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CONVOLUTION INEQUALITIES IN WEIGHTED

LORENTZ SPACES: CASE 0 < q < 1
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Abstract. Let g be a fixed nonnegative radially decreasing kernel g . In this paper, boundedness
of the convolution operator Tg f := f ∗g between the weighted Lorentz spaces Γq(w) and Λp(v)
is characterized in the case 0 < q < 1 . The conditions are sufficient if the kernel g is just
a general measurable function.

Furthermore, the largest rearrangement-invariant (quasi-)space Y is found such that the
Young-type inequality

‖ f ∗g‖Γq(w) � C‖ f‖Λp(v)‖g‖Y

holds for all f ∈ Λp(v) and g ∈ Y .

1. Introduction

Denote by M the cone of all measurable functions on R
n . If f ,g ∈ M , the

convolution of f and g is given by

( f ∗ g)(x) =
∫

Rn
f (y)g(x− y)dy

for any x ∈ R
n for which the integral is defined. If g ∈ M is fixed, it is possible to

define the convolution operator Tg by

Tg f (x) := ( f ∗ g)(x)

for f ∈ M and x ∈ R
n , provided that the right-hand side is well defined.

In [10], the author characterized boundedness of the operator Tg between weighted
Lorentz spaces Λp(v) and Γq(w) (see the definitions below) in the cases 0 < p < ∞ ,
1 � q < ∞ and p = ∞ , 0 < q � ∞ . In the present article, the case 0 < q < 1, 0 < p < ∞
is treated, completing the results for the whole range p,q ∈ (0,∞] .

Let f ∈ M . The symbol f ∗ stands for the nonincreasing rearrangement of f ,
and f ∗∗ is the Hardy-Littlewood maximal function given by f ∗∗(t) := 1

t

∫ t
0 f ∗(s)ds for

t > 0 (see [2] for details).
A weight is a nonnegative measurable function w defined on (0,∞) and such that

0 < W (t) < ∞ for all t ∈ (0,∞) , where W (t) :=
∫ t
0 w(s)ds. The notation V (t) has

an analogous meaning for a weight v .
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Let v be a weight and p ∈ (0,∞) . The weighted Lebesgue space Lp(v) is the set
of all measurable functions h on (0,∞) such that

‖h‖Lp(v) :=
(∫ ∞

0
|h(t)|pv(t)dt

) 1
p

< ∞.

Naturally, an analogy for p = ∞ also exists. By L1 one denotes the space L1(Rn) , and
L1

loc stands for the space of all locally integrable functions on R
n .

The weighted Lorentz spaces Λp(v) and Γp(v) are defined by

Λp(v) :=
{

f ∈ M ; ‖ f‖Λp(v) := ‖ f ∗‖Lp(v) < ∞
}

,

Γp(v) :=
{

f ∈ M ; ‖ f‖Γp(v) := ‖ f ∗∗‖Lp(v) < ∞
}

.

For definitions of rearrangement-invariant (r.i.) spaces, quasi-spaces and lattices, see
e.g. [2, 10]. The Λp(v) and Γp(v) “spaces” are always at least r.i. lattices, questions
of their linearity and (quasi-)normability are treated e.g. in [6, 16] and articles referred
therein.

An r.i. lattice X is said to be essentially larger than an r.i. lattice Y if Y ⊂ X and
for every k ∈ N there exists a function fk ∈ X such that k‖ fk‖X � ‖ fk‖Y . In other
words, X is essentially larger than Y if Y ⊂ X and X is not embedded in Y .

The notation A � B means that for every p,q ∈ (0,∞) there exists a constant
C = C(p,q) ∈ [0,∞) such that A � CB . The constant C hence depends only on the
parameters p and q . If both A � B and B � A , one writes A ≈ B .

The problem of boundedness of convolution-type operators between various func-
tion spaces was studied in a great number of articles, see e.g. [1,3,10,11,12,8,15,14,18]
and the references therein. The technique employed in [10], which is also relevant for
this paper, was based on using the O’Neil inequality

( f ∗ g)∗∗(t) � t f ∗∗(t)g∗∗(t)+
∫ ∞

t
f ∗(s)g∗(s)ds, f ,g ∈ M , t > 0,

proved in [15], and its reverse version

t f ∗∗(t)g∗∗(t)+
∫ ∞

t
f ∗(s)g∗(s)ds � C(n)( f ∗ g)∗∗(t), t > 0,

which holds for all nonnegative radially decreasing functions f ,g on R
n with the con-

stant C(n) depending only on the dimension of R
n . The reverse variant for functions

from R
n was proved e.g. in [9]. The O’Neil inequalities were used in [10] to prove the

following lemma.

