0.022

1
d
‖p‖q. �

5.4. Proof of a local result in terms of the local depth

In the following we will work out an unconditional pointwise estimate in the sense
that it will provide an estimate locally at points ζ ∈H in terms of h = h(ζ ,K) , not us-
ing the assumption that hK = infζ∈∂K h(ζ ,K) stays positive or not. When this happens
to hold, the below result will almost immediately imply Theorem 3.

THEOREM 4. Let p ∈ Pn(K) and let H = H q
K (p) be defined by (16). Then it

holds

|p′(ζ )| � h4

1500d5 n |p(ζ )| ( if ζ ∈ H ) . (21)
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Proof. First of all, we may assume that

n � n0 := 32 d4/h4,

for values of n not exceeding this bound we can settle the issue referring to (20) of
Lemma 3 providing

‖p′‖q � n
32d4/h4 ‖p′‖q >

1
1500

h4

d5 n ‖p‖q. (22)

So from here on let us assume n � 32 d4/h4 . Without loss of generality we also
assume ζ = 0 and that a tangent line at ζ = 0, chosen according to the requirement
h = h(ζ ,K)(� hK) , is just the real line R (and thus the normal line is the imaginary
axis iR). Then we have K ⊂ H := {z ∈ C : ℑz � 0} and K∩ iR = [0, ih] .

Let us denote the set of zeroes of p ∈ Pn(K) as

Z := {z j = r je
iϕ j : j = 1, . . . ,n} ⊂ K

(listed with possible repetitions according to their multiplicity). We assume, as we may,
that p(z) = ∏n

j=1(z− z j) .
In what follows we will use for any interval [σ ,θ ] (and similarly for [σ ,θ ) etc.)

the following notations for the angular sectors, the zeroes in the angular sectors, and
the number of zeroes in the angular sectors:

S[σ ,θ ] := {z ∈ C : argz ∈ [σ ,θ ]},
Z [σ ,θ ] := {z j ∈ Z : argz j ∈ [σ ,θ ]} = Z ∩S[σ ,θ ],
n[σ ,θ ] := #Z [σ ,θ ].

Let us fix the angle

ϕ := arcsin

(
h
8d

)
.

We partition the zero set Z into two subsets as follows.

Z+ := Z [ϕ ,π −ϕ ] Z− := Z \Z+ . (23)

For the corresponding cardinals we write

k := #Z+ = n[ϕ ,π −ϕ ], m := #Z− = n[0,ϕ)+n(π−ϕ ,π ] .

Observe that for any subset W ⊂ Z we have∣∣∣∣ p′p (0)
∣∣∣∣� −ℑ

p′

p
(0) =

n

∑
j=1

ℑ
−1
z j

� ∑
z j∈W

ℑ
−1
z j

= ∑
z j∈W

sinϕ j

r j
, (24)

because all terms in the full sum are nonnegative. We apply inequality (24) with W =
Z+ to obtain

M :=
∣∣∣∣ p′p (0)

∣∣∣∣� ∑
z j∈Z+

sinϕ j

r j
� sinϕ ∑

z j∈Z+

1
r j

� h
8d2 k , (25)
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since for z j ∈ Z+ we have ϕ j ∈ [ϕ ,π −ϕ ] , sinϕ j � sinϕ = h/(8d) , and r j � d .
Now put

J :=
[
3
4
ih, ih

]
⊂ K .

We estimate the distance of any z j = x j + iy j ∈Z− from J . In fact, taking any point z =
x+ iy = reiψ ∈ D(0,d)∩ (S[0,ϕ)∪S(π −ϕ ,π ]) , we necessarily have |z|2 = x2 + y2 �
d2 , 0 � y � d sinϕ = h/8, and therefore, dist(z,J) = |z− i3h/4|=√x2 +(y−3h/4)2 .
Clearly, then

dist(z,J)2

|z|2 =
x2 + y2−3yh/2+(3h/4)2

x2 + y2 � 1+
3h2

8d2 . (26)

In fact, we can do a little better here, taking into account that the other endpoint of
J , ih , also belongs to K , whence the diameter provides an upper bound to |z− ih| , too,
yielding x2 +(y−h)2 � d2 . Using this in the middle of (26), we may write

dist(z,J)2

|z|2 =
x2 + y2−3yh/2+(3h/4)2

x2 + y2

= 1+
9h2−24yh
16(x2 + y2)

� 1+
9h2−24yh

16(d2−h2 +2yh)
,

where the last expression is decreasing in y � h/8, whence admitting

9h2−24yh
16(d2−h2 +2yh)

� 9h2−24(h/8)h
16(d2−h2 +2(h/8)h)

=
3h2

8d2−6h2 .

