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Abstract. In this paper, we show that if f is a doubly concave function on [0,∞) and 0 < sA �
B � tA for some scalars 0 < s � t with w = t/s , then for every k = 1,2, · · · ,n ,

λk( f (A)� f (B)) � w
1
4 +w− 1

4

2
λk( f (A�B)),

where A�B = A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 is the symmetric geometric mean. As an application, we

give some reverses of Ando-Hiai and Golden-Thompson type inequalities. These new reverse
inequalities, improve some known results.

1. Introduction

In what follows, capital letters A,B,H and K means bounded linear operators on
an n -dimentional complex Hilbert space (H ,〈 · 〉) . An operator A is called positive
if 〈Ax,x〉 � 0 for every x ∈ H and then we write A � 0. For a pair A,B of Hermitian
operators, we say A � B if B−A � 0. Let f be a continuous real function on (0,∞) .
Then f is said to be operator monotone if A � B implies f (A) � f (B) for positive
definite operators A,B . Also, f is said to be operator concave if f (αA+(1−α)B) �
α f (A)+ (1−α) f (B) for all positive definite operators A,B and α ∈ [0,1] .

In our preceding paper [8], we presented some results on operator concave func-
tions involving operator means. In the main theorem we showed that if f : [0,∞) −→
[0,∞) is an operator concave function and A,B are positive operators such that 0 <
sA � B � tA , then for all α ∈ [0,1]

f (A)�α f (B) � max{S(s),S(t)} f (A�αB), (1)

where S(t) =
t

1
t−1

e log(t
1

t−1 )
is the so called Specht’s ratio, and �α is α -geometric mean.

In this paper we study an analogous of inequality (1), with the generalized Kan-
torovich constant K(w,α) . For this purpose, we need the assumption of doubly con-
cavity of f (t) . A non-negative continuous function f (t) defined on a positive interval
I ⊂ [0,∞) , is said doubly concave if:
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1. f (t) is concave in the usual sense;

2. f (t) is geometrically concave, i.e., f (xαy1−α) � f (x)α f (y)1−α for all x,y ∈ I ,
and α ∈ [0,1] .

If f (t) and g(t) are doubly concave on I , then so is their geometric mean f (t)αg(t)1−α

for α ∈ [0,1] and their minimum min{ f (t),g(t)} . These properties say that there are
a lot of doubly concave functions. We state some examples of such functions in the
following and refer to [4], for more examples.

The most important examples of doubly concave functions on I = [0,∞) are t �→ t p

with exponent p ∈ [0,1] . Other simple examples are t �→ t/(t +1) , t �→ t/
√

t +1 and
t �→ 1− e−t . On I = [1,∞) , the function logt and on I = [0,1] , the function −t logt
are also doubly concave.

In Section 2 we present the main result of paper on an eigenvalue inequality in-
volving doubly concave functions and geometric means, as mentioned in abstract.

Section 3 and 4 are devoted to state some elegant application of the main theorem.
Let A and B be positive operators. By the weakly log-majorization A≺w log B we mean
that

k

∏
j=1

λ j(A) �
k

∏
j=1

λ j(B), k = 1,2, · · · ,n,

where λ1(A) � λ2(A) � · · ·� λn(A) are the eigenvalues of A listed in decreasing order.
If equality holds when k = n , we have the log-majorization A ≺log B . It is known that
the weakly log-majorization A≺w log B implies ‖A‖u � ‖B‖u for any unitarily invariant
norm ‖ · ‖u , i.e. ‖UAV‖u = ‖A‖u for all A and all unitaries U,V . See [2] for theory
of majorization.

To study the Golden-Thompson inequality, Ando-Hiai in [1] developed the fol-
lowing log-majorization inequalities:

Ar�αBr ≺log (A�αB)r, r � 1, (2)

or equivalently

(Ap�αBp)
1
p ≺log (Aq�αBq)

1
q , 0 < q � p. (3)

There are some literatures [10, 11] on the converse of these inequalities in terms of
operator norm ‖ · ‖ .

In section 3 we consider another converse of Ando-Hiai inequalities (2) and (3), in
terms of eigenvalue inequalities, which generalizes some results of [10] to all unitarily
invariant norms.

