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FERENC MÓRICZ AND ZOLTÁN NÉMETH

(Communicated by J. Pečarić)

Abstract. Let (X ,F ,μ) be a positive measure space and {φ j,k(x) : j,k = 1,2, . . .} be a double
orthonormal system of real-valued functions on X . We extend four previous results of Borgen
[2] and Tandori [4, 5] from single to double orthogonal series.

1. Known results for single orthogonal series

Let (X ,F ,μ) be a positive measure space and {φ j(x) : j = 1,2, . . .} be an or-
thonormal system of real-valued functions on X , in abbreviation: ONS. We consider
the orthogonal series

∞

∑
j=1

c jφ j(x), (1.1)

where {c j : j = 1,2, . . .} is a sequence of real numbers (so-called coefficients) satisfy-
ing the condition

∞

∑
j=1

c2
j < ∞. (1.2)

By the Riesz–Fischer theorem, there exists a function f (x) ∈ L2 = L2(X ,F ,μ)
such that (1.1) is the generalized Fourier series of f (x) with respect to the system
{φ j(x)} and the partial sums

sm(x) :=
m

∑
j=1

c jφ j(x), m = 1,2, . . .

of the orthogonal series (1.1) converge to f (x) in L2 -norm:

lim
m→∞

∫
|sm(x)− f (x)|2 dμ(x) = 0. (1.3)

Here and in the sequel, the integrals are taken over the entire space X .
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182 F. MÓRICZ AND Z. NÉMETH

It is well known that condition (1.2) does not ensure the pointwise convergence of
the partial sums sm(x) to f (x) as m → ∞ . The Rademacher–Menshov theorem (see,
e.g., [1, Theorem 2.3.2, p. 80]) reads as follows: If

∞

∑
j=1

c2
j

[
log( j +1)

]2
< ∞, (1.4)

where the logarithm is to the base 2, then

lim
m→∞

sm(x) = f (x) a.e., (1.5)

where f (x) is the sum of the orthogonal series (1.1) in the L2 -norm (see in (1.3)).
The Cesàro summability (C,1) of the orthogonal series is defined by the conver-

gence of the arithmetic means

σn(x) :=
1
n

n

∑
m=1

sm(x), n = 1,2, . . .

of the partial sums. It is well known that the a.e. (C,1) summability is guaranteed by
a weaker condition than (1.4). In fact, the Menshov–Kaczmarz theorem (see, e.g., [1,
Theorem 2.8.1, p. 125]) reads as follows: If

∞

∑
j=1

c2
j

[
log log( j +3)

]2
< ∞, (1.6)

then
lim
n→∞

σn(x) = f (x) a.e.,

where f (x) occurs in (1.3).
Among others, the following theorems were proved in [2] by Borges and in [4, 5]

by Tandori.

THEOREM A. If condition (1.2) is satisfied, then

lim
m→∞

(
s2m(x)−σ2m(x)

)
= 0 a.e.

THEOREM B. If condition (1.2) is satisfied, then

∞

∑
n=1

(n+1)|Δσn(x)|2 < ∞ a.e.,

where
Δσn(x) := σn+1(x)−σn(x), n = 1,2, . . . .

THEOREM C. If condition (1.2) is satisfied, and
{

σ2m(x) : m = 1,2, . . .
}

con-
verges a.e., then

{
σn(x) : n = 1,2, . . .

}
also converges a.e.
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Our goal in this paper is to extend Theorems A, B, C from single to double orthog-
onal series.

In the proof of the extension of Theorem C from single to double orthogonal series
(see Corollary 4 below), we will make use of such an argument that is analogous to the
one in the proof of Theorem C. For the reader’s convenience, we present it.

Proof of Theorem C. Suppose

2m < p � 2m+1, (1.7)

where m, p ∈ N . By the familiar Cauchy inequality for sequences of real numbers, we
may estimate as follows

∣∣σp(x)−σ2m(x)
∣∣ =

p−1

∑
k=2m

∣∣Δσk(x)
∣∣

�
( p−1

∑
k=2m

(k+1)
∣∣Δσk(x)

∣∣2)1/2( p−1

∑
k=2m

1
k+1

)1/2

. (1.8)

For p � 2m+1 (see in (1.7)), we clearly have that

p−1

∑
k=2m

1
k+1

�
2m+1−1

∑
k=2m

1
k+1

� 2m

2m +1
� 1. (1.9)

It follows from (1.8) and (1.9) that

max
2m<p�2m+1

∣∣σp(x)−σ2m(x)
∣∣ �

(2m+1−1

∑
k=2m

(k+1)
∣∣Δσk(x)

∣∣2)1/2

→ 0 a.e. as m → ∞ ,

(1.10)
due to Theorem B.

