
Mathematical
Inequalities

& Applications

Volume 20, Number 1 (2017), 203–216 doi:10.7153/mia-20-14

ON η –CONVEXITY

MOHSEN ROSTAMIAN DELAVAR AND SILVESTRU SEVER DRAGOMIR

(Communicated by S. Varošanec)

Abstract. Some basic inequalities related to η -convex functions are proved. Also we investigate
the famous Hermite-Hadamard, Fejer, Jensen and Slater type inequalities for this class of func-
tions. Furthermore some inequalities related to differentiable η -convex functions are obtained
as well.

1. Introduction

Almost no mathematician in applied mathematics, especially in nonlinear pro-
graming and optimization theory, can ignore the significant role of convex sets and
convex functions. Furthermore, the elegance in shape and properties of convex func-
tions make it attractive to study this branch of mathematical analysis. On the other hand
it should be noticed that in new problems related to convexity, generalized notions for
convex sets and functions are required to reach favorite and applicable results. In the
last 60 years many efforts have gone on generalization of notion of convexity. In our
opinion the following classification in generalization of convex functions holds:

(1) Works that change the form of defining convex functions to a generalized form
such as quasi-convex [5], pseudo-convex [15], strongly convex [18], logarithmically
convex [17], approximately convex [10], delta-convex [19], h -convex [23], midconvex
functions [12] and [1], [3], [16], [21], etc.

(2) Works that extend the domain set of convex functions such as E -convex func-
tions [24], α -convex functions, all works on convex functions from R

n to R [4], invex
functions [9] etc.

(3) Works that extend the range set of convex functions such as works on functions
with range in vector spaces [11], all kind of multivalued convex functions [2, 13, 14, 25]
etc.

Motivated by works done in [7, 8], in this paper we show some basic results
as inequalities related to η -convex functions. We investigate the famous Hermite-
Hadamard, Fejer, Jensen and Slater type inequalities for this class of functions. Finally
some inequalities related to differentiable η -convex functions are obtained as well.
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2. Basic results

Through this paper let I be an interval in real line R . Also consider η : A×A→ B
for appropriate A,B ⊆ R .

DEFINITION 1. [7, 8] A function f : I → R is called convex with respect to η
(briefly η -convex), if

f
(
tx+(1− t)y

)
� f (y)+ tη

(
f (x), f (y)

)
, (1)

for all x,y ∈ I and t ∈ [0,1] .

In fact above definition geometrically says that if a function is η -convex on I ,
then it’s graph between any x,y ∈ I is on or under the path starting from (y, f (y)) and
ending at

(
x, f (y)+η( f (x), f (y)

)
. If f (x) should be the end point of the path for every

x,y ∈ I , then we have η(x,y) = x− y and the function reduces to a convex one.
We observe that by taking x = y in (1) we get tη

(
f (x), f (x)

)
� 0 for any x ∈ I

and t ∈ [0,1] which implies that

η
(
f (x), f (x)

)
� 0

for any x ∈ I . Also, if we take t = 1 in (1) we get

f (x)− f (y) � η
(
f (x), f (y)

)
for any x,y ∈ I . The second condition obviously implies the first. So, if we want to
define η -convex functions f on an interval I of real numbers, we should assume that

η(a,b) � a−b for any a,b ∈ I. (2)

We observe that if f : I → R is a convex function and η : f (I)× f (I) → R is an
arbitrary bifunction that satisfies the condition (2), then for any x,y ∈ I and t ∈ [0,1]
we have

f
(
tx+(1− t)y

)
� f (y)+ t

(
f (x)− f (y)

)
� f (y)+ tη

(
f (x), f (y)

)
showing that f is η -convex. There exists η -convex functions for some bifunctions η
that are not convex.

