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EIGENVALUE INEQUALITIES RELATED
TO THE ANDO-HIAI INEQUALITY

MOHAMMAD BAGHER GHAEMI AND VENUS KALEIBARY

(Communicated by J.-C. Bourin)

Abstract. In this paper, we show that if f is a doubly concave function on [0,e) and 0 < sA <
B < tA for some scalars 0 < s <7 with w=1/s, then for every k=1,2,---,n,

1 1
wa +w 4

MUFAYF(BY) <

M (f(A2B)),

1 1 1.1 1. . . . .
where AfB =A2(A"2BA”2)2A2 is the symmetric geometric mean. As an application, we
give some reverses of Ando-Hiai and Golden-Thompson type inequalities. These new reverse
inequalities, improve some known results.

1. Introduction

In what follows, capital letters A, B, H and K means bounded linear operators on
an n-dimentional complex Hilbert space (.5, ( - )). An operator A is called positive
if (Ax,x) > 0 for every x € 7 and then we write A > 0. For a pair A, B of Hermitian
operators, we say A < B if B—A > 0. Let f be a continuous real function on (0,).
Then f is said to be operator monotone if A < B implies f(A) < f(B) for positive
definite operators A, B. Also, f is said to be operator concave if f(0A+ (1 — a)B) >
of(A)+ (1 —a)f(B) for all positive definite operators A,B and o € [0,1].

In our preceding paper [8], we presented some results on operator concave func-
tions involving operator means. In the main theorem we showed that if f : [0,00) —
[0,00) is an operator concave function and A, B are positive operators such that 0 <
sSA < B<tA, then for all a € [0,1]

f(A)faf(B) < max{S(s),S(t)}f(AleB), (1)

1
where S(1) = ttill is the so called Specht’s ratio, and fi¢, is o-geometric mean.
elog(r™T)
In this paper we study an analogous of inequality (1), with the generalized Kan-
torovich constant K(w, o). For this purpose, we need the assumption of doubly con-
cavity of f(r). A non-negative continuous function f(¢) defined on a positive interval

I C [0,0), is said doubly concave if:
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1. f(r) is concave in the usual sense;

2. f(t) is geometrically concave, i.e., f(x%y!=%) > f(x)*f(y)' =% forall x,y €1,
and o € [0,1].
If £(¢) and g(¢) are doubly concave on 1, then so is their geometric mean f(¢)%g(z)!~*
for o € [0,1] and their minimum min{f(7),g(z)}. These properties say that there are
a lot of doubly concave functions. We state some examples of such functions in the
following and refer to [4], for more examples.

The most important examples of doubly concave functions on 7 = [0, ) are 7 — t”
with exponent p € [0, 1]. Other simple examples are t —¢/(t+ 1), t — ¢/t + 1 and
t—1—e". On I =[l,), the function logs and on I = [0,1], the function —¢log?
are also doubly concave.

In Section 2 we present the main result of paper on an eigenvalue inequality in-
volving doubly concave functions and geometric means, as mentioned in abstract.

Section 3 and 4 are devoted to state some elegant application of the main theorem.
Let A and B be positive operators. By the weakly log-majorization A <10 B we mean
that

k
AA) <TJA(B),  k=1,2,n,

j=1

k
j=1
where A;(A) > A2(A) = --- > A, (A) are the eigenvalues of A listed in decreasing order.
If equality holds when k = n, we have the log-majorization A <j,g B. It is known that
the weakly log-majorization A <10, B implies ||Al|, < ||B||, for any unitarily invariant
norm ||- ||, ,i.e. ||[UAV||, = ||A]|, for all A and all unitaries U,V . See [2] for theory
of majorization.

To study the Golden-Thompson inequality, Ando-Hiai in [1] developed the fol-
lowing log-majorization inequalities:

ArﬁaBr <log (AﬁocB)ra r

WV

) (@)

or equivalently
1 1
(ApﬁaBp)E =log (Aqﬁan)E, 0<g<p. 3)

There are some literatures [10, 11] on the converse of these inequalities in terms of
operator norm || - ||.

