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Abstract. The well-known Hutchinson’s theorem states that if P be a polynomial with positive

coefficients, P(x) = ∑n
k=0 akxk , and

a2
k−1

ak−2ak
� 4 for k = 2,3, . . . ,n , then all the zeros of P are

real. We obtain sufficient conditions for a real polynomial to be a sign-independently hyperbolic
polynomial or to have real separated roots in the style of Hutchinson’s theorem.

1. Introduction

To formulate our results we need some definitions and notations.

DEFINITION 1. A real polynomial P is called hyperbolic (or real-rooted) if all
zeros of P are real.

Denote by H P ⊂R[x] the set of hyperbolic polynomials, and by H P+ the set
of hyperbolic polynomials with all positive coefficients.

DEFINITION 2. A hyperbolic polynomial is called sign-independently hyperbolic
if it remains hyperbolic after an arbitrary sign change of its coefficients (see [6] and
[2]).

Obviously all coefficients of a sign-independently hyperbolic polynomial are non-
vanishing.

For P(x) = ∑n
k=0 akxk ∈ H P+ we use the following notations.

pk = pk(P) :=
ak−1

ak
, 1 � k � n; (1)

qk = qk(P) :=
pk

pk−1
=

a2
k−1

ak−2ak
, 2 � k � n.
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It is easy to check that

ak =
a0

p1p2 . . . pk
, k � 1 ; ak =

a1

qk−1
2 qk−2

3 . . .q2
k−1qk

(
a1

a0

)k−1

, k � 2. (2)

Note that the problem of finding whether or not a given polynomial has only real
zeros is rather difficult and subtle. In 1926, Hutchinson ([5, p. 327]) extended the work
of Petrovitch ([7]) and Hardy ([3] or [4, pp. 95–100]) and found the following sufficient
condition for a polynomial (entire function) with positive coefficients to have only real
zeros.

THEOREM A. ([5, p. 327]) Let f (x) = ∑∞
k=0 akxk be an entire function with pos-

itive coefficients. Inequalities qk( f ) :=
a2
k−1

ak−2ak
� 4 , ∀k � 2, hold if and only if the

following two properties are valid:
(i) The zeros of f are all real, simple and negative, and
(ii) the zeros of any polynomial ∑n

k=m akzk , formed by taking any number of con-
secutive terms of f , are all real and non-positive.

For some extensions of Hutchinson’s results see, for example, ([1, §4]).
We need two frequently used measures of zero separation for hyperbolic polyno-

mials.

DEFINITION 3. Given a polynomial P ∈ H P , degP � 2, denote by mesh(P)
the minimal distance between its roots:

mesh(P) := min
1� j�n−1

(x j+1− x j)

for P = C(x− x1)(x− x2) · . . . · (x− xn), where x1 � x2 � . . . � xn. (If P has a double
real root, then mesh(P) = 0).

DEFINITION 4. Given a polynomial P∈H P+ , degP � 2, denote by lmesh(P)
the minimal quotient between its roots:

lmesh(P) := min
1� j�n−1

x j+1

x j

for P = C(x + x1)(x + x2) · . . . · (x + xn), where 0 < x1 � x2 � . . . � xn. (If P has a
negative double root, then lmesh(P) = 1).

A question on finding simple sufficient conditions for a polynomial to have a
mesh (or logarithmic mesh) that is greater than a prescribed number was given to us
by Mikhail Tyaglov. The following theorem gives such sufficient condition for a mesh.

THEOREM 1. Let c � 0 be a given number.
1. Suppose that P(x) = ∑n

k=0 akxk be a polynomial with positive coefficients, n �
2, and p2

k+1(P)− 4pk(P)pk+1(P) � c2 for k = 1,2, . . . ,n− 1. Then P ∈ H P+ and
mesh(P) � c.
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2. For every c > 0, ε > 0, and every n � 2, there exists a polynomial Pε(x) =
∑n

k=0 ak(ε)xk ∈H P+, such that p2
k+1(Pε)−4pk(Pε)pk+1(Pε)� c2−ε for k = 1,2, . . . ,

n−1, but mesh(Pε) < c.