EXAMPLE 1. [7, 8] a. Consider a function f : R → R defined by

f (x) =
{−x, x � 0;

x, x < 0.

and define a bifunction η as η(x,y) = −x− y , for all x,y ∈ R
− = (−∞,0]. It is not

hard to check that f is an η -convex function but not a convex one.
b. Define the function f : R

+ = [0,+∞) → R
+ by

f (x) =
{

x, 0 � x � 1;
1, x > 1.

and define

η(x,y) =
{

x+ y, x � y;
2(x+ y), x > y.

for all x,y ∈ R
+ . Then f is η -convex but is not convex.
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The following results are η -convex version of some basic propositions and theo-
rems related to convex functions.

PROPOSITION 1. If f : [a,b] → R is η -convex, then

max
x∈[a,b]

f (x) � max{ f (b), f (b)+ η
(
f (a), f (b)

)}.
Proof. For any x ∈ [a,b] we have x = ta + (1− t)b for some t ∈ [0,1], which

implies that

f (x) � f (b)+ tη
(
f (a), f (b)

)
� max{ f (b), f (b)+ η

(
f (a), f (b)

)}.
Since x is arbitrary, so

max
x∈[a,b]

f (x) � max{ f (b), f (b)+ η
(
f (a), f (b)

)}
and the statement is proved. �

PROPOSITION 2. Any η -convex function f : [a,b]→ R with respect to an above
bounded bifunction η on f ([a,b])× f ([a,b]) , has lower and upper bounds.

Proof. Suppose that Mη is upper bound of η on f ([a,b])× f ([a,b]) . From Propo-
sition 1 we have

f (x) � max{ f (b), f (b)+ η
(
f (a), f (b)

)} � max{ f (b), f (b)+Mη}.
Now set M = max{ f (b), f (b)+Mη}.

For lower bound of f consider an arbitrary point in the form a+b
2 − t in [a,b] .

Then

f

(
a+b

2

)
= f

(
a+b

4
+

t
2

+
a+b

4
− t

2

)

= f

(
1
2

(
a+b

2
+ t

)
+

1
2

(
a+b

2
− t

))

� f

(
a+b

2
− t

)
+

1
2

η

(
f

(
a+b

2
+ t

)
, f

(
a+b

2
− t

))

� f

(
a+b

2
− t

)
+

Mη

2
.

Now consider m = f ( a+b
2 )− Mη

2 , and the statement is proved. �

DEFINITION 2. [20] A function f : I → R has a local minimum at x0 ∈ I , if there
is a neighborhood Nr(x0) ⊂ I such that f (x0) � f (x) for all x ∈ Nr(x0) .

We have:
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PROPOSITION 3. If f : I →R is η -convex and attains a local minimum at x0 ∈ I ,
then η

(
f (x), f (x0)

)
� 0, for any x ∈ I .

Proof. Suppose that f has a local minimum at x0 ∈ I . For any x ∈ I we can find
t > 0 sufficiently small such that tx+(1− t)x0 ∈Nr(x0) . So we reach to the conclusion
by the following inequality:

f (x0) � f
(
tx+(1− t)x0

)
� f (x0)+ tη

(
f (x), f (x0)

)
. �

The following characterizations of η -convexity holds:

THEOREM 1. A function f : I →R is η -convex if and only if for any x1,x2,x3 ∈ I
with x1 < x2 < x3 ,

det

⎛
⎝1 x1 η

(
f (x1), f (x3)

)
1 x2 f (x2)− f (x3)
1 x3 0

⎞
⎠� 0 (3)

and
f (x1) � f (x3)+ η

(
f (x1), f (x3)

)
. (4)

Proof. Suppose that f is an η -convex function. Consider arbitrary x1,x2,x3 ∈ I
with x1 < x2 < x3 . So there is a t ∈ (0,1) such that x2 = tx1 + (1− t)x3 , namely
t = x2−x3

x1−x3
. From η -convexity of f we have

f (x2) � f (x3)+
x2− x3

x1− x3
η
(
f (x1), f (x3)

)
or

(x3− x1)[ f (x3)− f (x2)]+ (x3− x2)η
(
f (x1), f (x3)

)
� 0,

which is equivalent to above determinant being nonnegative.
Also for t = 1,

f (x1) � f (x3)+ η
(
f (x1), f (x3)

)
and for t = 0,

f (x3) � f (x3).

