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SHARP BOUNDS FOR m-LINEAR HILBERT-TYPE
OPERATORS ON THE WEIGHTED MORREY SPACES

TSERENDORJ BATBOLD AND YOSHIHIRO SAWANO

(Communicated by J. Pecaric)

Abstract. On the product of m weighted Morrey spaces, some m -linear operators are shown to
be bounded. The operator norm is calculated explicitly. It may be interesting to compare the
results for the Hardy operator and the ones for the Hardy-Littlewood maximal operator. In the
end of this article, some concrete examples are presented.

1. Introduction and main results

In this paper we show that weighted Morrey spaces are useful when we consider
norm inequalities of m-linear operators in that the best constant can be attained. For
example, the Hilbert inequality asserts that

[(x)g(y) n
R%r ﬁdxdy < {ecosec ; Hf”LP(RJr)”g”U,(RJr) (1)

holds for non-negative functions f € L”(Ry) and g € L (Ry) for 1 < p < eo. The pa-

rameters p and p’ appearing in (1) are mutually conjugate, i.c. %—i—# = 1. In addition,

the constant cosec (%) is the best possible in the sense that it can not be replaced with
a smaller constant so that (1) still holds. The Hilbert inequality is one of the most inter-
esting inequalities in mathematical analysis. Its applications have contributed so much
in diverse fields of mathematics. At present, because of the requirement of higher-
dimensional analysis and operator theory, multidimensional Hilbert-type inequalities
have been studied. For more details about the Hilbert-type inequality, the reader is
referred to [1, 2, 16, 18] as well as [20].

We present the definition of the weighted Morrey space .Z) (R, wi,w;) on Ry,
where wi,w, : Ry — R, are positive measurable functions.
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Keywords and phrases: Sharp bound, m-linear Hilbert operator, Hardy operator, Morrey space, Hardy-
Littlewood maximal operator, Fefferman-Phong inequality.
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DEFINITION 1. Let 1 < ¢ < p < . Then the weighted Morrey space
AP (Ry,wi,wy) is the setof all f € L] (R;) for which the norm

loc

1
q

1_1
1.5 =500 08 ([1r0I2 ) )
is finite, where
() = [wi()dy

Here I moves over all intervals in Ry . When wy = 1, abbreviate .} (R, wi,w2) to
Q%;(R_F,Wz) .

In the present paper, we are particularly interested in the norm

11 1
B o P q B q
U Lagin ey =00 fxe) " (flronP ar)

It is easy to verify the following scaling law:

LEMMA 1. Let 1 <qg<p<ocoand o, €R. Lett >0 and f € M} (R, x* xP).
Then we have

1_B 1.1
T [T Y @

Motivated by (2), we define the dilation index for .4} (R ,x* xP) by

et ea(-t)

As the relation .} (R ,u,w) = LP(w) with norm coincidence implies, weighted
Morrey spaces may be considered as an extension of weighted Lebesgue spaces. Fur-
thermore unlike the weighted Lebesgue space L?(x*) the weighted Morrey space
ML (R4, x% xP) contains x~4(P4:%B) when o # —1. More precisely,

LEMMA 2. Let p>qg>1and o, € R. Then

_1
q 1
Hx_d(pgﬂ’ﬁ)H,///qf’(ﬂ{+7xa,xﬁ) = (1 — %) e +1|77. (3)

Thus, x~*P4%B) ¢ 7P (R, x* xB) if and only if o # —1.

As we establish in this paper, such a function attains the best constant in many
occasions. Thus it is natural and important to study the boundedness of the operator on
weighted Morrey spaces.
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In this paper, placing ourselves mainly in the setting of .} (R, x* xP), we ob-
tain the operator norm of m-linear Hilbert operator as well as the one for the Hardy
operator given by

@ =1 [ o)y (>0,

We obtain the corresponding new operator norm inequalities as well.
We shall prove the following results.

