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Abstract. Let A and B be positive semidefinite matrices. It is shown that∥∥AsBp +BqAt
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This is a generalization of a recent inequality proved by Bhatia for the special case s = q , t = p
with
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and it is a special case of a conjecture posed by Hayajneh and Kittaneh, which claims that for
positive semidefinite matrices A1,A2,B1,B2 with A1B1 = B1A1 , A2B2 = B2A2 and any unitarily
invariant norm,

‖|A1B2 +A2B1|‖ � ‖|A1B2 +B1A2|‖ .

For i = 1, . . . ,k , let Ai and Bi be positive semidefinite matrices such that, for each i , Ai

commutes with Bi . It is shown that for any unitarily invariant norm,
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This is stronger than the inequality∥∥∥∥∥
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which has been recently proved by Audenaert. Simple applications of these norm inequalities
answer some questions of Bourin affirmatively.
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