For the inverse implications, consider x,y ∈ I with x < y . Choosing any t ∈ (0,1)
we have x < tx+(1− t)y < y and so

det

⎛
⎝1 x η

(
f (x), f (y)

)
1 tx+(1− t)y f

(
tx+(1− t)y

)− f (y)
1 y 0

⎞
⎠� 0.

By expanding this determinant we reach to the inequality

f (tx+(1− t)y) � f (y)+ tη
(
f (x), f (y)

)
for any t ∈ (0,1) .

From assumption we have

f (x) � f (y)+ η
(
f (x), f (y)

)
that gives η -convexity for t = 1. Also f (y) � f (y) gives η -convexity of f for t =
0. �
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THEOREM 2. For a function f : I → R the following assertions are equivalent.
(a) f is η -convex function.
(b) For any x,y,z ∈ I with x < y < z we have

η
(
f (x), f (z)

)
x− z

� f (y)− f (z)
y− z

and f (x) � f (y)+ η
(
f (x), f (y)

)
. (5)

Proof. Suppose that f is η -convex and x,y,z ∈ I with x < y < z , then there is a
t ∈ (0,1) such that y = tx+(1− t)z . So we have t = y−z

x−z . Also

f (y) � f (z)+ tη
(
f (x), f (z)

)
or

f (y)− f (z) � y− z
x− z

η
(
f (x), f (z)

)
.

Hence
η
(
f (x), f (z)

)
x− z

� f (y)− f (z)
y− z

.

For the inverse implications, consider x,y ∈ I with x < y . It is clear that for any t ∈
(0,1) , x < tx+(1− t)y < y . It follows that

η
(
f (x), f (y)

)
x− y

�
f
(
tx+(1− t)y

)− f (y)
tx+(1− t)y− y

that is equivalent to

η
(
f (x), f (y)

)
x− y

�
f
(
tx+(1− t)y

)− f (y)
t(x− y)

.

Therefore
f
(
tx+(1− t)y

)
� f (y)+ tη

(
f (x), f (y)

)
for any x,y ∈ I with x < y and t ∈ (0,1) . So f is η -convex. �

With the same argument as Theorem 2 we have also:

THEOREM 3. For a function f : I → R the following assertions are equivalent.
(a) f is η -convex function.
(b) For any x,y,z ∈ I with x < y < z we have

f (y)− f (x)
y− x

� η ( f (z) , f (x))
z− x

and f (y) � f (x)+ η
(
f (y), f (x)

)
. (6)

The following particular case is of interest:

COROLLARY 1. Any η -convex function with η(x,y) = −η(y,x) , is convex.
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Proof. Consider x,y,z ∈ I such that x < y < z . From Theorems 2 and 3 we have

η
(
f (x), f (z)

)
x− z

� f (y)− f (z)
y− z

and
f (y)− f (x)

y− x
�

η
(
f (x), f (z)

)
x− z

.

So, for any x,y,z ∈ I with x < y < z, we have

f (y)− f (x)
y− x

� f (z)− f (y)
z− y

.

The last inequality is equivalent to convexity of f (see [20], Chapter 1). �

3. Main results

The following theorem plays important role in this section.

THEOREM 4. [7, 8] Suppose that f : I → R is an η -convex function and η is
above bounded on f (I)× f (I) . Then f satisfies a Lipschitz condition on any closed
interval [a,b] contained in the interior I◦ of I . Hence, f is absolutely continuous on
[a,b] and continuous on I◦ .

As a consequence of Theorem 4, an η -convex function f : [a,b]→R with respect
to a bifunction η bounded from above on f ([a,b])× f ([a,b]) , is integrable.
Hermite-Hadamard inequality for η -convex functions is obtained in next result.