LEMMA 1.1. Let X be an r.i. lattice, w be a weight, g ∈ M and q ∈ (0,∞] . For
f ∈ M and t > 0 define

R1
g f (t) := t f ∗∗(t)g∗∗(t), R2

g f (t) :=
∫ ∞

t
f ∗(s)g∗(s)ds, Rg f (t) := R1

g f (t)+R2
g f (t).

Then
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(i) If Rg : X → Lq(w) is bounded, then Tg : X → Γq(w) is bounded and

‖Tg‖X→Γq(w) � ‖Rg‖X→Lq(w) < ∞.

(ii) Let g be nonnegative and radially decreasing. If Tg : X → Γq(w) is bounded,
then Rg : X → Lq(w) is bounded and

‖Rg‖X→Lq(w) � ‖Tg‖X→Γq(w) < ∞.

(iii) Suppose there exists an r.i. lattice Y such that ‖Rg‖X→Lq(w) ≈ ‖g‖Y for all g ∈
M . Then Y is the essentially largest r.i. lattice such that the inequality

‖ f ∗ g‖Γq(w) � ‖ f‖X‖g‖Y

holds for all f ∈ X and g ∈ Y .

This result was proved as [10, Theorem 3.1] for both ordinary and periodic func-
tions on R but it holds even for functions on R

n . Further results in here will have the
R

n -form but they may be simply modified to cover periodic functions on R . Besides
this, the statement of [10, Theorem 3.1] contains the term “r.i. space” in place of the
more general “r.i. lattice” used in Lemma 1.1(iii). However, both versions are correct
as the space structure is not important to prove the result.

Thanks to Lemma 1.1, the problem of boundedness of Tg between Λp(v) and
Γq(w) reduces to characterizing boundedness of R1

g and R2
g between Λp(v) and Lq(w) .

The problem for R1
g was completely solved for the whole range p,q∈ (0,∞] (see [5,4]).

Similar characterizations for R2
g were known as well [7], but only for q � 1, at the time

of publishing of [10]. Although [7] contains conditions even for 0 < q < 1, in this
case they have a discrete form which could not be applied. The case 0 < q < 1 was
therefore missing in [10]. However, recent progress in the required characterizations
of Hardy-type inequalities [13] allows for completing the missing cases. Hence, this
paper together with [10] cover the Λp(v) → Γq(w) convolution-operator boundedness
for the whole range p,q ∈ (0,∞] .

Before stating and proving the main result, it is useful to state the following tech-
nical lemma based on partial integration. Results of this type are well known (cf. [17,
p. 176]) and are frequently used whenever weighted Hardy inequalities on monotone
functions are studied.

LEMMA 1.2. Let ϕ , ψ ∈ M+ and ϕ be locally integrable. Let 0 < q < p < ∞
and r = pq

p−q . Then

∫ ∞

0

(∫ ∞

t
ϕ(x)dx

) r
p

ϕ(t) sup
s∈(0,t)

ψ(s)dt

≈
(∫ ∞

0
ϕ(t)dt

) r
q

limsup
s→0+

ψ(s)+
∫ ∞

0

(∫ ∞

t
ϕ(x)dx

) r
q d
dt

(
sup

s∈(0,t)
ψ(s)

)
dt.
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Proof. Integration by parts yields

∫ ∞

0

(∫ ∞

t
ϕ(x)dx

) r
p

ϕ(t) sup
s∈(0,t)

ψ(s)dt +
q
r

lim
s→∞

(∫ ∞

s
ϕ(t)dt

) r
q

sup
x∈(0,s)

ψ(x)

=
q
r

lim
s→0+

(∫ ∞

s
ϕ(t)dt

) r
q

sup
x∈(0,s)

ψ(x)+
q
r

∫ ∞

0

(∫ ∞

t
ϕ(x)dx

) r
q d
dt

(
sup

s∈(0,t)
ψ(s)

)
dt.

By monotonicity, one has

lim
s→0+

(∫ ∞

s
ϕ(t)dt

) r
q

sup
x∈(0,s)

ψ(x) =
(∫ ∞

0
ϕ(t)dt

) r
q

limsup
s→0+

ψ(s).

