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Abstract. Let A and B be positive semidefinite matrices. It is shown that∥∥AsBp +BqAt
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This is a generalization of a recent inequality proved by Bhatia for the special case s = q , t = p
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1
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,

and it is a special case of a conjecture posed by Hayajneh and Kittaneh, which claims that for
positive semidefinite matrices A1,A2,B1,B2 with A1B1 = B1A1 , A2B2 = B2A2 and any unitarily
invariant norm,

‖|A1B2 +A2B1|‖ � ‖|A1B2 +B1A2|‖ .

For i = 1, . . . ,k , let Ai and Bi be positive semidefinite matrices such that, for each i , Ai

commutes with Bi . It is shown that for any unitarily invariant norm,
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This is stronger than the inequality∥∥∥∥∥
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which has been recently proved by Audenaert. Simple applications of these norm inequalities
answer some questions of Bourin affirmatively.
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1. Introduction

In a recent paper [9], and in their investigations of the Lieb-Thirring trace inequal-
ities, Hayajneh and Kittaneh proposed the following conjecture for commuting positive
semidefinite matrices.

CONJECTURE 1.1. Let A1,A2,B1,B2 be positive semidefinite matrices with A1B1

= B1A1 and A2B2 = B2A2 . Then for every unitarily invariant norm,

‖|A1B2 +A2B1|‖ � ‖|A1B2 +B1A2|‖ . (1)

An important special case of the inequality (1) is the inequality∥∥∣∣AsBp +BqAt
∣∣∥∥�

∥∥∣∣AsBp +AtBq
∣∣∥∥ , (2)

where A and B are positive semidefinite matrices and s,t, p,q are positive real num-
bers.

In this paper, we will investigate the Hilbert-Schmidt norm version of (2), i.e., the
inequality ∥∥AsBp +BqAt

∥∥
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2 . (3)

Section 2 is devoted to proving the inequality (3) under the condition that∣∣∣∣ s
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A special case of the inequality (3) when s = q , t = p is the inequality

‖AqBp +BqAp‖2 � ‖AqBp +ApBq‖2 . (5)

Recently, Bhatia [4] proved the inequality (5) under the condition that

1
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� p
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� 3
4
, (6)

which is a significant improvement on a recent result of Hayajneh and Kittaneh [9],
where they proved it for q = 1,2 or 3 and p = 1.

In our first main result (Theorem 1) in Section 2, we prove that the inequality (3)
is true under the condition given in (4). This is a generalization of the result of Bhatia
given in [4], where the particular inequality (5) is proved under the condition given in
(6).

Another special case of (3) when s = t = 1 is the inequality

‖ABp +BqA‖2 � ‖ABp +ABq‖2 . (7)

It has been pointed out to the authors by J. C. Bourin that the inequality (7) can also
be concluded from Theorem 2.2 in [7]. In [9], Hayajneh and Kittaneh proved (7) using
some number theory tools, and the proof goes in an algorithmic way.
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REMARK 1. By taking p = 1, q = 3, s = 3, and t = 2 in the inequality (3), we
have the following special case in view of the condition given in (4):∥∥A3B+B3A2

∥∥
2 �

∥∥A3B+A2B3
∥∥

2 ,

which does not follow from the inequalities (5) and (7). This demonstrates the power
of the four parameters inequality (3) under the condition given in (4).

Bottazzi et al. [6] gave a counterexample to the following special case of the
inequality (1):

‖|AqBp +BqAp‖| � ‖|AqBp +ApBq‖| . (8)

They answered it in the negative for just the spectral (or the operator) norm by exhibit-
ing a pair of positive semidefinite matrices such that the claim does not hold. Inspite of
the failure of the inequality (8) for the spectral norm, in view of the inequality (5), which
is valid under the condition (6), it would be interesting to investigate the inequality (8)
for other unitarily invariant norms like the Schatten norms.

In his investigation of matrix subadditivity inequalities, Bourin [8] asked the fol-
lowing question.

QUESTION 1.4. Given positive semidefinite matrices A,B and positive real num-
bers p,q , is it true that∥∥∣∣Ap+q +Bp+q

∣∣∥∥� ‖|(Ap +Bp) (Aq +Bq)|‖? (9)

Bourin also wondered whether the stronger inequality∥∥∣∣Ap+q +Bp+q
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1
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holds true.
Recall that if X and Y are matrices such that XY is Hermitian, then for every

unitarily invariant norm,

‖|XY |‖ � ‖|Re YX |‖ � ‖|YX |‖ . (11)

(See [12].)
In [10], Hayajneh and Kittaneh conjectured that for all positive semidefinite ma-

trices A1,A2,B1,B2 with A1B1 = B1A1 and A2B2 = B2A2 , we have the inequality

‖|A1B1 +A2B2|‖ � ‖|(A1 +A2) (B1 +B2)|‖ , (12)

which is more general than the inequality (9). They also wondered whether the stronger
inequality

‖|A1B1 +A2B2|‖ �
∥∥∥∣∣∣(A1 +A2)

1
2 (B1 +B2) (A1 +A2)

1
2
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holds true. In fact, they proved (12) and (13) for the trace norm and the Hilbert-Schmidt
norm.
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In [2], Audenaert proved the following more general version of the inequality (12)
for all unitarily invariant norms:∥∥∥∥∥
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where Ai,Bi are positive semidefinite matrices such that, for each i , Ai commutes with
Bi . See [11] and [13] for different proofs of the inequality (14). Section 3 is devoted to
proving the stronger inequality
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As a corollary of our second main result (Theorem 2), we obtain further refinements of
the inequality (14), which answers the question of Bourin given in the inequality (10)
affirmatively.