Note that for c = 0, Theorem 1 reduces to Hutchinson’s Theorem A.
The next theorem deals with logarithmic mesh.

THEOREM 2. Let d � 1 be a given number.
1. Suppose that P(x) = ∑n

k=0 akxk is a polynomial with positive coefficients, n � 2,

and qk(P) � (d+1)2
d for k = 2,3, . . . ,n. Then P ∈ H P+ and lmesh(P) � d.

2. For every d > 1, ε > 0, and every n � 2, there exists a polynomial Pε(x) =

∑n
k=0 ak(ε)xk ∈H P+, such that q j(Pε)� (d+1)2

d −ε for i = 2,3, . . . ,n, but lmesh(Pε)
< d.

We mention that for d = 1, Theorem 2 reduces to Hutchinson’s Theorem A as
well.

Applying the reasonings analogous to those used in the proofs of Theorems 1 and
2 we can obtain the following statement.

THEOREM 3. Suppose that P(x) = ∑n
k=0 akxk is a polynomial with positive coef-

ficients, n � 2, and
a2
n−1

an−2an
� 4, ∀n � 2 . Let 0 � x1 � x2 � · · · � xn be the zeros of

P(−x) .
1. For k = 1,2, . . . ,n−1, denote by Δk := p2

k+1(P)−4pk(P)pk+1(P). Then xk+1−
xk � Δk for every k .

2. For k = 1,2, . . . ,n−1, denote by δk := 1
2(pk+2−

√
p2

k+2(P)−4pk+2(P)pk+1(P)

− pk −
√

p2
k(P)−4pk(P)pk+1(P)). Then xk+1− xk � δk for every k .

To formulate our next theorem, we need one more notation. For x > 1, we con-

sider the function ϕ(x) = 1− 2∑∞
k=1 x−

k2
2 . We observe that ϕ is an increasing func-

tion in (1;∞), limx→1+0 ϕ(x) = −∞ and limx→+∞ ϕ(x) = 1. So the equation 1 −
2∑∞

k=1 x−
k2
2 = 0 has the unique positive root which we denote by a∞. One can check

that a∞ ≈ 4.81058280.

The following theorem answers the question posed by Boris Shapiro.

THEOREM 4. 1. Let f (x) = ∑∞
k=0 akxk be an entire function with positive coeffi-

cients. Suppose that qk( f ) :=
a2
k−1

ak−2ak
� a∞ for all k � 2. Then for every n∈N, the n-th

section Sn(x) := ∑n
k=0 akxk is sign-independently hyperbolic.

2. For every ε > 0, there exists a real entire function gε(z) = ∑∞
k=0 bk(ε)zk with

non-vanishing coefficients such that qk(gε) > a∞ − ε for all k � 2, and all but a finite
number of sections of gε are not hyperbolic.
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2. Proofs of Theorems 1 and 2

Proof of Theorem 1. 1. Set Q(x) := P(−x) = ∑n
k=0(−1)kakxk.

By assumption p2
k+1(P)−4pk(P)pk+1(P) � 0 for k = 1,2, . . . ,n−1, whence 0 <

p1(P) < p2(P) < .. . < pn(P).
For x ∈ [0; p1(P)), we get a0 > a1x > a2x2 > .. . > anxn. Thus we have

Q(x) = (a0−a1x)+ (a2x
2 −a3x

3)+ . . . > 0 for x ∈ [0; p1(P)).

For x > pn(P), we get a0 < a1x < a2x2 < .. . < anxn. Thus we have

(−1)nQ(x) = (anx
n−an−1x

n−1)+ (an−2x
n−2−an−3x

n−3)+ . . . > 0 for x > pn(P).

Let us fix l,1 � l � n−1. For x ∈ (pl(P); pl+1(P)), we have

a0 < a1x < a2x
2 < .. . < al−1x

l−1 < alx
l

and
alx

l > al+1x
l+1 > al+2x

l+2 > .. . > anx
n.