By assumption, the subsequence
{

σ2m(x) : m = 1,2, . . .
}

converges a.e. Now,
the limit in (1.10) clearly shows that the whole sequence

{
σp(x) : p = 1,2, . . .

}
also

converges a.e. The proof of Theorem C is complete. �

2. Known results for double orthogonal series

We consider the double ONS {φ j,k(x) : j,k = 1,2, . . .} of real-valued functions
on a positive measure space (X ,F ,μ) . We investigate the pointwise convergence and
summability of the double orthogonal series

∞

∑
j=1

∞

∑
k=1

c j,kφ j,k(x), (2.1)

where {c j,k : j,k = 1,2, . . .} is a double sequence of real numbers satisfying the condi-
tion

∞

∑
j=1

∞

∑
k=1

c2
j,k < ∞. (2.2)
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By the Riesz–Fischer theorem, there exists a function g(x) ∈ L2 such that (2.1) is
the generalized double Fourier series of g(x) with respect to the system {φ j,k(x)} and
the rectangular partial sums

sm,n(x) :=
m

∑
j=1

n

∑
k=1

c j,kφ j,k(x) (2.3)

of the double orthogonal series (2.1) converge to g(x) in L2 -norm:

lim
m,n→∞

∫
|sm,n(x)−g(x)|2 dμ(x) = 0. (2.4)

It is also well known that condition (2.2) does not ensure the pointwise conver-
gence of the rectangular partial sums sm,n(x) as m,n → ∞ . The extension of the
Rademacher–Menshov theorem (see, e.g., [3, Theorem A]) reads as follows: If the
condition

∞

∑
j=1

∞

∑
k=1

c2
j,k

[
log( j +1)

]2[
log(k+1)

]2
< ∞, (2.5)

is satisfied, then
lim

m,n→∞
sm,n(x) = g(x) a.e.,

where g(x) occurs in (2.4).
The a.e. Cesàro summability (C,1,1) of the double orthogonal series (2.1) is de-

fined by the a.e. convergence of the arithmetic means

σM,N(x) :=
1

MN

M

∑
m=1

N

∑
n=1

sm,n(x), M,N = 1,2, . . . (2.6)

of the rectangular partial sums, can be guaranteed under a weaker condition than (2.5).
In fact, the extension of the Menshov–Kaczmarz theorem (proved in [3, Corollary 4])
reads as follows: If the condition

∞

∑
j=1

∞

∑
k=1

c2
j,k

[
loglog( j +3)

]2[
log log(k+3)

]2
< ∞ (2.7)

is satisfied, then we have

lim
M,N→∞

σM,N(x) = g(x) a.e.

3. New results

Our first new result reads as follows.

THEOREM 1. Suppose the double orthogonal series (2.1) is such that condition
(2.2) is satisfied, then

lim
m,n→∞

(
s2m,2n(x)−σ2m,2n(x)

)
= 0 a.e. (3.1)
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Making use of Theorem 1 and the extension of the Menshov–Kaczmarz theorem,
we can get a short proof for the extension of [1, Theorem 2.3.4, p. 83].

COROLLARY 2. Suppose the double orthogonal series (2.1) is such that condition
(2.7) is satisfied, then we have

lim
m,n→∞

s2m,2n(x) = g(x) a.e. (3.2)

Our third new result reads as follows.

THEOREM 3. Suppose the double orthogonal series (2.1) is such that condition
(2.2) is satisfied, then

∞

∑
m=1

∞

∑
n=1

(m+1)(n+1)
∣∣Δ1,1σm,n(x)

∣∣2 < ∞ a.e., (3.3)

where
Δ1,1σm,n(x) := σm+1,n+1(x)−σm+1,n(x)−σm,n+1(x)+ σm,n(x). (3.4)

The following Corollary 4 of Theorem 3 is also of special interest.