Furthermore, for every s > 0 it holds

q
r

(∫ ∞

s
ϕ(t)dt

) r
q

sup
x∈(0,s)

ψ(x) =
∫ ∞

s

(∫ ∞

t
ϕ(y)dy

) r
p

ϕ(t)dt sup
x∈(0,s)

ψ(x)

�
∫ ∞

s

(∫ ∞

t
ϕ(y)dy

) r
p

ϕ(t) sup
x∈(0,t)

ψ(x)dt,

hence

q
r

lim
s→∞

(∫ ∞

s
ϕ(t)dt

) r
q

sup
x∈(0,s)

ψ(x) �
∫ ∞

s

(∫ ∞

t
ϕ(y)dy

) r
p

ϕ(t) sup
x∈(0,t)

ψ(x)dt.

Combining all these observations gives the result. �

2. Results

In all what follows, the convention 0.∞ := 0 is strictly enforced. For example, any

expression of the form CV− 1
p (∞) is equal to zero whenever V (∞) = ∞ , even if C = ∞ .

The theorem below is formulated for convolution of functions from R
n . It might

be easily modified to the case of periodic functions on R in spirit of [10].

THEOREM 2.1. Let v, w be weights.
(i) Let 0 < q < p < 1 and r = pq

p−q . For any g ∈ M define

A1(g) :=

(∫ ∞

0
W

r
p (t)w(t) sup

s∈(t,∞)
(g∗∗(s))rsrV− r

p (s)dt

) 1
r

,

A2(g) :=

(∫ ∞

0

(∫ ∞

t
(g∗∗(x))qw(x)dx

) r
q d

dt

(
sup

s∈(0,t)
srV− r

p (s)

)
dt

) 1
r

A3(g) :=
(∫ ∞

0
(g∗∗(t))qw(t)dt

) 1
q

limsup
s→0+

sV− 1
p (s).



CONVOLUTION INEQUALITIES IN WEIGHTED LORENTZ SPACES: CASE 0 < q < 1 195

and
‖g‖Y := A1(g)+A2(g)+A3(g).

Then (Y,‖g‖Y ) is the essentially largest r.i. lattice such that the inequality

‖ f ∗ g‖Γq(w) � ‖ f‖Λp(v)‖g‖Y (1)

holds for all f ∈ Λp(v) and g ∈Y . Moreover, if g is nonnegative and radially decreas-
ing, then

sup
f∈Λp(v)

‖ f ∗ g‖Γq(w)

‖ f‖Λp(v)
≈ ‖g‖Y . (2)

(ii) Let 0 < q < 1 < p < ∞ and r = pq
p−q . For any g ∈ M define

A4(g) :=

(∫ ∞

0
W

r
p (t)w(t)

(∫ ∞

t
(g∗∗(s))p′sp′V−p′(s)v(s)ds

) r
p′

dt

) 1
r

,

A5(g) :=

(∫ ∞

0

(∫ ∞

t
(g∗∗(x))qw(x)dx

) r
q
(∫ t

0
V−p′(s)v(s)sp′ds

) r
q′
V−p′(t)v(t)t p′dt

)1
r

,

A6(g) :=
(∫ ∞

0
(g∗∗(t))qw(t)dt

) 1
q

lim
s→0+

(∫ s

0
V−p′(x)v(x)xp′ dx

) 1
p′

,

and
‖g‖Y := A4(g)+A5(g)+A6(g)+‖g‖1W

1
q (∞)V− 1

p (∞).

Then (Y,‖g‖Y ) is the essentially largest r.i. lattice such that (1) holds for all f ∈ Λp(v)
and g ∈ Y . Moreover, if g is nonnegative and radially decreasing, then (2) is satisfied.

Proof. For the definitions of the operators R1
g and R2

g see Lemma 1.2.
(i) Fix g ∈ M . By [4, Theorem 3.1] one gets ‖R1

g‖Λp(v)→Lq(w) ≈ B1 +B2 , where

B1 :=

(∫ ∞

0

(∫ t

0

(∫ s

0
g∗(x)dx

)q

w(s)ds

) r
p
(∫ t

0
g∗(y)dy

)q

w(t)V− r
p (t)dt

) 1
r

,

B2 :=

(∫ ∞

0
sup

s∈(0,t)
srV− r

p (s)
(∫ ∞

t
(g∗∗(x))qw(x)dx

) r
p

(g∗∗(t))qw(t)dt

) 1
r

.