Thus for x ∈ (pl(P); pl+1(P)), we get

(−1)lQ(x) =
l−2

∑
j=0

(−1)l+ ja jx
j +
(
−al−1x

l−1 +alx
l −al+1x

l+1
)

+
n

∑
j=l+2

(−1)l+ ja jx
j

=: Σ1(x)+
(
−al−1x

l−1 +alx
l −al+1x

l+1
)

+ Σ2(x).

We observe that for all x∈ (pl(P); pl+1(P)), summands in Σ1(x) are alternating in sign
and their moduli are increasing. Analogously for all x∈ (pl(P); pl+1(P)), summands in
Σ2(x) are alternating in sign and their moduli are decreasing. So Σ1(x) � 0, Σ2(x) � 0
for all x ∈ (pl(P); pl+1(P)), and

(−1)lQ(x) � −al−1x
l−1 +alx

l −al+1x
l+1 for x ∈ (pl(P); pl+1(P)).

The quadratic polynomial −al−1xl−1 + alxl − al+1xl+1 has all real roots since its dis-
criminant is nonnegative: D = a2

l − 4al−1al+1 > 0 by our assumptions. The roots of
this quadratic polynomial are

x1(l) :=
al −

√
a2

l −4al−1al+1

2al+1
=

1
2

(
pl+1(P)−

√
p2

l+1(P)−4pl(P)pl+1(P)
)

and

x2(l) :=
al +

√
a2

l −4al−1al+1

2al+1
=

1
2

(
pl+1(P)+

√
p2

l+1(P)−4pl(P)pl+1(P)
)

.

Now we will check that pl(P) < x1(l) � x2(l) < pl+1(P). We have

pl(P) < x1(l) ⇔ 2pl(P) < pl+1(P)−
√

p2
l+1(P)−4pl(P)pl+1(P) ⇔
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√
p2

l+1(P)−4pl(P)pl+1(P) < pl+1(P)−2pl(P).

By the assumption pl+1(P)−2pl(P) > 0, whence the last inequality is equivalent to

p2
l+1(P)−4pl(P)pl+1(P) < (pl+1(P)−2pl(P))2

which is obviously valid. Further we have

x2(l) < pl+1(P) ⇔
√

p2
l+1(P)−4pl(P)pl+1(P) < pl+1(P),

and the last inequality is obviously valid.
We have proved that for every l = 1,2, . . . ,n−1,

(−1)lQ(x) > 0 for all x ∈ (x1(l);x2(l)) ⊂ (pl(P); pl+1(P)).

So that
Q(x) > 0 for all x ∈ [0; p1(P)).

Q(x) < 0 for all x ∈ (x1(1);x2(1)) ⊂ (p1(P); p2(P)).

Q(x) > 0 for all x ∈ (x1(2);x2(2)) ⊂ (p2(P); p3(P)).

Q(x) < 0 for all x ∈ (x1(3);x2(3)) ⊂ (p3(P); p4(P)).

...

Thus

∃y1 ∈ [p1(P);x1(1)] such that Q(y1) = 0. (3)

∃y2 ∈ [x2(1);x1(2)] such that Q(y2) = 0.

∃y3 ∈ [x2(2);x1(3)] such that Q(y3) = 0.

...

∃yn−1 ∈ [x2(n−2);x1(n−1)] such that Q(yn−1) = 0.

∃yn ∈ [x2(n−1);+∞) such that Q(yn) = 0.

We have proved that Q ∈ H P, so P ∈ H P+. Moreover,

mesh(P) = mesh(Q) � min
1� j�n−1

(x2( j)− x1( j))

= min
1� j�n−1

√
p2

j+1(P)−4p j(P)p j+1(P) � c

by the assumption. The first statement of Theorem 1 is proved.

