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WEIGHTED COMPOSITION OPERATORS FROM
ZYGMUND TYPE SPACES INTO BLOCH TYPE SPACES

JUNTAO DU AND SONGXIAO LI*

(Communicated by S. Stevic)

Abstract. In this paper, we investigate the boundedness and compactness of weighted composi-
tion operators from Zygmund type spaces to Bloch type spaces.

1. Introduction

Let u be a positive continuous function on [0,1). We say that u is normal, if
there exist positive numbers @ and b, 0 < a < b, and § € [0,1) such that (see, for
example, [23]).

w(r) . . ()
0= is decreasing on [0, 1) and }EH T
ur)y .. . ()
a—rp is increasing on [9,1) and }E}} =

Let D be the open unit disk in the complex plane C and H(D) the space of all
analytic functions in . Let H* denote the bounded analytic function space in D.

Suppose @ is normal on [0,1). An f € H(ID) is said to belong to the Bloch type
space, denoted by %, , if

1712, = 1£(0)] +Slelgw(|2|)|f’(1)l <o

Itis easy to see that %, is a Banach space with the norm |- || 5, . When @(t) = 1 -2,
we get the classical Bloch space, denoted by % = #(D).
An f e HD)NC(D) is said to belong to the Zygmund space, denoted by %, if

sup ) +f(e:9‘h)) —2EE
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where the supremum is taken over all ¢ € 9D and h > 0. As it was noticed in [12],
by Theorem 5.3 in [5] we have that f € & if and only if sup,.p (1 —|z?)|f"(2)] < oo

Suppose u is normal on [0,1). The Zygmund type space, denoted by 2, is the
space of all f € H(ID) such that

£l 2 = £ (0)| + |f’(0)|+Sgﬂ1§u(|2|)|f”(2)l <o

It is also easy to see that 2, is a Banach space with the norm || - ||z, . When u(z) =
1 —1%, we get the Zygmund space, which was introduced in [12].

Throughout this paper, S(ID) denotes the set of all analytic self-maps of . Asso-
ciated with ¢ € S(ID) is the composition operator Cy, which is defined by

(Cof)(2) = f9(2)

for f € H(D). Let u € H(ID). The weighted composition operator, denoted by uCj, is
defined on H(D) as follows.

(uCof)(z) = u(2)f(9(2)), feHD).

We refer to the books [4, 34] for the theory of composition operators.

The boundness, compactness and essential norm of composition operator and
some related operators on Bloch type spaces with @(r) = (1 —1%)% were studied, for
example, in [2, 3, 7,9, 11, 19, 20, 21, 22, 30, 31, 33, 35]. Composition operator and
some other concrete operators from or into the Zygmund type spaces on various do-
mains have attracted some attention and were studied, for example, in [1, 6, 8, 10, 13,
14, 15, 16, 17, 18, 24, 25, 26, 27, 28, 29].

In [15], Li and Stevi¢ studied the boundedness and compactness of weighted com-
position operators from the Zygmund space into the Bloch space. Motivated by [15], in
this paper we investigate the weighted composition operator uCy : 2, — % . More
precisely, we obtain some sufficient and necessary conditions for the boundedness and
compactness of weighted composition operators from Zygmund type spaces 2} to
Bloch type spaces %, .

In this paper, constants are denoted by C, they are positive and may differ from
one occurrence to the next. We say that A < B if there exists a constant C such that
A < CB. The symbol A ~ B means that A < B < A.

2. Auxiliary results

In this section, we give some auxiliary results which will be used in proving the
main results of this paper. They are incorporated in the lemmas which follow.

LEMMA 1. [7] Suppose U is normal on [0, 1), then there exists . € H(D), such
that

1. Foranyt€[0,1), w.(r) € Ry, w.(z) is increasing on [0,1);

2. inf (1) >0;
tel[%,l)“(t)“ (t) >
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3. supu(fz])|p ()] < oo
zeD

REMARK 1. By Lemma 1, we have
1. u= t, on the interval [0,1).

2. Forany z = |z|!® € D,

’/Ozu*(n)dn‘ = ’/OIZ i (re'®)dr §/OZI ﬁd:z/olz L (1)dr.

3. Forany z,n € D, if |n| < |7,

Kl el < p(fel) max ()] = pJ2l) max w7

< sup U (| 7])[ 1 ()] < oo
yeD

LEMMA 2. Suppose U is normal on [0,1), then the following statements hold.