THEOREM 5. Suppose that f : [a,b] → R is an η -convex function such that η is
above bounded on f ([a,b])× f ([a,b]) . Then

f

(
a+b

2

)
− 1

2
Mη � 1

b−a

∫ b

a
f (x)dx

� 1
2

[
f (a)+ f (b)

]
+

1
4

[
η
(
f (a), f (b)

)
+ η

(
f (b), f (a)

)]

� f (a)+ f (b)
2

+
Mη

2
,

where Mη is upper bound of η .

Proof. For the right side of inequality consider an arbitrary point x = ta+(1− t)b
with t ∈ [0,1] . So f (x) � f (b)+ tη

(
f (a), f (b)

)
with t = x−b

a−b . It follows that

1
b−a

∫ b

a
f (x)dx � 1

b−a

∫ b

a

[
f (b)+

x−b
a−b

η
(
f (a), f (b)

)]
dx

=
1

b−a

(
f (b)(b−a)+

η
(
f (a), f (b)

)
b−a

.
(b−a)2

2

)

= f (b)+
1
2

η
(
f (a), f (b)

)
.
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Also we have the inequality

1
b−a

∫ b

a
f (x)dx � f (a)+

1
2

η
(
f (b), f (a)

)
.

Therefore we get

1
b−a

∫ b

a
f (x)dx � min

{
f (b)+

1
2

η
(
f (a), f (b)

)
, f (a)+

1
2

η
(
f (b), f (a)

)}
� 1

2

[
f (a)+ f (b)

]
+

1
4

[
η
(
f (a), f (b)

)
+ η

(
f (b), f (a)

)]
� 1

2

[
f (a)+ f (b)

]
+

1
2
Mη .

For the left side of inequality, η -convexity of f implies that

f
(a+b

2

)
= f

(
a+b

4
− t(b−a)

4
+

a+b
4

+
t(b−a)

4

)

= f

(
1
2

(
a+b− t(b−a)

2

)
+

1
2

(
a+b+ t(b−a)

2

))

� f

(
a+b+ t(b−a)

2

)
+

1
2

η

(
f

(
a+b− t(b−a)

2

)
, f

(
a+b+ t(b−a)

2

))

� f

(
a+b+ t(b−a)

2

)
+

1
2
Mη

for all t ∈ [0,1] . So

f
(a+b+ t(b−a)

2

)
� f

(
a+b

2

)
− 1

2
Mη .

Also with the same argument we have

f

(
a+b− t(b−a)

2

)
� f

(
a+b

2

)
− 1

2
Mη .

Finally using the change of variable we have

1
b−a

∫ b

a
f (x)dx =

1
b−a

[∫ a+b
2

a
f (x)dx+

∫ b

a+b
2

f (x)dx
]

=
1
2

∫ 1

0

[
f

(
a+b− t(b−a)

2

)
+ f

(
a+b+ t(b−a)

2

)]
dt

� 1
2

∫ 1

0

[
2 f

(
a+b

2

)
−Mη

]
dt = f

(
a+b

2

)
− 1

2
Mη . �
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REMARK 1. Note that:
(1) According to Theorem 5, if we consider η(x,y) = x− y then we have the

classic Hermite-Hadamard inequality for convex function f

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
.

For various related inequalities see the monograph online [6].
(2) We also remark that the following statements hold:
(i) Let f : I →R be an integrable function and η : f (I)× f (I)→R be a bifunction

above bounded with Mη as its upper bound. Suppose that for any a,b ∈ I with a < b ,

f

(
a+b

2

)
− 1

2
Mη � 1

b−a

∫ b

a
f (x)dx.

Then for any a,b ∈ I with a < b there exists a t ∈ (0,1) such that

f (ta+(1− t)b) � f

(
a+b

2

)
− 1

2
Mη .

(ii) Let f : I →R be an integrable function and η : f (I)× f (I)→R be a bifunction
above bounded with Mη as its upper bound. Suppose that for any a,b ∈ I with a < b ,

1
b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
+

1
2
Mη .