2. Let c > 0, ε > 0 and n � 2 are given. Denote by k := max( c2

2 ,c2 − ε) >

0, λ := 2 +
√

4+ k > 4. Consider the polynomial Q2(x) := 1 + x + x2

λ . We observe
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that p1(Q2) = 1, p2(Q2) = λ . Since D = 1− 4
λ > 0 the polynomial Q2 is hyper-

bolic. We have: mesh(Q2) =
√

D
1
λ

=
√

λ 2−4λ =
√

k < c. We also have p2
2(Q2)−

4p2(Q2)p1(Q2) = λ 2 −4λ = k � c2− ε.
For ε1 > 0, consider the polynomial Q3,ε1(x) := Q2(x)+ε1x3. Since Q2 ∈H P+

we can choose ε1 small enough so that Q3,ε1 ∈H P+. Moreover, since mesh(Q2) < c
by Hurwitz’s theorem we can choose ε1 small enough so that mesh(Q3,ε1) < c. Note
that p1(Q3,ε1) = 1, p2(Q3,ε1) = λ , p3(Q3,ε1) = 1

λ ε1
. Finally we choose ε1 > 0 small

enough so that p3(Q3,ε1)
2−4p3(Q3,ε1)p2(Q3,ε1) � c2− ε.

For ε2 > 0, consider the polynomial Q4,ε2(x) := Q3,ε1(x)+ ε2x4. We can choose
ε2 small enough so that Q4,ε2 ∈ H P+ and mesh(Q4,ε2) < c. Note that p1(Q4,ε2) =
1, p2(Q4,ε2) = λ , p3(Q4,ε2) = 1

λ ε1
, p4(Q4,ε2) = ε1

ε2
. We choose ε2 > 0 small enough so

that p4(Q4,ε2)
2 −4p4(Q4,ε2)p3(Q4,ε2) � c2 − ε.

Continuing the construction in the given manner we obtain the required polyno-
mial.

The second statement of Theorem 1 is proved. �

Proof of Theorem 2. 1. The proof is analogous to the proof of Theorem 1, but

is shorter. Set Q(x) := P(−x). By assumption qk(P) � (d+1)2
d � 4 for k = 2,3, . . . ,n,

thus p2
k+1(P)− 4pk(P)pk+1(P) � 0 for k = 1,2, . . . ,n− 1. So all the arguments from

the proof of the first statement of Theorem 1 remain valid. We obtain that Q has positive
zeros y1,y2, . . . ,yn satisfying conditions (3) (we use the same notations

x1(l) :=
1
2

(
pl+1(P)−

√
p2

l+1(P)−4pl(P)pl+1(P)
)

and

x2(l) :=
1
2

(
pl+1(P)+

√
p2

l+1(P)−4pl(P)pl+1(P)
)

,

l = 1,2, . . . ,n− 1). So we have proved that P ∈ H P+. Since the zeros of P are
−yn,−yn−1, . . . ,−y2,−y1, we get

lmesh(P) � min
1� j�n−1

x2( j)
x1( j)

= min
1� j�n−1

p j+1(P)+
√

p2
j+1(P)−4p j(P)p j+1(P)

p j+1(P)−
√

p2
j+1(P)−4p j(P)p j+1(P)

= min
1� j�n−1

q j+1(P)+
√

q2
j+1(P)−4q j+1(P)

q j+1(P)−
√

q2
j+1(P)−4q j+1(P)

.

Solving the inequality
q j+1(P)+

√
q2

j+1(P)−4q j+1(P)

q j+1(P)−
√

q2
j+1(P)−4q j+1(P)

� d we obtain q j+1(P) � (d+1)2
d , 1 �

j � n−1, and we are done. The first statement of Theorem 2 is proved.
2. We use the same reasoning as in the proof of the second statement of Theorem

1. �
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3. Proof of Theorem 4

1. Let f (x) = ∑∞
k=0 akxk be an entire function with positive coefficients. Without

loss of generality we can assume that a0 = 1 and a1 = 1. For qk := qk( f ) =
a2
k−1

ak−2ak
,

k � 2, we have f (x) = 1+ x+ ∑∞
k=2

xk

qk−1
2 qk−2

3 ...q2
k−1qk

(see (2)).