COROLLARY 4. Suppose the double orthogonal series (2.1) is such that condition
(2.2) is satisfied. If the double subsequences{

σm,2N (x) : m = 1,2, . . . ;N = 0,1, . . .
}

and {
σ2M ,n(x) : M = 0,1, . . . ;n = 1,2, . . .

}
of the Cesàro means of (2.1) converge a.e. to the same limit �(x) , then the whole double
sequence {σm,n(x) : m,n = 1,2, . . .} also converges to the same �(x) a.e.

In the case of the above conditions, the subsequence {σ2M ,2N : M,N = 0,1, . . .}
clearly converges to the same limit �(x) a.e., since it is a subsequence of both {σm,2N}
and {σ2M ,n} .

4. Proof of the new results

Proof of Theorem 1. It is routine to check that from (2.3) and (2.6) it follows that

s2m,2n(x)−σ2m,2n(x) =
2m

∑
j=2

2n

∑
k=2

( j−1)(k−1)
2m2n c j,kφ j,k(x), m,n = 1,2, . . . .

Making use of orthonormality of the system {φ j,k(x)} , integration gives

∫ ∣∣s2m,2n(x)−σ2m,2n(x)
∣∣2 dμ(x) =

2m

∑
j=2

2n

∑
k=2

( j−1)2(k−1)2

22m22n c2
j,k , m,n = 1,2, . . . .

(4.1)
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Clearly, it follows from (4.1) that

∞

∑
m=0

∞

∑
n=0

∫ ∣∣s2m,2n(x)−σ2m,2n(x)
∣∣2 dμ(x)

=
∞

∑
m=1

∞

∑
n=1

2m

∑
j=2

2n

∑
k=2

( j−1)2(k−1)2

22m22n c2
j,k

=
∞

∑
j=2

∞

∑
k=2

( j−1)2(k−1)2c2
j,k ∑

m:2m� j
∑

n:2n�k

1
22m22n , (4.2)

where we interchanged the order of summations with respect to j and m as well as
with respect to k and n .

It is easy to check that

∑
m:2m� j

1
22m =

∞

∑
m=[log j]

1
4m � 4

3 ·4log j =
4

3 j2
,

and analogously, we have

∑
n:2n�k

1
22n � 4

3k2 .

Taking into account the last two inequalities, from (4.2) it follows that

∞

∑
m=1

∞

∑
n=1

∫ ∣∣s2m,2n(x)−σ2m,2n(x)
∣∣2 dμ(x) � 16

9

∞

∑
j=2

∞

∑
k=2

( j−1)2(k−1)2c2
j,k

1
j2k2

� 16
9

∞

∑
j=2

∞

∑
k=2

c2
j,k < ∞, (4.3)

due to our assumption (2.2).
By the monotone convergence theorem of the Lebesgue integral, we conclude from

(4.3) that the double series

∞

∑
m=1

∞

∑
n=1

∣∣s2m,2n(x)−σ2m,2n(x)
∣∣2 < ∞ a.e.

Thus, our Theorem 1 has been proved. �

Proof of Corollary 2. We start with the elementary inequality

|s2m,2n(x)−g(x)|2 � 2
(|s2m,2n(x)−σ2m,2n(x)|2 + |σ2m,2n(x)−g(x)|2). (4.4)

By Theorem 1, the first term on the right-hand side of (4.4) converges to 0 as m,n →
∞ . As to the second term there, due to condition (2.7) and the extended Menshov–
Kaczmarz theorem it is clear that the second term also tends to 0 a.e. as m,n→ ∞ . The
proof of (3.2) is complete. �
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Proof of Theorem 3. Let m,n � 1. By (2.6) and (3.4), it is routine to check that

Δ1,1σm,n(x) =
m+1

∑
j=2

n+1

∑
k=2

( j−1)(k−1)
m(m+1)n(n+1)

c j,kφ j,k(x).