1. There exists a 0 € (0,1), such that U is decreasing on [0,1), linll,u(t) =0.
11—
2. Forany o> 1, there existsa 6 € (0,1) suchthat pu(t) ~ u(t*) whent € [Sé7 1).

Proof. By the definition of normal function, there exists an @ > 0 and 6 € [0,1)

such that (f_(';))a is decreasing on [§,1). Since u(t) = (f‘_(tt))a (1—1)%, we see that pu(¢)

is decreasing on [0,1) and lin}[.t(t) =0.
—

Similarly, there is a b > 0, such that - WS increasing on [8,1). Since linll 11_71
11—

(1-1)p
_ 1 L
=, >0, forany t € [6,1),

pe) _ ooy (-nb o (-0
p(e) s (1 —go)b ~ (1—r*)b - C

Therefore p(t) ~ u(r*). O

LEMMA 3. Suppose @ and W are normal on [0,1). Then for every z€ D, f €
B, § € Zyu, we have

fI<Go@fllz, and  |g(2)| <Hu(2)gll,
where

1 2l |z| —¢

|2
Gw(z)=1+/0 ot Hu(z)=1+/0 o




250 J.DUAND S. LI

Proof. The first inequality is proved in [32]. For every z € D and g € Z,, we
have

lg(z)] = ‘ ) +2¢'(0 +//2”szdsdz

<lglay+| [ [ 2 asar,
2 // ‘Z|2
|Z (sz)|dsdr < ||g||gy dsdt
1 (sz])

IZ\ IZI —s7])
= el ez~ Is2)
”ﬂﬁﬁ alel) @

REMARK 2. From the relationship of 2}, and %,,, by Lemma 3, for every z €
and g € Z;,

and

Therefore |g(z)| < Hu(2)|lgllz, . O

8" ()| < Gu(@)lg'l|l 2, < Gul2)llgll 2
LEMMA 4. [32] Suppose that | is normal on [0,1) such that fol ﬁdt <o, If

{fu} is bounded in B, and converges to 0 uniformly on compact subsets of D, then

lim sup|f,(z)| =0
=% zeD
LEMMA 5. Suppose that [ is normal on [0,1) such that hm f‘zl 2~ tdt <o If

{fn} is bounded in Z,, and converges to 0 uniformly on compact subsets of D, then

lim sup|; (2)] =0

= 72eD

Proof. Suppose ||fu 2, <M forall n € N*. Because {f,} converges to 0 uni-
formly on compact subsets of ID, by Cauchy’s estimate we see that { f;} also converges
to 0 uniformly on compact subsets of ID. For any given € > 0, by the assumption, there
isa 6 €(0,1) and N € N*, such that

€

def ["u—t Ss—t
I(u,s :/ —dt—/ ——dt<e and |[f,(2)| < =, (1)
N TR Ty h@l<3
when § <s<u<1,n>N, |zl <(1+8)/2. Then

o A d+/“_ e

= 1(u, ) 2
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If |z| > 8, let z = |z]e!?, then

[u(2) = fu(8€'%)| =

/;ei@ ( 5;9 fi (s)ds + frlz((seie)> dt

| fall 2, I
</§ /5 e dsdt—i—/é 1(Se ))dt
2| |7] — )

= IIJ‘nII,@;/(S |Z|(S)Sds+(|z|—5) f,;(se"’)).

Since {f,},{f.} converge to 0 uniformly on compact subsets of I, by (2),

] < [£2) = £u(86)| +

fn(6ei9)‘ < Me +

f[l(ﬁeie)‘ te<Ce

as n — oo, Since € is an arbitrary positive number, we get the desired result. [

To study the compactness, we need the following lemma, which can be proved in
a standard way (see, for example, Proposition 3.11 in [4]).

LEMMA 6. Suppose u € H(D), ¢ € S(D), @ and p are normal on [0,1) such
that uCy : 2y — By is bounded. Then uCy : 2, — By is compact if and only if
whenever { fu} is bounded in 2y and f,, — 0 uniformly on compact subsets of D then
lim [[4Cof 7, = 0.

3. Main results and proofs

In this section, we formulate and prove the main results in this paper.