Introducing the parameter u := d/h ∈ [1,∞) we thus obtain

dist(z,J)2

|z|2 � 1+
3h2

8d2−6h2 =
8u2−3
8u2−6

(
u :=

d
h
∈ [1,∞)

)
.

From here taking logarithms we get (uniformly for all z j ∈ Z− and τ ∈ J )∣∣∣∣ z j − τ
z j

∣∣∣∣� exp

(
1
2

log

(
8u2−3
8u2−6

)) (
u :=

d
h
∈ [1,∞)

)
. (27)

Next consider the zeroes Z+, defined by (23). Lemma O leads to

∏
z j∈Z+

∣∣∣∣z j − ζ0

z j

∣∣∣∣ := max
z∈J

∏
z j∈Z+

∣∣∣∣ z j − z
z j

∣∣∣∣� 1
dk max

z∈J
∏

z j∈Z+

|z j − z|� 1
dk

( |J|
4

)k

= exp

(
−k log

(
16d
h

))
. (28)



Lq OSCILLATION INEQUALITIES ON CONVEX DOMAINS 173

Taking now the point z0 ∈ J where the maximum of |p(z)| on J is attained, combining
(27) (valid for all z j ∈ Z−, τ ∈ J ) and (28) and using m+ k = n leads to∣∣∣∣ p(z0)

p(0)

∣∣∣∣� ∣∣∣∣ p(ζ0)
p(0)

∣∣∣∣= ∏
z j∈Z

∣∣∣∣z j − ζ0

z j

∣∣∣∣� exp

(
m

1
2

log

(
8u2−3
8u2−6

)
− k log(16u)

)

= exp

(
n
1
2

log

(
8u2−3
8u2−6

)
−
{

1
2

log

(
8u2−3
8u2−6

)
+ log(16u)

}
k

)
= exp

(
n
2

log

(
8u2−3
8u2−6

)
−ψ(u)k

)
,

where

ψ(u) :=
1
2

log

(
8u2−3
8u2−6

)
+ log(16u).

Taking logarithm, dividing by ψ(u) and rearranging thus provides

k � 1
ψ(u)

(
n
2

log

(
8u2−3
8u2−6

)
− log

∣∣∣∣ p(z0)
p(0)

∣∣∣∣)� 1
ψ(u)

(
n
2

log

(
8u2−3
8u2−6

)
− log

‖p‖∞

|p(0)|
)

,

which, when combining with (25) yields

8
d5

h4 M � u3k � u3

ψ(u)

(
n
2

log

(
8u2−3
8u2−6

)
− log

‖p‖∞

|p(0)|
)

.

We have already seen in Lemma 2 why it suffices to restrict to points of the set H .
So from here on we will consider only points ζ ∈ H , for which points we may invoke
(18) to get

8
d5

h4 M � u3

ψ(u)

(
n
2

log

(
8u2−3
8u2−6

)
− log(16π)−2logn

)
(for ζ ∈ H ) .

Introducing another parameter v := n/u4 = (h/d)4n and collecting everything
from the above, a little rearrangement leads to

8
d5

h4 M
1
n

�
u3 log

(
8u2−3
8u2−6

)
− 2

vu
{log(16π)+2logv+8logu}

log
(

8u2−3
8u2−6

)
+2log(16u)

It is clear that for v � e this expression is an increasing function of v , therefore we can
as well write in the minimal possible value v � v0 = 32 to get

8
d5

h4

M
n

�
u3 log

(
8u2−3
8u2−6

)
− 2

32u {log(π)+14log2+8logu}
log
(

8u2−3
8u2−6

)
+2log(16u)

(
u :=

d
h

� 1

)
.
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Here simultaneously dividing the numerator and the denominator by u yields

8
d5

h4

M
n

�
u2 log

(
8u2−3
8u2−6

)
− 1

16u2 {logπ +14log2+8logu}
1
u log

(
8u2−3
8u2−6

)
+2 log(16u)

u

(
u :=

d
h

� 1

)
. (29)

As 1/u , log
(

8u2−3
8u2−6

)
and 2 log(16u)

u = 32 log(16u)
16u are all decreasing for u � 1, the de-

nominator is a decreasing function and its maximal value is at the point u = 1. So,

1
u

log

(
8u2−3
8u2−6

)
+2

log(16u)
u

� log(5/2)+2log(16) = log(640).

From this and (29) a computation provides

d5

h4

M
n

� 1
64log640

(
8u2 log

(
8u2−3
8u2−6

)
− log(4π)+4log(8u2)

2u2

)
(30)

=
1

413.5339 . . .