Next, [13, Theorem 13(i)] gives ‖R2
g‖Λp(v)→Lq(w) ≈ B3 +B4 , where

B3 :=

(∫ ∞

0
W

r
p (t)w(t) sup

s∈(t,∞)

(∫ s

t
g∗(x)dx

)r

V− r
p (s)dt

) 1
r

,



196 M. KŘEPELA

B4 :=

(∫ ∞

0

(∫ t

0
w(x)

(∫ t

x
g∗(y)dy

)q

dx

) r
p

w(t) sup
s∈(t,∞)

(∫ s

t
g∗(x)dx

)q

V− r
p (s)dt

) 1
r

.

In view of Lemma 1.1, it suffices to prove that

B1 +B2 +B3 +B4 ≈ A1(g)+A2(g)+A3(g). (3)

Lemma 1.2 implies that B2 ≈A2(g)+A3(g) . Next, it is easy to see that B1+B3+B4 �
A1(g) . Hence, the “�” inequality in (3) is verified.

The following part is aimed at proving the opposite estimate. Observe that A1(g)≈
B3 +B5, where

B5 :=
(∫ ∞

0
W

r
p (t)w(t)

(∫ t

0
g∗(x)dx

)r

V− r
p (t)dt

) 1
r

.

Assume that W (∞) = ∞ . There exists a (not necessarily unique) sequence {tk}k∈Z such
that for all k ∈ Z it holds

2k =
∫ tk

0
w(x)dx =

∫ tk+1

tk
w(x)dx. (4)

One gets

Br
5 =

∫ ∞

0
W

r
p (t)w(t)

(∫ t

0
g∗(x)dx

)r

V− r
p (t)dt

= ∑
k∈Z

∫ tk+1

tk
W

r
p (t)w(t)

(∫ t

0
g∗(x)dx

)r

V− r
p (t)dt

� ∑
k∈Z

∫ tk+1

tk
W

r
p (t)w(t)dt sup

t∈[tk ,tk+1]

(∫ t

0
g∗(x)dx

)r

V− r
p (t)

� ∑
k∈Z

2
kr
q sup
t∈[tk ,tk+1]

(∫ t

0
g∗(x)dx

)r

V− r
p (t) (5)

� ∑
k∈Z

2
kr
q

(∫ tk−1

0
g∗(x)dx

)r

V− r
p (tk)+ ∑

k∈Z

2
kr
q sup
t∈[tk ,tk+1]

( ∫ t

tk−1

g∗(x)dx

)r

V− r
p (t)

=: Br
6 +Br

7.

Inequality (5) follows from (4). The estimate then continues as follows.

Br
6 = ∑

k∈Z

2
kr
q

(∫ tk−1

0
g∗(x)dx

)r

V− r
p (tk)

� ∑
k∈Z

∫ tk

tk−1

( ∫ t

tk−1

w(s)ds

) r
p

w(t)dt

(∫ tk−1

0
g∗(x)dx

)r

V− r
p (tk) (6)

= ∑
k∈Z

∫ tk

tk−1

( ∫ t

tk−1

w(s)ds

) r
p

w(t)dt

(∫ tk−1

0
g∗(x)dx

)rq
p
(∫ tk−1

0
g∗(y)dy

)q

V− r
p (tk)
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� ∑
k∈Z

∫ tk

tk−1

( ∫ t

tk−1

(∫ s

0
g∗(x)dx

)q

w(s)ds

) r
p
(∫ t

0
g∗(y)dy

)q

w(t)dtV− r
p (tk)

� ∑
k∈Z

∫ tk

tk−1

(∫ t

0

(∫ s

0
g∗(x)dx

)q

w(s)ds

) r
p
(∫ t

0
g∗(y)dy

)q

w(t)V− r
p (t)dt

= Br
1.

In the step (6) one uses (4). For each k ∈ Z there exists zk ∈ [tk,tk+1] such that( ∫ zk

tk−1

g∗(x)dx

)r

V− r
p (zk) = sup

t∈[tk ,tk+1]

( ∫ t

tk−1

g∗(x)dx

)r

V− r
p (t), (7)

since the argument of the supremum is a continuous function. The term B7 is then
estimated by

Br
7 = ∑

k∈Z

2
kr
q sup

t∈[tk ,tk+1]

( ∫ t

tk−1

g∗(x)dx

)r

V− r
p (t)

= ∑
k∈Z

2
kr
q

( ∫ zk

tk−1

g∗(x)dx

)r

V− r
p (zk) (8)

� ∑
k∈Z

∫ tk−1

tk−2

W
r
p (t)w(t)dt

( ∫ zk

tk−1

g∗(x)dx

)r

V− r
p (zk) (9)

� ∑
k∈Z

∫ tk−1

tk−2

W
r
p (t)w(t) sup

s∈(t,∞)

(∫ s

t
g∗(x)dx

)r

V− r
p (t)dt

= Br
3.