2. The first main result

We start with the following lemma, which will be used in proving our first main
result. This lemma has been proved by Ando, Hiai and Okubo in [1], and it has played
a crucial role in the proof of the main result in [4].

LEMMA 1. Let A,B be positive semidefinite matrices, and let μ ,ν ∈ [0,1] such
that ∣∣∣∣μ − 1

2

∣∣∣∣+
∣∣∣∣ν − 1

2

∣∣∣∣� 1
2
.

Then ∣∣tr AμBνA1−μB1−ν∣∣� tr AB.

Our main result in this section can be stated as follows.

THEOREM 1. Let A,B be positive semidefinite matrices, and let s, t, p,q be posi-
tive real numbers such that ∣∣∣∣ s
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Then ∥∥AsBp +BqAt
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Proof. We have

∥∥AsBp +BqAt
∥∥2

2 = tr
(
A2sB2p +AsBqAtBp +AtBqAsBp +A2tB2q)

and ∥∥AsBp +AtBq
∥∥2

2 = tr
(
A2sB2p +2As+tBp+q +A2tB2q) .

Here we have used the fact that for all matrices X ,Y , ‖X‖2 = (tr X∗X)
1
2 and the cyclic-

ity of the trace, i.e., tr XY = tr YX .
Therefore, the inequality (16) is equivalent to the statement

Re tr AsBpAtBq � tr As+tBp+q. (17)

Replacing A and B by A
1

s+t and B
1

p+q , we see that this is equivalent to saying

Re tr AμBνA1−μB1−ν � tr AB (18)

for μ ,ν ∈ [0,1] .
By Lemma 1, the inequality (18) holds provided∣∣∣∣μ − 1
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This completes the proof. �

3. The second main result

In this section, we denote the vectors of eigenvalues and singular values of a ma-
trix A by λ (A) and σ(A) , respectively, where they are obtained by arranging singular
values and eigenvalues as well whenever they are real, in a non-increasing order. In gen-
eral, for x = (x1, . . . ,xn) ∈ R

n , we will write x↓ for the vector obtained by rearranging
the coordinates of x in a non-increasing order.

Let x,y ∈ R
n . We say that x is weakly majorized by y , denoted x ≺w y , if and

only if for k = 1, . . . ,n, ∑k
i=1 x↓i � ∑k

i=1 y↓i .
The Fan dominance principle [3, p. 93] says that for any two matrices X ,Y , we

have σ(X) ≺w σ(Y ) if and only if ‖|X |‖ � ‖|Y |‖ for all unitarily invariant norms.
Another fact that will be used says that λ (XY ) = λ (YX) .

To prove our second main result, we need the following two lemmas. The first
lemma is a part of Theorem 3.1 in [2], and the second lemma can be concluded from
the proof of Lamma 2.1 in [2].
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LEMMA 2. For i = 1, . . . ,k , let Ai,Bi be positive semidefinite matrices such that,
for each i , Ai commutes with Bi . Then for all unitarily invariant norms,
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LEMMA 3. Let S be a general n×m complex matrix, and let L and M be two
diagonal, positive semidefinite m×m matrices. Then

σ
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S (LM)
1
2 S∗
)2
)
≺w λ (SLS∗SMS∗) .

Our main result in this section can be stated as follows.

THEOREM 2. For i = 1, . . . ,k , let Ai,Bi be positive semidefinite matrices such
that, for each i , Ai commutes with Bi . Then for all unitarily invariant norms,∥∥∥∥∥∥
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Proof. Let Ai,Bi have spectral decompositions

Ai = UiDiU
∗
i ,Bi =UiEiU

∗
i ,

where Ui are unitary matrices, and Di,Ei are positive semidefinite diagonal matrices.
Let
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Now,
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This completes the proof. �

Now, we are in a position to prove the inequality (15). Using Theorem 2, Lemma
2, and the inequality (11), we have the following refinements of the inequality (14),
including the inequality (15).

COROLLARY 1. For i = 1, . . . ,k , let Ai,Bi be positive semidefinite matrices such
that, for each i , Ai commutes with Bi . Then for all unitarily invariant norms,
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Direct applications of the inequalities in Corollary 1 answer some questions of
Bourin in the affirmative. In fact, letting k = 2, A1 = Ap , A2 = Bp , B1 = Aq , and
B2 = Bq , we have the following chain of norm inequalities for positive semidefinite
matrices:
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∥∥∣∣Ap+q +Bp+q
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It should be mentioned here that the inequality (19) also follows from Theorem 2 in [5].
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