Then for any a,b ∈ I with a < b there exists a t ∈ (0,1) such that

f (ta+(1− t)b) � f (a)+ f (b)
2

+
1
2
t
(
η( f (a), f (b))+ η( f (b), f (a))

)
.

Hermite-Hadamard-Fejer inequality is an interesting inequality related to convex
functions. The η -convex version of this inequality is considered in two parts below.

We need the following definition:

DEFINITION 3. A function g : [a,b] → R is said to be symmetric with respect to
a+b
2 on [a,b] if

g(x) = g(a+b− x), for any a � x � b.

THEOREM 6. (Hermite-Hadamard-Fejer Right Inequality) Suppose that f : [a,b]→
R is an η -convex function such that η is above bounded on f ([a,b])× f ([a,b]) . Also
suppose that g : [a,b]→ R

+ is integrable and symmetric with respect to a+b
2 . Then

∫ b

a
f (x)g(x)dx � f (a)+ f (b)

2

∫ b

a
g(x)dx (7)

+
η
(
f (a), f (b)

)
+ η

(
f (b), f (a)

)
2(b−a)

∫ b

a
(b− x)g(x)dx.
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Proof. From η -convexity of f , using the change of variable and the fact that g is
symmetric with respect to a+b

2 , we get two inequalities.
First∫ b

a
f (x)g(x)dx (8)

� (b−a)
∫ 1

0

[
f (b)+ tη

(
f (a), f (b)

)]
g
(
ta+(1− t)b

)
dt

= (b−a)
[∫ 1

0
f (b)g

(
ta+(1− t)b

)
dt + η

(
f (a), f (b)

)∫ 1

0
tg
(
ta+(1− t)b

)
dt

]
.

Second∫ b

a
f (x)g(x)dx (9)

� (b−a)
∫ 1

0

[
f (a)+ tη

(
f (b), f (a)

)]
g
(
(1− t)a+ tb

)
dt

= (b−a)
[∫ 1

0
f (a)g

(
ta+(1− t)b

)
dt + η

(
f (b), f (a)

)∫ 1

0
tg
(
ta+(1− t)b

)
dt

]
.

Finally if we add (8) and (9) we obtain

2
∫ b

a
f (x)g(x)dx � (b−a)

(
f (a)+ f (b)

)∫ 1

0
g
(
ta+(1− t)b

)
dt

+(b−a)
(
η
(
f (a), f (b)

)
+ η

(
f (b), f (a)

))∫ 1

0
tg
(
ta+(1− t)b

)
dt.

So, the change of variable x = ta+(1− t)b implies that∫ b

a
f (x)g(x)dx � f (a)+ f (b)

2

∫ b

a
g(x)dx

+
η
(
f (a), f (b)

)
+ η

(
f (b), f (a)

)
2(b−a)

∫ b

a
(b− x)g(x)dx. �

THEOREM 7. (Hermite-Hadamard-Fejer Left Inequality) Suppose that f : [a,b]→
R is an η -convex function such that η is above bounded on f ([a,b])× f ([a,b]) . Also
suppose that g : [a,b]→ R

+ is integrable and symmetric with respect to a+b
2 . Then

f

(
a+b

2

)∫ b

a
g(x)dx− 1

2

∫ b

a
η
(

f (a+b− x), f (x)
)
g(x)dx �

∫ b

a
f (x)g(x)dx. (10)

Proof. From η -convexity of f we have

f

(
a+b

2

)
= f

(
ta− ta+a+b+ tb− tb

2

)

= f

(
ta+(1− t)b+ tb+(1− t)a

2

)