Relation (7) implies (8), and (9) follows from (4). The obtained estimates yield the
equivalence

A1(g) ≈ B3 +B5 � B3 +B6 +B7 � B1 +B3,

which together with the known relation B2 ≈ A2(g)+A3(g) gives the “�” inequality
in (3). Hence, (3) is proved. If W (∞) < ∞ , the proof is carried out analogously with
appropriate minor modifications. Part (i) is now complete.

(ii) Fix g ∈ M . By [5, Theorem 4.1(ii)] it holds ‖R1
g‖Λp(v)→Lq(w) ≈ B1 + B8 ,

where

B8 :=

(∫ ∞

0

(∫ t

0
V−p′(s)v(s)sp′ ds

) r
p′
(∫ ∞

t
(g∗∗(x))qw(x)dx

) r
p

(g∗∗(t))qw(t)dt

) 1
r

.

Furthermore, from [13, Theorem 13(ii)] it follows that ‖R2
g‖Λp(v)→Lq(w) ≈ B4 +B9 +

B10 , where

B9 :=

⎛
⎝∫ ∞

0
W

r
p (t)w(t)

(∫ ∞

t

(∫ s

t
g∗(x)dx

)p′

V−p′(s)v(s)ds

) r
p′

dt

⎞
⎠

1
r

,
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B10 :=
(∫ ∞

0

(∫ ∞

t
g∗(x)dx

)q

w(t)dt

) 1
q

V− 1
p (∞).

By Lemma 1.1, the proof will be complete once the equivalence

B1 +B4 +B8 +B9 +B10 ≈ A4(g)+A5(g)+A6(g)+‖g‖1W
1
q (∞)V− 1

p (∞) (10)

is established. Lemma 1.2 gives A5(g)+A6(g) ≈ B8 . Next, it holds

Br
1 +Br

4 �
∫ ∞

0
W

r
p (t)w(t) sup

s∈(t,∞)

(∫ s

0
g∗(x)dx

)r

V− r
p (s)dt

�
∫ ∞

0
W

r
p (t)w(t) sup

s∈(t,∞)

(∫ s

0
g∗(x)dx

)r(∫ ∞

s
V−p′(y)v(y)yp′ dy

) r
p′

dt

+
∫ ∞

0
W

r
p (t)w(t)dt

(∫ ∞

0
g∗(x)dx

)r

V− r
p (∞)

� Ar
4(g)+‖g‖r

1W
r
q (∞)V− r

p (∞).

Obviously, the inequalities B9 � A4(g) and B10 � ‖g‖1W
1
q (∞)V− 1

p (∞) are also valid.
This proves the “�” inequality in (10).

To prove the converse part of (10), the same approach as in (i) is used. Suppose
that W (∞) = ∞ and let {tk}k∈Z be a sequence of points such that (4) hold in each of
them. Then it holds

Ar
4(g) :=

∫ ∞

0
W

r
p (t)w(t)

(∫ ∞

t

(∫ s

0
g∗(x)dx

)p′

V−p′(s)v(s)ds

) r
p′

dt

� ∑
k∈Z

∫ tk+1

tk
W

r
p (t)w(t)dt

(∫ ∞

tk

(∫ s

0
g∗(x)dx

)p′

V−p′(s)v(s)ds

) r
p′

� ∑
k∈Z

2
kr
q

(∫ ∞

tk

(∫ s

0
g∗(x)dx

)p′

V−p′(s)v(s)ds

) r
p′

(11)

� ∑
k∈Z

2
kr
q

(∫ tk−1

0
g∗(x)dx

)r(∫ ∞

tk
V−p′(s)v(s)ds

) r
p′

+ ∑
k∈Z

2
kr
q

(∫ ∞

tk

( ∫ s

tk−1

g∗(x)dx

)p′

V−p′(s)v(s)ds

) r
p′

� Br
6 + ∑

k∈Z

2
kr
q

( ∫ ∞

tk−1

( ∫ s

tk−1

g∗(x)dx

)p′

V−p′(s)v(s)ds

) r
p′
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� Br
6 + ∑

k∈Z

∫ tk−1

tk−2

W
r
p (t)w(t)dt

( ∫ ∞

tk−1

( ∫ s

tk−1

g∗(x)dx

)p′

V−p′(s)v(s)ds

) r
p′

(12)

� Br
6 +Br

9.