In section 3 we consider another converse of Ando-Hiai inequalities (2) and (3), in
terms of eigenvalue inequalities, which generalizes some results of [10] to all unitarily
invariant norms.

Section 4 is devoted to get results on the reverse Golden-Thompson inequalities.
The Golden-Thompson trace inequality, which is of importance in statistical mechan-
ics and in the theory of random matrices, states that Tref’*K < TrefleX for arbitrary
Hermitian operators H and K.
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This inequality has been complemented in several ways [1, 9]. Ando and Hiai in
[1] proved that for every unitarily invariant norm || - ||, and p >0

1 _
1 e ) 7 [l < [l =K. )

Seo in [12] showed converse of the Golden-Thompson type inequality (4), and in sec-
tion 4 we establish another reverse of this inequality. Our results are eigenvalue in-
equalities parallel to the reverse inequalities obtained in [3] and [5] for the classical
Araki and Golden-Thompson inequalities.

2. Doubly concave functions and geometric means

We start this section with our main result. It provides a new reverse for Ando-Hiai
inequality and thereupon a new reverse for Golden-Thompson type inequality, as we
see in the sequel. The following lemmas will be used to prove this main result.

LEMMA 1. [2, p. 58] (The Minimax Principle) Let A be a Hermitian operator on
FC. Then

M(A) = max min{(Ah,h); h€ F, ||h|| =1},

dim.7 =k

where 7 is a subspace of .

LEMMA 2. Let h be a norm one vector, A be a positive definte operator and f(t)
be any concave function defined on [0,0). Then

(f(A)h.h) < f((Ah,h)).

This lemma is derived from the standard Jensen’s inequality.
The constant K(w, &) occurs in the following lemma, playing a key role in the
proof of Theorem 1| below.

LEMMA 3. [6, Lemma 8] Let A,B > 0 with 0 < sA < B < tA for some scalars
0 < s <t withw=t/s. Then, for all vectors h and all o € [0,1]

(AfloBh,h) < (AR, h)'~%(Bh,h)* < K(w, o) "' (At Bh,h),

where K(w, o) is the generalized Kantorovich constant defined for w > 0 by:

K(w,0) = 5)

wo —w ((X—lw"‘—l)a

(a—1w—1D)\ a w*—w

It is known that K(w, o) € (0,1] for o € [0,1]. See [7] for some important properties
of K(w,cx).
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THEOREM 1. Let f be a doubly concave function on [0,0) and 0 < sA < B <A
Sor some scalars 0 < s <t with w=t/s. Then forall o € [0,1] and k=1,2,---,n,

M (f(A)faf (B)) < K(w,0) "' M (f(AfaB)),

where AfiqB = A2 (A’%BA’% )O‘A% is the o-geometric mean and K(w, o) is the gen-
eralized Kantorovich constant defined as (5).

Proof. By Lemma 2 for every vector i with ||A|| = 1, we can write

(f(A)h,h) < f((Ah,h)). (6)

Also, for any integer k less than or equal to the dimension of the space, we have a
subspace .% of dimension k such that

M(f(A)ef(B)) = min  (f(A)fef(B)h,h)

he.Z:||h|=1
1 1-o o
S e min_ (f(A)h ) f(B)h, )
1 1-o o
<,omin _ (F(AR) " (F(BRA))
i l-o o
ghefirfnzﬁzrqlu=1f(<Ah’h> - (Bh, 1)%) (7)
1 -1
<, min_ f(KOr o)™ (AfaBA, 1) ®
<Kw,a)™'  min  f((AteBh,h)) )
heZ:|h|=1
=K(w,a)"'  min (f(AfB)h,h)
he Z:|h|=1

<K(w,0) " X (f(AtoB)).