THEOREM 1. Suppose u € HD), ¢ € S(D), w and u are normal on [0,1). Let
E(z) = o(l2))lu' (2)], F(2) = o()uz)e'()].
Then uCy : 2y — P is bounded if and only if

sup E(2)Hyu (9(2)) < o2, supF(2)Gpu(@(z)) < oe. 3)

zeD z€eD

Proof. Suppose that (3) holds. For any f € 2, using Lemma 3 and Remark 2,
we have

[uCo £z, = |u(0)f(@(0)) +supa (|2 ()£ (9(2) + u(z) 9" (2)f (9 (2))]

zeD
< |u(0)[Hy (9(0))]].f 1] 24, +sg£w(|2|)lu’(1)f(¢(1))l
+§2£w(IZI)Iu(Z)fp’(Z)f’(fp(Z))l
< Clfl 2 +S‘€1HI;E(Z)Hu((P(Z))||fH% +8161£F(Z)Gu(<p(Z))llszfu

S 12
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Therefore uCy : 2y — A is bounded.
Conversely, assume that uCy : 2, — % is bounded. Let f(z) = 1. By the
assumption, we see that uCy f =u € By . Then

sup E(z) = sup o([z]) |’ (z)| = ||| 5, < o=
zeD zeD

Similarly, let f(z) = z, then we get u@ € %, . Therefore,

SUPF( ) = Slelgw(|2|)lu(2)¢/(1)|

zeD

< supo(|2]) |u(2)¢'(2) + ' (2) ()| + Sgﬂgw(IZI)lu’(Z)fp(Z)l

zeD

oo,

Let p.(z) denote the analytic function related to i (z) in Lemma 1. Forany n € D, we
choose a # 0 and set

\_
fa /H‘S / nu*
After a calculation, we have f, € H(D), f,(0) =0, fs(a) =0, f1(0) =

a3 2 la®

2 3ty 3 ez
/ _ |a| / ﬂ/ [J*(I)dl,
a Jo

and

lal 2
2 3 e 6 3 6 3
7 (7) = |a| / £)dt + |a| lb‘(@f)_@‘u*(ﬂZ).
a a

a

By Remark 1 and Lemma 1,

"
uDA @) < 20| | = i+ 4002) e (E2) | e [ ()
N/‘a (|2l i (t)dt +C < C.
Therefore fu(z) € 2y and [|ful| 2, S C
If |a| = |@(n)] < L, then
F(1)Ga(o(n) < supF(2)Gu (5) < C. @

zeD
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we get

jaf?

aPE) [ e = o(in) |u(me'(n)fy (@)
= o(|n)) |« (n) fa(e()) +u(n)e'(n) fa(@(n))]
< supo(f2]) [(uCo fa)'(2)]
z€eD
< uCopfall 2, < [[uCol| - [ fall 2, < [[uColl- Q)
If |a| > §, by Remark 1 and Lemma 2,

[ [ i [ asiap [ woan
—di~ [ ——di~a —dt <|a . (1)dr,
L) o) o) 0

g
which together with (4) and (5) imply

1

301 lal 1
F(n)G — F(N)+F /—dt+F /—dt
(MGu(e(n)) =F(n)+F(n) o 10 (n) -
la?
< 1+|al’F(n) w.(t)dt < C. (7
0
Here we used the fact that sup F (1) < eo. Therefore
neb
sup F(n)Gp(@(n)) < ee. (8)
neb

Let —
az
8a(2) 2/0 /0 Wi(s)dsdt, zeD.
By Remark 1 and Lemma 2,

u(lz)lga(2)] = p(lzh)j@®w (@) < p(lz) | p(@)| < C.
Hence ||ga||gﬂ <C.
If a] = [p(n)] < 5,
1

E(mHu(o(n) <swpE@)H, () <C. ©
zeD

If |a| > %,by Lemmas 1 and 2, we get
al |a| — al* |a| — /7 a* |a)? 1
/ =5 4 z/ lal = e [ . (10)
boous) oo Loou)
Since @(n) = a, by Remark 2 and (8), we have

E(M)ga(a) = o(In))]u'(n)ga(@(M)) +u(n)e'(n)g,(a) —u(n)e'(n)g,(a)]
< NuCpgall 2, +F(M)lg(a)|
< uCopllllgall 2, +F(n)Gu(@(M))gall 2, <C- (11)
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Hence by (10) and (11), we get

% al—s lal |g| — s
E(m)Hu(p(m) = E(n)+E(n) | “ dsE() |, R

0 u(s) u(s)
SEm+Em) [ ﬁdwz(n)ga(a) <c (12)

when |a| > % From (9) and (12), we get that

sup E(n)Hy (o(n)) < e,
neb

finishing the proof of the theorem. [J

THEOREM 2. Suppose u€ H(D), ¢ € S(D), o and u are normal on [0, 1) such
that uCy : 2y — By is bounded. Then the following statements hold.