(
8u2 log

(
1− 3

8u2

1− 6
8u2

)
− 4log(4π)

8u2 −16
log(8u2)

8u2

)
� 1

414
f (t)

with f (t) :=
1
t

log

(
1−3t
1−6t

)
−4log(4π) t +16t log t and t :=

1
8u2 ∈ (0,1/8] . It is easy

to see that f (t) is a convex function. Indeed, t logt is convex (with second derivative
1/t > 0), the linear term is of course convex, and the first part can be developed into a

totally positive Taylor-Maclaurin series: 1
t log

(
1−3t
1−6t

)
= ∑∞

k=1
6k−3k

k tk−1 .
Numerical evidence shows that f (t) attains its minimal value somewhere around

0.0786 . . . , and it stays above 0.7 all over (0,1/8] . To establish a sufficiently good
lower estimation of the function all over the interval (0,1/8] , we will use convexity
simply in the form of a supporting line argument: with any fixed value τ in (0,1/8]
the tangent of f at (τ, f (τ)) is a supporting line (from below) to f , i.e. f (t) � L(t) :=
L(τ;t) := f (τ)+ f ′(τ)(t − τ) .

A computation furnishes

f ′(t) = − 1
t2

log

(
1−3t
1−6t

)
+

1
t

( −3
1−3t

+
6

1−6t

)
−4log(4π)+16+16logt.

So now let us take τ := 0.078628, say. Then f (τ) ≈ 0.700037 . . . > 0.70003, and
another numerical computation furnishes f ′(τ) ≈ −0.000321 . . . > −0.0004. Since
f ′(τ)< 0, we find f (t)� min(0,1/8] L = L(0.125)> 0.70003−0.0004·(0.125−0.07)=
0.700008 > 0.7.

Substituting this estimate in (30), we conclude

M � 0.7
414

h4

d5 n >
1

600
h4

d5 n. �
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5.5. Conclusion of the proof for fixed positive depth

Proof of Theorem 3. We will use for all points ζ ∈ H the estimate (21) comple-
mented by the lower estimation h � hK . We obtain

‖p′‖q
q �

∫
H

|p′|q �
(

1
1500

h4
K

d5

)q

nq
∫

H
|p|q �

(
1

1500
h4

K

d5

)q

nq 1
2
‖p‖q

q.

Taking qth root and estimating 21/q simply by 2 yields Theorem 3. �

6. Upper estimation of the oscillation order of convex domains

Given the results for maximum norm and the above results of Theorem M and
Theorem 3, it is in order to clarify if the linear growth with n is indeed the maximal
possible order of oscillation in Lq norms. That is settled by the next result.

THEOREM 5. Let K � C be any compact, connected – not necessarily convex –
domain, bounded by a finite or countable number of closed, rectifiable Jordan curves
Γ j ( j = 1, . . .) with finite total arc length ∑ j |Γ j| = L < ∞ . Then for any q � 1 and
n ∈ N there exists some polynomial p ∈ Pn(K) with ‖p′‖Lq(∂K) � C(K)n‖p‖Lq(∂K) .

Note that the rectifiable assumption is necessary to have finite Lq norms, for oth-
erwise most polynomials have infinite Lq norms on the boundary. However, apart from
this assumption, the domain K is quite general, including nonconvex, multiply con-
nected domains. For disconnected domains, the analysis may be done separately for
connected components, and for compact sets without an interior even a lower order of
oscillation is possible, as it has been shown at least for the interval I . Therefore, we
may be satisfied with the degree of generality of the above formulated assertion.

Proof. We will provide a simple example. Let J ⊂ K be any diameter, and chose
an endpoint of the diameter J . Without loss of generality we may assume that this
endpoint is just the origin 0, and we can as well assume that J = [0,d] . Then our
polynomial will simply be p(z) := zn .

At points, where |z| � d/2, we have |p(z)| � (d/2)n = 2−ndn = 2−n‖p‖K , and
|p′(z)| = n|zn−1| � n2−(n−1)dn−1 . On the other hand, for points in the ring domain

R := {z ∈ C : d/2 � |z| � d} and belonging to K we have
∣∣∣ p′

p (z)
∣∣∣= |n/z|< 2n/d . So

we can write

‖p′‖q
q :=

∫
Γ
|p′(z)|q |dz| � (2n2−ndn−1)qL+

∫
Γ∩R

(
2n
d
|p(z)|

)q

|dz|

�
(

2n
d

)q{(
2−n ‖p‖∞

‖p‖q

)q

L+1

}
‖p‖q

q. (31)

By construction, the point d on the other end of the diameter J sits in ∂K , and belongs
to some of the boundary curves Γ j , which boundary curve must have some positive
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length |Γ j| = � > 0, say. So parameterizing by arc length and starting the parametriza-
tion at the point d , we can write γ j : [0, �]→ Γ j with γ j(0) = d = γ j(�) , and obviously
for any parameter value 0 � t � d |γ j(t)|� d− t , since the arc γ j