� f
(
tb+(1− t)a

)
+

1
2

η
(

f
(
ta+(1− t)b

)
, f
(
tb+(1− t)a

))
.
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Also with the change of variable x = tb+(1− t)a we have

f

(
a+b

2

)∫ b

a
g(x)dx

= f

(
a+b

2

)∫ 1

0
g
(
tb+(1− t)a

)(
b−a

)
dt

�
∫ 1

0
f
(
tb+(1− t)a

)
g
(
tb+(1− t)a

)(
b−a

)
dt

+
1
2

∫ 1

0
η
(

f (ta+(1− t)b), f (tb+(1− t)a)
)
g
(
tb+(1− t)a

)(
b−a

)
dt

=
∫ b

a
f (x)g(x)dx+

1
2

∫ b

a
η
(
f (a+b− x), f (x)

)
g(x)dx. �

COROLLARY 2. With the assumption of Theorems 6 and 7 we have:
(i) if g(x) ≡ 1 , then we have the Hermite-Hadamard type inequalities:

f

(
a+b

2

)
(b−a)− 1

2

∫ b

a
η
(
f (a+b− x), f (x)

)
dx (11)

�
∫ b

a
f (x)dx � f (a)+ f (b)

2
+

η
(
f (a), f (b)

)
+ η

(
f (b), f (a)

)
4

.

(ii) if we consider Mη as the upper bound of η , then

f

(
a+b

2

)
− Mη

2
�
∫ b

a
f (x)g(x)dx

� f (a)+ f (b)
2

∫ b

a
g(x)dx+

Mη

b−a

∫ b

a
(b− x)g(x)dx.

(iii) if we set η(x,y) = x− y, then classic form of Hermite-Hadamard-Fejer in-
equality can be obtained as

f

(
a+b

2

)∫ b

a
g(x)dx �

∫ b

a
f (x)g(x)dx � f (a)+ f (b)

2

∫ b

a
g(x)dx.

Furthermore if we consider (i) , (ii) and (iii) together, then we reach to Hermite-
Hadamard inequality mentioned in Remark 1 (1).

4. The case of differentiable functions

The case of differentiable functions is of interest as well.

THEOREM 8. Suppose that f : [a,b] → R is a differentiable η -convex function
on (a,b) and that η is measurable on f ([a,b])× f ([a,b]). Then we have

f ′ (y)
(

a+b
2

− y

)
� 1

b−a

∫ b

a
η
(
f (x), f (y)

)
dx (12)
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for every y ∈ (a,b) , in particular∫ b

a
η
(

f (x), f

(
a+b

2

))
dx � 0.

Proof. From the definition of η -convex functions we have

f
(
tx+(1− t)y

)− f (y)
t

� η
(
f (x), f (y)

)
,

for t ∈ (0,1]. Taking the limit over t → 0+ we get

f ′ (y) (x− y) � η
(
f (x), f (y)

)
(13)

for any x ∈ [a,b] and any y ∈ (a,b) .
Since η is measurable on f ([a,b])× f ([a,b]), then the integral∫ b

a
η
(
f (x), f (y)

)
dx

exists for any y ∈ (a,b) . Integrating (13) over x on [a,b] and dividing by b− a we
deduce (12). �

REMARK 2. If a > 0, then from (12) we have the inequalities

f ′
(√

ab
)(a+b

2
−
√

ab

)
� 1

b−a

∫ b

a
η
(

f (x), f (
√

ab)
)
dx (14)

and
1
2

f ′
(

2
1
a + 1

b

)
(b−a)2

a+b
� 1

b−a

∫ b

a
η

(
f (x), f

(
2

1
a + 1

b

))
dx. (15)

The dual result also holds.