(i) When ll"mlH# (z) <o, \l|im1 Gu(z) <oo, then uCy : 2y — By is compact.
Zl— Z|l—
(ii) When lim Hy (z) = oo, lim Gy (z) = oo, then uCy : 2, — Py is compact if

|2]—1 |2]—1

and only if

lim F(2)Gu(p(z)) =0 and lim E(z)Hu(¢(z)) =0.
lp(z)|—1 lp(z)[—1

(iii) When \1|im1 Hy(z) < f><>,‘1|im1 Gu(z) = oo, then uCy : 2y — By is compact if
Z|l— Z|l—
and only if
lim F(z2)Gu(@(z))=0.
lp(2)|—1
Proof. (i) By the boundedness of uCy : 2, — %, we see that

SUpE(z) <eo and supF(z) < ee.
zeD zeD

Let {f,} be a bounded sequence in 2}, and converges to 0 uniformly on compact
subsets of . We have

[uCofnll 2, = Iu(O)fn(<P(0))|+Slelﬂgw(IZ|) |4/ (2)fa(0(2)) +u(2) 9’ (2) /(0 (2))]|
< [u(0)£u((0))] +s2]§E(z) [fa(0(2))] +SS£F(Z) [fa(0(2))]
< [u(0)£u(0(0))] +C82H1]3>|fn(</>(1))| +ng£lf£(¢(1))|-

From Lemma 5, limsup|f,(z)| = 0. Since f, € 2, we have that f, € %, and
"= zeD

1 fullz, = lfull 2z, —1£2(0)|. Then {f;} is bounded in %, . Because f, — 0 uni-

formly on compact subsets of D). By Cauchy estimate, {f,} also converges to 0O

uniformly on compact subsets of D. From Lemma 4, lim sup|f;(z)] = 0. Then
= zeD
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lim ||uCy fu|| 2, = 0. From Lemma 6, we see that uCy : 2, — %, is a compact
gge;ator.

(ii). Sufficiency. Assume that {f,} is a bounded sequence in 2, and f,, — 0 uni-
formly on compact subset of D. Without loss of generality, we assume that || f[| ;, < 1.
By the assumption, for any € > 0, thereis a 6 € (0,1) such that

F(z2)Gu(9(z)) <& and  E(2)Hu(p(2)) <€

when 6 < |p(z)| < 1.

Set Ks = {w:|w| < 8,w € D}. Then Ky is a compact subset of ). Because
fn— 0 and f, — 0 uniformly on compact subset of ID, we see that there is an N € NT
such that

sup |fu(w)| <&, sup |f,(w)| <&, when n>N.
weKg weKg

If |p(z)| > 6, by Lemma 3

o(2]) | (uCo ) (2)| = @ (I2]) [u' (2) fa(@(2)) + u(2)¢’ (2) £ (9(2))]

<EQ@)|ful0@)+F(2) | f1(0(2))|

< E(@Hu(9()) | full 2 + F(2)Gu(@(2)1f; ]l 2,
< EQ@QHu(0@))[|full 2 + F(2)Gu(@(2)) [ fnll 2,
< 2e.

If |¢(z)| < &, then
o(|2]) |(uCo £u)'(2)| = @([2]) [u' (2) fu(9(2)) + u(2)"(2) f(9(2))]
< supE(z)e +supF(z)e
zeD z€D

< Ce, when n>N.

Thus
[uCo full 2, = |1(0) fu(9(0))] “25“’('2') |(uCy fn)' (2)| < Ce

when n > N. Therefore liIIOIC |uCop full 2, = 0. From Lemma 6, uCy : 2, — %y is a
compact operator. "

Necessity. By the boundedness of uCy : 2, — %, we see that u € A, and
uQ € By . Let {z,} be a sequence in D such that ,}E{}O‘(P(Zn” =1.Let ay, = ¢(z),

) = /OZ/Ot Wi(s)dsdt ~ and  N(z) = /OZIJ*(S)‘ZS

Here . (z) denotes the analytic function related to (t(¢) in Lemma 1. Set
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_ |an|?2? |an |’z
n(z) = M(a, M|—F— | —M| —— .
anle) = M(aa) (w1 (2 -
Obviously, f,(0) = f,(a,) =0 and