Both the steps (11) and (12) are based on (4). Moreover, in part (i) it was proved that
B6 � B1 and this estimate holds even this case, i.e. for p > 1. Hence, one obtains
A4(g) � B6 +B9 � B1 +B9 . Next, it holds

‖g‖1W
1
q (∞)V− 1

p (∞)

≈
(∫ ∞

0

(∫ t

0
g∗(x)dx

)q

w(t)dt

) 1
q

V− 1
p (∞)+B10

≈
(∫ ∞

0

(∫ t

0

(∫ s

0
g∗(x)dx

)q

w(s)ds

) r
p
(∫ t

0
g∗(x)dx

)q

w(t)dt

) 1
r

V− 1
p (∞)+B10

� B1 +B10.

The relation A5(g) + A6(g) ≈ B8 was mentioned earlier. The obtained estimates of

A4(g) , A5(g) , A6(g) and ‖g‖1W
1
q (∞)V− 1

p (∞) together yield the “�” inequality in
(10). Hence, (10) is proved and so is the whole theorem. �

REMARK 2.2. (i) In both cases of Theorem 2.1, the functional ‖ · ‖Y is equiva-
lent to an r.i. quasi-norm. Indeed, each of the expressions Ai(g) , i = 1, . . . ,6 itself is
an r.i. quasi-norm. Some of the properties of the r.i. quasi-spaces generated by such
quasi-norms are described in [10].

(ii) The “space” Λp(v) may admit functions which are not locally integrable.
Namely, it holds (see e.g. [10, Remark 3.4]) that Λp(v) ⊂ L1

loc if and only if

(a) limsups→0+ sV− 1
p (s) < ∞ in the case 0 < p � 1,

(b) there exists ε > 0 such that
∫ ε
0 V−p′(s)v(s)sp′ ds < ∞ in the case 1 < p < ∞ .

If Λp(v) contains any f /∈ L1
loc , then the operator Tg cannot be bounded between Λp(v)

and Γq(w) unless g = 0 a.e. This is reflected by the presence of the conditions A3(g)
and A6(g) in the respective expressions ‖g‖Y for 0 < p � 1 and 1 < p . If (a) is
not satisfied, then A3(g) = ∞ unless g = 0 a.e. An analogy holds for (b) and A6(g) .

Moreover, the term lims→0+

(∫ s
0 V−p′(x)v(x)xp′ dx

) 1
p′ can attain only the values 0 or

∞ and thus so does A6(g) . Hence, the term A6(g) is not present if Λp(v) ⊂ L1
loc .

(iii) If V (∞) < ∞ , the constant function f ≡ 1 belongs to Λp(v) . This f and any
g ∈ M satisfy Tg f ≡ ‖g‖1 . Hence, for Tg to be bounded between Λp(v) and Γq(w) it
is necessary that g ∈ L1 and W (∞) < ∞ . This corresponds to the fact that

‖g‖1W
1
q (∞)V− 1

p (∞) � ‖g‖Y
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in both cases (i) and (ii) of Theorem 2.1. This inequality is obvious in case (ii). In (i),
it follows from the estimate

‖g‖1W
1
q (∞)V− 1

p (∞) ≈
(∫ ∞

0
W

r
p (t)w(t)dt

(∫ ∞

0
g∗(x)dx

)r

V− r
p (∞)

) 1
r

� A1(g).

(iv) In view of the previous remark, the expressions of ‖g‖Y in [10, Theorem 3.2]
should be slightly corrected. Namely, in cases (iii) and (iv) thereof, the expression

(
∫ m
0 xq (g∗∗(x))q w(x)dx)

1
q V− 1

p (m) should be replaced by ‖g‖1W
1
q (m)V− 1

p (m) . This
mistake in [10] seems to be caused by using [7, Theorem 5.1], which assumes V (∞) =
∞ , in the proof. Using [7, Theorem 2.1] instead would lead to the correct appearance

of the term
(∫ m

0 (
∫ m
x g∗(y)dy)q w(x)dx

) 1
q V− 1

p (m) in the affected formulas. This term
is not covered by other parts of ‖g‖Y in cases (iii) and (iv) of [10, Theorem 3.2], unlike
the cases (i) and (ii) thereof, which are correct.
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