Section 4 is devoted to get results on the reverse Golden-Thompson inequalities.
The Golden-Thompson trace inequality, which is of importance in statistical mechan-
ics and in the theory of random matrices, states that TreH+K � TreHeK for arbitrary
Hermitian operators H and K .
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This inequality has been complemented in several ways [1, 9]. Ando and Hiai in
[1] proved that for every unitarily invariant norm ‖ · ‖u and p > 0

‖(epH�αepK)
1
p ‖u � ‖e(1−α)H+αK‖u. (4)

Seo in [12] showed converse of the Golden-Thompson type inequality (4), and in sec-
tion 4 we establish another reverse of this inequality. Our results are eigenvalue in-
equalities parallel to the reverse inequalities obtained in [3] and [5] for the classical
Araki and Golden-Thompson inequalities.

2. Doubly concave functions and geometric means

We start this section with our main result. It provides a new reverse for Ando-Hiai
inequality and thereupon a new reverse for Golden-Thompson type inequality, as we
see in the sequel. The following lemmas will be used to prove this main result.

LEMMA 1. [2, p. 58] (The Minimax Principle) Let A be a Hermitian operator on
H . Then

λk(A) = max
dimF=k

min{〈Ah,h〉; h ∈ F , ‖h‖ = 1},

where F is a subspace of H .

LEMMA 2. Let h be a norm one vector, A be a positive definte operator and f (t)
be any concave function defined on [0,∞) . Then

〈 f (A)h,h〉 � f (〈Ah,h〉).

This lemma is derived from the standard Jensen’s inequality.
The constant K(w,α) occurs in the following lemma, playing a key role in the

proof of Theorem 1 below.

LEMMA 3. [6, Lemma 8] Let A,B > 0 with 0 < sA � B � tA for some scalars
0 < s � t with w = t/s. Then, for all vectors h and all α ∈ [0,1]

〈A�αBh,h〉 � 〈Ah,h〉1−α〈Bh,h〉α � K(w,α)−1〈A�αBh,h〉,

where K(w,α) is the generalized Kantorovich constant defined for w > 0 by:

K(w,α) :=
wα −w

(α −1)(w−1)

(α −1
α

wα −1
wα −w

)α
. (5)

It is known that K(w,α) ∈ (0,1] for α ∈ [0,1] . See [7] for some important properties
of K(w,α) .
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THEOREM 1. Let f be a doubly concave function on [0,∞) and 0 < sA � B � tA
for some scalars 0 < s � t with w = t/s. Then for all α ∈ [0,1] and k = 1,2, · · · ,n,

λk( f (A)�α f (B)) � K(w,α)−1λk( f (A�αB)),

where A�αB = A
1
2 (A− 1

2 BA− 1
2 )αA

1
2 is the α -geometric mean and K(w,α) is the gen-

eralized Kantorovich constant defined as (5).

Proof. By Lemma 2 for every vector h with ‖h‖ = 1, we can write

〈 f (A)h,h〉 � f (〈Ah,h〉). (6)

Also, for any integer k less than or equal to the dimension of the space, we have a
subspace F of dimension k such that

λk( f (A)�α f (B)) = min
h∈F :‖h‖=1

〈 f (A)�α f (B)h,h〉

� min
h∈F :‖h‖=1

〈 f (A)h,h〉1−α〈 f (B)h,h〉α

� min
h∈F :‖h‖=1

(
f (〈Ah,h〉))1−α(

f (〈Bh,h〉))α

� min
h∈F :‖h‖=1

f
(〈Ah,h〉1−α · 〈Bh,h〉α) (7)

� min
h∈F :‖h‖=1

f
(
K(w,α)−1〈A�αBh,h〉) (8)

� K(w,α)−1 min
h∈F :‖h‖=1

f (〈A�αBh,h〉) (9)

= K(w,α)−1 min
h∈F :‖h‖=1

〈 f (A�αB)h,h〉

� K(w,α)−1λk( f (A�αB)).

We have used the minmax principle, Lemma 3 and inequality (6) respectively. Also
(7) follows from the geometrically concavity of f , (8) follows from Lemma 3 and
monotony of f , and (9) follows from this fact that for every nonnegative concave func-
tion f and every z � 1, f (zx) � z f (x) . Note that for α ∈ [0,1] , K(w,α)−1 � 1. In two
last statements we have used the monotony of f and the minmax principle again. �

Note that the above statement is equivalent to the existence of a unitary operator
U satisfying in the following inequality:

f (A)�α f (B) � K(w,α)−1U f (A�αB)U∗.
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3. Reverse of the Ando-Hiai inequality

By the following theorem we present a new reverse of Ando-Hiai inequalities (2)
and (3), as an application of Theorem 1.