3.2 3
a an|™ 2
o) =avia) (m (1205 ) - (125
a ay
2 n3 n3 2 n3 n3-
ot (2 (1) (12
a a an an

Thus, £;(0) = 0. f}(a,) = @) and

where

/ _ M 2 3
gnlan) = —=—M(|an|")N(|an|"). (13)

n

Moreover,
3.2 3
an|™ 2 a,l°z
st = @ (w (45=) - (%))
an a,
2la,|? 3,2 3 3
+2WN(WZ)< |anz‘ ZN<|an2Z )_ ‘an| N(a,,| z))
y a, dn an
S W 1\ 1 o W O 1
M N _ ) .
+ (anz)< a% a% + a;‘ lJ'* a% a% .LL an

By Lemma 1 and Remark 1,

sup sup u(|z)|u«(n)| <C,
2€D |n|<l2|

N(n)| = \/O"u*o)dr
2

w1 < [ [ o) dsdr+u<|z>(/“"z'u*<t>dr). (14)

By Lemma 2, there exists a 0, € (0,1) such that u is decreasing on (0., 1). For any

|z| > V&, |an| > V6.,

ant 2 lanh) [l ?
llel) (fo oyt _u ) ([0 ()
vl 8 (s)dsdi Josl 8, (s)dsd

0]
< /O w0)d <p.(nl),  vneD.

Therefore

~ Q(|anzl), 15)

where
(o e (t)dr)?
() Ji (= ) (1)

O(u) = ue(0,1).
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We have known that p is decreasing on [d,,1) and

lim . (1) = . (16)
—
Since |l‘iml H, (z) = oo, \l|im1 Gy (z) = oo, we have
Zl— Z|l—
s S
tim [((s—n)u()di = and lim / 1 (1)t = oo. 17
S— 0 S— 0

From (16) and (17), there is a &; € (8, 1), such thatif u € (61,1),

% (/Ouu*(t)dt>2 < (/Ouli*(t)dt>2— (/Oau*(wdt)z < (/Ouu*(t)dtf,

)

%mﬁqéw—wm@wéuAWAQw4mmmr#M®[;@—Om@w

u

uwaQw4nuww>uwa<w4nuﬂm—uxaﬂfw—ﬂmoMn

By Cauchy’s differential mean value theorem, for any u € (0;,1), there exists a ) €
(8,u) such that

u 2 ) 2
o~ (g e (0)d? = (J5 o))
e (a0) J (= D) (0)dt — e (8) [P (8 — 1) (1)
_ 2u(n) Jo! w(t)dr
ui(n) fon (M — 1) (t)dt + e (n) fon W ()dt
B W (n) fN(n =0 p(r)de !
‘20+ (1) 17 e (1) )'

From Lemma 1, w.(z) is increasing on [0,1). Thus for any ¢ € (0,1), ul(r) > 0.
Therefore Q(u) is bounded on (8;,1).
By (15), if |anz| > 61, |an| > V8, |z| > /3., then

pel) (4 o))
MiJa)

<C.

Otherwise, at least one of the inequalities |a,z| < 8, |an| < /8, |z] < /8. holds. Let
& = max(8;,v/8,). Then |a,z| < 8. Since lim, _...|a,| = 1, there exists an N such
that |a,| > § when n > N. Because [ is a positive, continuous function on [0,1) and
tlgrllu(t) =0, we have

(el (15 )" ) (452 o))’
M(janl) 1 Ji e (s)dsar

<C,
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i.e., we get
2

ute) ( " ) < ()

when n > N. Therefore forany z€ D and n > N,

ueh [ " m(z)dr)z < CM(jay ).

Since

lanz| pt
[ [ wetsdsar < mja),
0 0

by (14), (18), (19), we get that || f,|| 2, < C when n > N.

(18)

19)

Since M(|an|) = Hy(an), ,}L‘E,Hﬂ (ap) = oo. Then f, — 0 uniformly on compact

subsets of . Using Lemma 6, we obtain
tim (|2 ) [of (20 () + u(z)9/ (@) (9| = 0.
Because of f,(¢(z,)) =0, we get
lim F (zn)[£,((zn))| = 0.

n—oo

In addition,
‘2

/Oan /”* dsdz>/| (|an|2_s).u*(\/_)ﬁds
N/llan (1] — $)pta(s)ds

/‘lan /lan /‘lanl 1 1 d 1 /laﬂl 1 d
dt ~ —— ———=dat > = —dt
t3 o u@®)3v2 T 3Jo wu@)

From (13) and (20), we get
2 3
lim F(z0)M(|an|*)N(lan|”)
oo M(|anl)
By (21) and (22), we obtain
Flan) Jo™ gyt 1" (fan = 5)pao(s)ds

lim Ia =0.
e " (lan| = s)p(s)ds

=0.