Making use of orthonormality of the system {φ j,k(x)} , integration gives

(m+1)(n+1)
∫
|Δ1,1σm,n(x)|2 dμ(x)=

1
m2(m+1)n2(n+1)

m+1

∑
j=2

n+1

∑
k=2

( j−1)2(k−1)2c2
j,k,

whence we get

∞

∑
m=2

∞

∑
n=2

(m+1)(n+1)
∫
|Δ1,1σm,n(x)|2 dμ(x)

=
∞

∑
m=2

∞

∑
n=2

1
m2(m+1)n2(n+1)

m+1

∑
j=2

n+1

∑
k=2

( j−1)2(k−1)2c2
j,k. (4.5)

Next, we interchange the order of summations with respect to j and m as well as with
respect to k and n . As a result, we obtain

∞

∑
m=2

∞

∑
n=2

(m+1)(n+1)
∫
|Δ1,1σm,n(x)|2 dμ(x)

=
∞

∑
j=2

∞

∑
k=2

( j−1)2(k−1)2c2
j,k

∞

∑
m= j−1

∞

∑
n=k−1

1
m2(m+1)n2(n+1)

� 1
4

∞

∑
j=2

∞

∑
k=2

c2
j,k < ∞, (4.6)

due to our assumption (2.2) and the fact that

∞

∑
m= j−1

1
m2(m+1)

<

∫ ∞

j−1

dt
t3

=
1

2( j−1)2 .

By the monotone convergence theorem of the Lebesgue integral, we conclude from
(4.6) that the double series in (3.3) converges a.e. The proof of Theorem 3 is com-
plete. �

Proof of Corollary 4. We will imitate the proof of Theorem C in Section 1. To
start with, suppose

2M < p � 2M+1 and 2N < q � 2N+1, M,N = 1,2, . . . . (4.7)

We observe that the following sum is a telescopic one, and due to this fact we have

p−1

∑
m=2M

q−1

∑
n=2N

Δ1,1σm,n(x) = σp,q(x)−σ2M,q(x)−σp,2N (x)+ σ2M ,2N (x).
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Keeping this in mind and using the familiar Cauchy inequality for sequences of num-
bers, we may estimate as follows

max
2M<p�2M+1

max
2N<q�2N+1

∣∣σp,q(x)−σ2M,q(x)−σp,2N (x)+ σ2M,2N (x)
∣∣

= max
2M<p�2M+1

max
2N<q�2N+1

∣∣∣∣
p−1

∑
m=2M

q−1

∑
n=2N

Δ1,1σm,n(x)
∣∣∣∣

�
(2M+1−1

∑
m=2M

2N+1−1

∑
n=2N

(m+1)(n+1)
∣∣Δ1,1σm,n(x)

∣∣2)1/2(2M+1−1

∑
m=2M

2N+1−1

∑
n=2N

1
(m+1)(n+1

)1/2

�
(2M+1−1

∑
m=2M

2N+1−1

∑
n=2N

(m+1)(n+1)
∣∣Δ1,1σm,n(x)

∣∣2)1/2

→ 0 a.e. as M,N → ∞, (4.8)

due to Theorem 3.

Now, by the assumptions of Corollary 4 and the inequality (4.8), for 2M < p �
2M+1 and 2N < q � 2N+1 we may estimate as follows

∣∣σp,q(x)− �(x)
∣∣ =

∣∣∣(σp,q(x)−σ2M ,q(x)−σp,2N(x)+ σ2M ,2N (x)
)

+
(
σ2M ,q(x)− �(x)

)
+

(
σp,2N (x)− �(x)

)− (
σ2M ,2N (x)− �(x)

)∣∣∣
�

∣∣σp,q(x)−σ2M ,q(x)−σp,2N(x)+ σ2M ,2N (x)
∣∣

+
∣∣σ2M ,q(x)− �(x)

∣∣+ ∣∣σp,2N (x)− �(x)
∣∣+ ∣∣σ2M ,2N (x)− �(x)

∣∣.
Taking the maximum in the inequality just received with respect to p and q subject to
(4.7), we obtain that

max
2M<p�2M+1

max
2N<q�2N+1

|σp,q(x)− �(x)|

� max
2M<p�2M+1

max
2N<q�2N+1

∣∣σp,q(x)−σ2M,q(x)−σp,2N (x)+ σ2M,2N (x)
∣∣

+ max
2N<q�2N+1

∣∣σ2M ,q(x)− �(x)
∣∣+ max

2M<p�2M+1

∣∣σp,2N (x)− �(x)
∣∣

+
∣∣σ2M ,2N (x)− �(x)

∣∣. (4.9)

Letting M,N → ∞ in (4.9), it follows from (4.8) and the assumptions in Corollary 4
that the finite limit

lim
p,q→∞

σp,q(x) = �(x) a.e.

exists. The proof of Corollary 4 is complete. �
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