Let n � 2 be any natural number, and (σk)n
k=0 be any sequence such that σk ∈

{−1,1} for all k . We have to prove that the polynomial Sn(z) = ∑n
k=0 σkakzk is hyper-

bolic. We consider the following sequence of radii

R1 =
√

q2, Rj = q2q3 · . . . ·q j
√

q j+1, j = 2,3, . . . ,n−1.

By our assumptions R1 < R2 < .. . < Rn−1 (since
Rj+1
Rj

= √
q jq j+1 > 1).

For every fixed j = 1,2, . . . ,n−1, we put

Sn(z) =
σ j

q j−1
2 q j−2

3 . . .q2
j−1q j

z j +

(
σ0 + σ1z+

j−1

∑
k=2

σk

qk−1
2 qk−2

3 . . .q2
k−1qk

zk

)

+

(
n

∑
k= j+1

σk

qk−1
2 qk−2

3 . . .q2
k−1qk

zk

)
=: Σ0(z)+ Σ1(z)+ Σ2(z).

For any θ ∈ [0;2π ], we have

|Σ0(Rje
iθ )| =

∣∣∣∣∣(q2q3 · . . . ·q j
√

q j+1) j

q j−1
2 q j−2

3 . . .q2
j−1q j

∣∣∣∣∣= q2q
2
3 · . . . ·q j−1

j

√
q j

j+1.

Let us estimate Σ1(z) and Σ2(z) from above for z = Rjeiθ . We obtain

|Σ2(Rje
iθ )| �

n

∑
k= j+1

(q2q3 · . . . ·q j
√

q j+1)k

qk−1
2 qk−2

3 . . .q2
k−1qk

= q2q
2
3 · . . . ·q j−1

j

√
q j

j+1

n

∑
k= j+1

1

q(k− j)/2
j+1 qk− j−1

j+2 qk− j−2
j+3 . . .q2

k−1qk

� q2q
2
3 · . . . ·q j−1

j

√
q j

j+1

n

∑
k= j+1

1

a(k− j)/2
∞ ·a1+2+...+(k− j−1)

∞

= q2q
2
3 · . . . ·q j−1

j

√
q j

j+1

n

∑
k= j+1

1
√

a∞
(k− j)2

= q2q
2
3 · . . . ·q j−1

j

√
q j

j+1

n

∑
k=1

1
√

a∞
k2

< q2q
2
3 · . . . ·q j−1

j

√
q j

j+1

∞

∑
k=1

1
√

a∞
k2 .
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Analogously we get

|Σ1(Rje
iθ )| �

j−1

∑
k=0

(q2q3 · . . . ·q j
√

q j+1)k

qk−1
2 qk−2

3 . . .q2
k−1qk

=
j−1

∑
k=0

q2q
2
3 · . . . ·qk−1

k qk
k+1q

k
k+2 · . . . ·qk

j

√
qk

j+1

= q2q
2
3 · . . . ·q j−1

j

√
q j

j+1

j−1

∑
k=0

1

qk+2q2
k+3 · . . . ·q j−1−k

j

√
q j−k

j+1

� q2q
2
3 · . . . ·q j−1

j

√
q j

j+1

j−1

∑
k=0

1

a1+2+...+( j−k−1)
∞ ·a

j−k
2∞

= q2q
2
3 · . . . ·q j−1

j

√
q j

j+1

j−1

∑
k=0

1

a
( j−k)2

2∞

= q2q
2
3 · . . . ·q j−1

j

√
q j

j+1

j−1

∑
s=1

1

a
s2
2∞

< q2q
2
3 · . . . ·q j−1

j

√
q j

j+1

∞

∑
s=1

1

a
s2
2∞

.