We have used the minmax principle, Lemma 3 and inequality (6) respectively. Also
(7) follows from the geometrically concavity of f, (8) follows from Lemma 3 and
monotony of f, and (9) follows from this fact that for every nonnegative concave func-
tion f andevery z > 1, f(zx) < zf(x). Note that for o € [0,1], K(w,0) "' > 1. In two
last statements we have used the monotony of f and the minmax principle again. []

Note that the above statement is equivalent to the existence of a unitary operator
U satisfying in the following inequality:

F(A)iaf(B) <K(w,a)'Uf(AfaB)U*.
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3. Reverse of the Ando-Hiai inequality

By the following theorem we present a new reverse of Ando-Hiai inequalities (2)
and (3), as an application of Theorem 1.

THEOREM 2. Let 0 < sA < B <A for some scalars 0 < s <t with w=t/s. Then
forall a€0,1] and k=1,2,--n,

M(A"8aB") < K(w, )" Ak (AfeB)", 0<r<l, (10)

or equivalently
Mc(AtoB)" < KW', 00) ' Au(A 8o B"), r>1, (11)
M(AT5oBN)T < K(wP,cr) P A(APEaBP)P,  0<q<p, (12)

where K(w, o) is the generalized Kantorovich constant defined as (5).

Proof. From inequality (8) in the proof of Theorem 1, we have

M(f(A)taf(B)) <  min  f((K(w,a) " (AfeB)h,h))

he.Z:|h||=1
= min (f(K(w,a) ' (AfeB))h,h)
heZ:||h||=1

< M f (K(w, o) (A2aB)),
where monotony of f and the minmax principle are used in two last statements, respec-
tively. Now by letting f(r) =¢", 0 < r < 1, inequality (10) is obtained. For r > 1, we
have 0 < 1 <1 and by (10)
1 1 1 1

M(ATHaBT) < K(w,a)” " A (AfeB) "
Replacing A and B by A" and B" respectively

M(AtoB) < K(W,00) 7 Ak(A 8o B) 7 .

Note that the generalized condition number A" and B” is w". By taking r-th power on
both sides we get the desired inequality (11). Similarly, the equivalence of (10)—(12) is
proved. [

Note that eigenvalue inequlaities immedialtly imply log-majorizations and unitar-
ily invariant norm inequalities.

REMARK 1. Let 0 <mlI < A,B < MI forsome scalars 0 <m <M with h=M/m.
Then for all o € [0, 1] and for the operator norm || - ||, we can write

1A"8aB"|| <K (K, 0) "[|(AfaB)'|| < K(h*,0) " ||(AfaB)||", 0<r<l,
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and
|AtaBI" < [|(A2aB)|| < K(H',0) ' |A3aB |, 1.

These results are sharper than the corresponding inequalities presented in [ 10, Theorem
4, Corollary 5].

4. Reverse of the Golden-Thompson type inequality

In this section we reach to another estimate of the Golden-Thompson type inequal-
ity (4), by using results obtained in the preceding section as follows:

THEOREM 3. Let H and K be Hermitian operators such that H+sI < K <tl+H
for some scalars s <t, and let o € [0,1]. Then

Do (UK < (P 00) 7T AP eP) 7, p>0, (13
where K(w, o) is the generalized Kantorovich constant defined as (5). In particular,
é+é
P

M€Y <
2eZe2

(e, (14)

Proof. Replacing A and B by ¢! and ¢X in the inequality (12) of Theorem 2, we
can deduce

(™ 85e7)T < K (P07 o) T (P e )P, 0< g < p.
By [9, Lemma 3.3], we have
eI—a)H+oK _ lin(l)(eqHﬁaqu)é
g—
and hence it follows that for each p > 0,
A (K < K (P09 0) 7T Ay (P rePK) T

This gives the first alleged inequality. For the second, it is enough to put o = % and
p =2 in the inequality (13). Since a simple calculation shows that

_1 P 4 1

1\ 7 wi4+w 3\’

K(lwl = (2% -
(w3) (=)

1 1

l -7 '3 S 2
K(ez(t_5)7§) :(e—f—i> . O

2ele2

and hence
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