∣∣
[0,t] cannot go farther

from the left endpoint at d then its arc length t . It follows that at z = γ j(t) it holds
|p(z)| � (d− t)n until 0 � t � λ := min(d, �) , and so we have

‖p‖q
q �

∫
Γ j

|p(z)|q |dz| �
∫ λ

0
(d− t)nqdt =

1
nq+1

[
dnq+1− (d−λ )nq+1]

� d [dnq− (d−λ )nq]
nq+1

and(‖p‖∞

‖p‖q

)q

� nq+1
d

(
1

1− (1−λ/d)nq

)
<

nq+1
d

(
1

1− (1−λ/d)

)
=

nq+1
λ

Finally applying this in (31) leads to

‖p′‖q
q �

(
2n
d

)q{nq+1
λ2nq L+1

}
‖p‖q

q.

Since q � 1 and nq+ 1 � 2, it suffices to observe that x/2x decreases for x � 2 and
thus (nq+1)2−nq � 2maxx�2 x2−x = 1. We finally obtain

‖p′‖q � 2
d

L+min(d, �)
min(d, �)

n‖p‖q. (32)

As here the constant depends only on the domain K , we conclude that ‖p′‖q �C(K)n‖p‖q

holds for the chosen polynomial p ∈ Pn(K) , whence the assertion. �

REMARK 6. In case of a convex domain K , the parameters occurring here in
C(K) have a simpler meaning. First, the boundary ∂K is connected (consists of only
one convex curve), and thus � = L and min(d, �) = min(d,L) = d . Second, as we have
used several times, for convex curves the estimate L � 2πd holds true, always, whence

(32) simplifies to ‖p′‖q � 4π +2
d

n‖p‖q <
15
d

n‖p‖q , say.

REMARK 7. In [41] a more precise value of the constant C(K) has also been
obtained for the case of the infinity norm. As for Lq -norm neither the order (in general),
nor the more exact constants are known, it seemed to be well ahead of time to bother
with sharper values of the constant C(K) here. Nevertheless, our feeling is that the
slightly more involved construction of [41] would indeed provide a better constant,
which may be sharp, apart from an absolute constant factor, like in case q = ∞ . Here
we do not pursue this issue any more.
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7. Concluding remarks

Above we have seen, that like in case of the maximum norm, also for the Lq(∂K)
norm any compact convex domain K admits polynomials p ∈ Pn(K) with oscillation
not exceeding O(n) . On the other hand we have shown for some classes of convex
domains that the order of oscillation indeed reaches cKn .

A natural question – quite resembling to the question posed by Erőd 77 years ago
in case of the maximum norm – is to identify those domains which indeed admit order
n oscillation even in Lq(∂K) norm.

It has been clarified that, like in case of the maximum norm, also for Lq norms
the interval I behaves differently: there the order of oscillation may be as low as

√
n .

Therefore, it is certainly necessary that some conditions are assumed for an order n
oscillation. The question is if apart from having a nonempty interior, is there need for
any additional assumption? We think that probably not.

CONJECTURE 1. For all compact convex domains K � C there exist cK > 0 such
that for any p ∈ Pn(K) we have ‖p′‖Lq(∂K) � cKn‖p‖Lq(∂K) .

We are not really close to this conjecture. Let us point out that a general estimate
– however weak – is still missing in the full generality of all convex compact domains.
Apart from the cases discussed here, we mentioned that the case of the interval I is
clarified – there the oscillation being of order

√
n . So clearly also here there is a

difference between various compact convex sets. However, we do not really know if I

is indeed to be “the worst”, i.e. of lowest possible oscillation, as for general domains
really nothing – not even some mere logn e.g. – has been proved to date.

Therefore, posing a more modest goal, we would be interested as well in any
estimate working for general compact convex domains, without further assumptions on
the geometrical features of it.
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algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Zeitschrift 21 (1924) 203–208.
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[56] P. TURÁN, Über die Ableitung von Polynomen, Comp. Math. 7 (1939) 89–95.
[57] I. YA. TYRYGIN, Turán-type inequalities in certain integral metrics, Ukrainskii Matematicheskii

Zhurnal 40 (2) (1988) 256–260 (in Russian); translation in Ukrainian Mathematical Journal 40 (2)
(1988) 223–226,

[58] I. YA. TYRYGIN, The P. Turán inequalities in mixed integral metrics, Dokl. Akad. Nauk Ukr. SSR,
Ser. A 9 (1988) 14–17 (in Russian, English summary).

[59] A. K. VARMA, Some inequalities of algebraic polynomials having real zeros, Proc. Amer. Math. Soc.
75 (2) (1979) 243–250.



180 P. YU. GLAZYRINA AND S. GY. RÉVÉSZ
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