Therefore we obtain that for every θ ∈ [0;2π ],

|Σ0(Rje
iθ )| = q2q

2
3 · . . . ·q j−1

j

√
q j

j+1 = q2q
2
3 · . . . ·q j−1

j

√
q j

j+1 ·2
∞

∑
s=1

1

a
s2
2∞

> |Σ1(Rje
iθ )|+ |Σ2(Rje

iθ )|,

since by definition of a∞ we have 1 = 2∑∞
k=1 a

− k2
2∞ .

Using the Rouché theorem we conclude that for every j = 1,2, . . . ,n−1, the num-
ber of zeros of Sn(z) inside the circle {z : |z| < Rj} is equal to the number of zeros of
Σ0(z) = σ j

q j−1
2 q j−2

3 ...q2
j−1q j

z j in this circle. Thus Sn has exactly j zeros inside the circle

{z : |z| < Rj} for each j . So Sn has one zero in {z : |z| < R1} and since Sn is a real
polynomial this zero is real. Next we observe that Sn has two zeros in {z : |z| < R2}
and since one of the zeros is real we get that both zeros are real. Arguing similarly
we obtain that the polynomial Sn of degree n has n− 1 real zeros. Therefore Sn is
hyperbolic.

2. Let us choose an arbitrary ε > 0 and denote by b := max( a∞+1
2 ,a∞− ε

2 ). Since
b < a∞ we have ϕ(b) < 0. So there exists n ∈ N such that

1−2
n

∑
k=1

b−
k2
2 < 0.

Consider the real entire function

gb(z) :=
n−1

∑
k=0

zk

b
k(k−1)

2

− zn

b
n(n−1)

2

+
∞

∑
k=n+1

zk

b
k(k−1)

2

.

We show that for all m � 2n, the m-th section of this function

Sm(z) :=
n−1

∑
k=0

zk

b
k(k−1)

2

− zn

b
n(n−1)

2

+
m

∑
k=n+1

zk

b
k(k−1)

2
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is not hyperbolic. At first we consider the polynomial S2n. Suppose that this polynomial
is hyperbolic. The coefficients of S2n are not of the same sign, therefore S2n could not
have all negative zeros. So if this polynomial is hyperbolic it necessarily has positive
zeros. But we prove that S2n(x) > 0 for all x > 0.

For x > 0, we have

S2n(x) :=
n−1

∑
k=0

xk

b
k(k−1)

2

− xn

b
n(n−1)

2

+
2n

∑
k=n+1

xk

b
k(k−1)

2

=
n−1

∑
k=0

(
xk

b
k(k−1)

2

+
x2n−k

b
(2n−k)(2n−k−1)

2

)
− xn

b
n(n−1)

2

�
n−1

∑
k=0

2

√
xk

b
k(k−1)

2

· x2n−k

b
(2n−k)(2n−k−1)

2

− xn

b
n(n−1)

2

=
xn

b
n(n−1)

2

(
n−1

∑
k=0

1

b
(n−k)2

2

−1

)
=

xn

b
n(n−1)

2

(
n

∑
j=1

1

b
j2
2

−1

)
> 0

by our choice of n . Hence S2n does not have positive zeros whence it is not hyperbolic.
For every m � 2n we have Sm(x) � S2n(x) for all x > 0, so Sm is not hyperbolic also.

Theorem 4 is proved. �
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[2] J. FORSGÅRD, D. NOVIKOV, B. SHAPIRO, A tropical analog of Descartes’ rule of signs,
arXiv:1510.03257.

[3] G. H. HARDY, On the zeros of a class of integral functions, Messenger Math., 34, (1904), 97–101.
[4] G. H. HARDY, Collected Papers of G. H. Hardy, vol. IV, Oxford Clarendon Press, 1969.
[5] J. I. HUTCHINSON, On a remarkable class of entire functions, Trans. Amer. Math. Soc., 25, (1923),

325–332.
[6] M. PASSARE, J. M. ROJAS, AND B. SHAPIRO, New multiplier sequences via discriminant amoebae,

Mosc. Math. J., 631, 11 (2011), no. 3, 547–560.
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