THEOREM 9. Suppose that f : [a,b]→ R is an η -convex function and η is mea-
surable above bounded on f ([a,b])× f ([a,b]) . Then we have∫ b

a
f (y)dy � (x−a) f (a)+ (b− x) f (b)+

∫ b

a
η
(
f (x), f (y)

)
dy (16)

for any x ∈ [a,b] and, in particular

1
b−a

∫ b

a
f (y)dy � f (a)+ f (b)

2
+

1
b−a

∫ b

a
η
(

f

(
a+b

2

)
, f (y)

)
dy. (17)

Proof. Since the function f is absolutely continuous, then it is differentiable al-
most everywhere on [a,b] and , as above, we have

f ′ (y) (x− y) � η
(
f (x), f (y)

)
(18)

for any x ∈ [a,b] and almost every y ∈ (a,b) .
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Since η is measurable above bounded on f ([a,b])× f ([a,b]), then the integral∫ b
a η( f (x) , f (y))dy exists for any x ∈ [a,b] .

Integrating in (18) over y on the interval [a,b] we get∫ b

a
f ′ (y)(x− y)dy �

∫ b

a
η
(
f (x), f (y)

)
dy (19)

for any x ∈ [a,b] .
Integrating by parts, we also have∫ b

a
f ′ (y)(x− y)dy =

∫ b

a
f (y)dy− (x−a) f (a)− (b− x) f (b)

and by (19) we get the desired result (16). �

COROLLARY 3. With the assumptions of Theorem 9 we have the double integral
inequality

1
b−a

∫ b

a
f (y)dy � f (a)+ f (b)

2
+

1

(b−a)2

∫ b

a

∫ b

a
η
(
f (x) , f (y)

)
dxdy.

The proof follows by (16) integrating over x ∈ [a,b] .

REMARK 3. The case η (x,y) = x− y taken in the above inequalities will pro-
duce some know Hermite-Hadamard related inequalities, see [6]. The details are not
presented here.

The following Jensen type inequalities may be stated as well.

THEOREM 10. Suppose that f : [a,b] → R is a differentiable η -convex function
on (a,b) , xi ∈ [a,b],αi � 0, i ∈ {1, ...,n} and ∑n

i=1 αi = 1. Then for any y ∈ (a,b) we
have

f ′ (y)

(
n

∑
i=1

αixi − y

)
�

n

∑
i=1

αiη
(
f (xi), f (y)

)
. (20)

In particular, we have
n

∑
i=1

αiη

(
f (xi), f

(
n

∑
i=1

αixi)

))
� 0. (21)

Also, for any x ∈ [a,b] we have

x
n

∑
i=1

αi f
′ (xi)−

n

∑
i=1

αi f
′ (xi)xi �

n

∑
i=1

αiη
(
f (x), f (xi)

)
. (22)

Moreover, if
∑n

j=1 α j f ′ (x j)x j

∑n
j=1 α j f ′ (x j)

∈ [a,b] , (23)

then
n

∑
i=1

αiη

(
f

(
∑n

j=1 α j f ′ (x j)x j

∑n
j=1 α j f ′ (x j)

)
, f (xi)

)
� 0 (24)
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Proof. If we use the inequality (13), then we get

f ′ (y) (xi− y) � η
(
f (xi), f (y)

)
(25)

for any xi ∈ [a,b] and any y ∈ (a,b) .
If we multiply (25) by αi � 0, i ∈ {1, ...,n} and sum over i from 1 to n we get

the desired inequality (20).
From (13) we also have

f ′ (xi)(x− xi) � η
(
f (x), f (xi)

)
(26)

for any xi ∈ [a,b] and any x ∈ (a,b) .
If we multiply (26) by αi � 0, i ∈ {1, ...,n} and sum over i from 1 to n we get

n

∑
i=1

αi f
′ (xi) (x− xi) �

n

∑
i=1

αiη
(
f (x), f (xi)

)
,

which is equivalent to (22). �

REMARK 4. We observe that a sufficient condition for (23) to hold is that f is
nondecreasing (nonincreasing) on the whole interval [a,b] .

REMARK 5. In the case that η (x,y) = x− y we get from (24) Slater’s inequality
[22] (

∑n
j=1 α j f ′ (x j)x j

∑n
j=1 α j f ′ (x j)

)
�

n

∑
i=1

αi f (xi), (27)

provided that (23) is satisfied.
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