Since hm f‘zl 14 )’dt = oo, we get

lan|l 1
lim F z,,/ —_dr=o0,
P [

(20)

21

(22)
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which implies that

Jim FE)Gu(0(2) =0,

Let pu(z) = A;agi)|)7 where ¢,(z) = (M(@yz))?. Then ¢/,(z) = 2@;M (@;z)N (@nz),

d(2) = 2(@)* (N(@2))* + 2(@)* 1. (@nz)M (@),
4n(0) =0, ¢,(0) =0, pp(a) ~ Hy(an) = Hu(@n(zn))-
From Lemma 1,

(lzDlgn ()] S p(l2D) b @i2) 1M @n2)| + p([2]) IV (@z) |
2

an)+u() (| o o))

By (18), we see that ||p,|| ;, < C forany n > N. Moreover it is easy to see that p, — 0
uniformly on compact subsets of . By Lemma 6, lim,—... ||uCyp|| 2, = 0. Therefore,
by Lemma 1

E(20)pn(@(2n)) = F () P (@(20))]
CE(20)Hu(9(zn)) — F(2n) G (@ (zn)) | Pl 2
CE(20)Hu(9(zn)) — CF (20)Gp(@(2n))-

Because | (11)1‘11 1F(Z)G#(qo( z)) =0, we get limy, ... E(z,)Hyu(¢(z,)) = 0, which im-
(p —

||MC(Pan=@w

VoV WV

plies
lim E(x)Hu(9(z)) = 0.
lo(z)|—1

(iii). Sufficiency. Similarly to the proof of (i) and (ii), if | (11)1‘11 1F (2)Gu(p(z)) =0,
¢2)|—
then uC, is a compact operator when lim H(z) < e and |l‘im1 Gy(z) =oo.
Z|—

Izl =1

Necessity. Let {z,} C D be a sequence such that lim |@(z,)| = 1. Let a, = ¢(z,).
Set

o (Jo e(s)d ) dl

e o
Then
= (fﬂz ( )d )2
n(2) = nio & and ky(z) = 2() s (@2) Jo" 1 (s)ds

f(lan‘ W (s)ds f(lu"l W (s)ds

By Lemma 1 and Remark 1, we see that k, € Z,,. Moreover, k, — 0 uniformly on

compact subsets of D. From Lemma 6, hm n [|uCoki |, = 0. Since supE(z) < e, by
zeD
Lemma 5 we get limy,—.c. E(z,)|kn(a,)| = 0. Since

Hucq)fn”,%w = F(Zn)|k:1(an)| _E(Zn)|kn(an)|7
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we get
HIEEQF(Zn”k;(an)‘ =0.

L

Since p.(t) ~ oL that is

u
janl® 1 ds ?
lim F(z) |~ *0) ) —0. 23)
n—oo |“n‘%ds
u(s

For any u € (0,1),

Iy T U L I
0 u(r) o u(vV)2vi T 2Jo u(Vr) 0 ()
thus lim fé‘z —L_dt = co. So thereis an r € (4, 1), such that if u > r,

u—l1 u(r) 2

2

1/%2 1 /u2 1 /i 1 / 1
| ——ar< | —dt— | —dat< | ——at
2Jo u(r) 0 u(r) 0 M) 0 u(r)

1 1 | 31 woq
5/0 mdrg/omdt—/o mdtg/o Mdt

From Cauchy’s differential mean value theorem, for any u € (r,1), there exists an 1 €
(+,u), such that

and

w1 w1 1 1
I Tt N I mdr—fo“ Tt B Zn—u(rﬂ

= ~ 1.

1 T 1
Jo amdr g Tt = Jo u(m

—

By (23), we get

n—o0

lanl 1
lim F(zn)/ =0,
o u

which implies that
lim F(2,) Gy (9(zn)) = 0.

Therefore ‘ %1)r|n 1F (2)Gu(@(z)) = 0. The proof is completed. [
0(2)|—
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