THEOREM 2. Let 0 < sA � B � tA for some scalars 0 < s � t with w = t/s. Then
for all α ∈ [0,1] and k = 1,2, · · · ,n,

λk(Ar�αBr) � K(w,α)−rλk(A�αB)r, 0 < r � 1, (10)

or equivalently

λk(A�αB)r � K(wr,α)−1λk(Ar�αBr), r � 1, (11)

λk(Aq�αBq)
1
q � K(wp,α)−

1
p λk(Ap�αBp)

1
p , 0 < q � p, (12)

where K(w,α) is the generalized Kantorovich constant defined as (5).

Proof. From inequality (8) in the proof of Theorem 1, we have

λk( f (A)�α f (B)) � min
h∈F :‖h‖=1

f
(〈K(w,α)−1(A�αB)h,h〉)

= min
h∈F :‖h‖=1

〈 f (K(w,α)−1(A�αB))h,h〉

� λk f (K(w,α)−1(A�αB)),

where monotony of f and the minmax principle are used in two last statements, respec-
tively. Now by letting f (t) = tr, 0 < r � 1, inequality (10) is obtained. For r � 1, we
have 0 < 1

r � 1 and by (10)

λk(A
1
r �αB

1
r ) � K(w,α)−

1
r λk(A�αB)

1
r .

Replacing A and B by Ar and Br respectively

λk(A�αB) � K(wr,α)−
1
r λk(Ar�αBr)

1
r .

Note that the generalized condition number Ar and Br is wr . By taking r -th power on
both sides we get the desired inequality (11). Similarly, the equivalence of (10)–(12) is
proved. �

Note that eigenvalue inequlaities immedialtly imply log-majorizations and unitar-
ily invariant norm inequalities.

REMARK 1. Let 0 <mI � A,B � MI for some scalars 0 <m �M with h = M/m .
Then for all α ∈ [0,1] and for the operator norm ‖ · ‖ , we can write

‖Ar�αBr‖ � K(h2,α)−r‖(A�αB)r‖ � K(h2,α)−r‖(A�αB)‖r, 0 < r � 1,
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and

‖A�αB‖r � ‖(A�αB)r‖ � K(h2r,α)−1‖Ar�αBr‖, r � 1.

These results are sharper than the corresponding inequalities presented in [10, Theorem
4, Corollary 5].

4. Reverse of the Golden-Thompson type inequality

In this section we reach to another estimate of the Golden-Thompson type inequal-
ity (4), by using results obtained in the preceding section as follows:

THEOREM 3. Let H and K be Hermitian operators such that H+sI �K � tI+H
for some scalars s � t , and let α ∈ [0,1] . Then

λk(e(1−α)H+αK) � K(ep(t−s),α)−
1
p λk(epH�αepK)

1
p , p > 0, (13)

where K(w,α) is the generalized Kantorovich constant defined as (5). In particular,

λk(eH+K) � et + es

2e
t
2 e

s
2

λk(e2H�e2K). (14)

Proof. Replacing A and B by eH and eK in the inequality (12) of Theorem 2, we
can deduce

λk(eqH�αeqK)
1
q � K(ep(t−s),α)−

1
p λk(epH�αepK)

1
p , 0 < q � p.

By [9, Lemma 3.3], we have

e(1−α)H+αK = lim
q→0

(eqH�αeqK)
1
q ,

and hence it follows that for each p > 0,

λk(e(1−α)H+αK) � K(ep(t−s),α)−
1
p λk(epH�αepK)

1
p .

This gives the first alleged inequality. For the second, it is enough to put α = 1
2 and

p = 2 in the inequality (13). Since a simple calculation shows that

K

(
wp,

1
2

)− 1
p

=

(
w

p
4 +w− p

4

2

) 1
p

,

and hence

K

(
e2(t−s),

1
2

)− 1
2

=
(

et + es

2e
t
2 e

s
2

) 1
2

. �
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