THEOREM 1. Let m € N. Suppose we have real parameters o, B, Bj,p,q,p;,q;
for j=1,--- m satisfying

I<g<p<oo, 1<gj<pj<eoo

Jor j=1,2 ... ,m. Assume
1 1 1 1
—:—+—+..._|__ (5)
P P1 P2 Pm
and | | 1 |
—=—+—4+-+—. (6)
q q1 q2 dm
Set 5 ;
4 1 i 11
Cp-7q7q-,067[3' :d<p'7Q'7a7,—>:_+_+a<___ .
(J J j) J 4 q pj q pj qj

Furthermore, let K : Rfrl — [0,00) be a measurable function homogeneous of degree
—m satisfying

m

M = /Rm K(l7y17y2, Ce 7ym) Hyj—c(pjﬂq:qjaa’ﬁj) dyl dy2 . dym < oo, (7)
+

Jj=1

Then the m-linear Hilbert-type operator
m
T(f17f27 s 7ﬁn)(x) = /Rm K(xaylay27 cee 7ym) Hfj(yj)vdyl o dym ()C > 0)
¥ j=1

is a bounded linear operator from H;f': 1 Q///;/:" (R+7x°‘7xﬁ/q-f/ 9 to MY (R+7xa,xﬁ ) with
the operator norm less than or equal to M .
Moreover, if p; > q;, o0 # —1 and
@ _92_ _9n

; ®)

a
P1 P2 Pm p

then

I =M. )

Ty oy (B o P9509) s (R )

By letting g; — pj, j=1,2,---,m we recover the results on Lebesgue spaces.
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COROLLARY 1. Let m € N. Suppose we have real parameters B,Bj,p,p; for
j=1,---,m satisfying

1
1< p<eo, 1<pj<eoo, [3,-<p<1—p—>, B>-—1
j

for j=1,2,....m. Assume

1 1 1 1
B=Bitthu —=
P p P2 Dm

Furthermore, let K : Rﬁ“ — [0,00) be a measurable function homogeneous of degree
—m satisfying

m
/l;" K(17y1ay2a"'7ym)Hyjj d}’1d}’2 dym < oo,
@ =1

for aj,ay,---,am > —1 and ay +ar+---+ay < 0. Then the operator T is a bounded
from [T}, LPI (R, xPiri/P) 1o LP (R, ,xB) with the operator norm less than or equal

to
B;

m _1_Tj
ML=/Rm1<(1,y1,yz,---,ym)]_[yj Y dyydyy - dym.
T j=1

Moreover,

||T||H;-”:lij(R+,xﬁjpj/p)—>Lp(R+7xﬁ) :ML' (10)

The proof of Theorem | hinges upon the Holder inequality for weighted Morrey
spaces. In fact, (4), (5) and (6) yield

m

1f1f2- fll p (e, o ) < H1 ||fj\\,%51(R+7xa7xﬁjqj/q) (11)
i _

forall (fi,fo,...,fm) € 17, ALY (R, x* xPi4i/9) since
J=1774;

fl(x)qu(x)q~~~fm(x)qxﬁ :fl(x)‘fxﬁ'fz(x)‘fx 2 o (x) TP

The next theorem concerns the Hardy operator.

THEOREM 2. Let 1 <g<p<ooand o, €R, aa# —1. Then H is bounded if
and only if

1 B 1 1

d(p,q,o, :—+—+a<———><1. (12)
( ) P q P g

In this case, the following equality holds:

1

Vg e )ty R 8) = T30, 0 B 4
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See [4, 6, 8,9, 10, 14, 15,17, 19, 22, 23, 31, 32] for the Hardy operator on Morrey
spaces in various settings.
Mixing Theorems | and 2, we obtain the following inequality:

THEOREM 3. With the assumptions as Theorem 1, if
1 1 1
C(pj7Q7qjaa7ﬁj):_+E+a<___><O (14)
pj 4j pj 4

and each f; is a differentiable function such that fj(0) =0, j=1,2,---,m. Assume in
addition that M given by (7) is finite. Then

||T(f17f27' .. ,fm)HL/[qf’(RJﬁxd’xﬁ)

m
< MH1 ‘C(p/?q7q/7 a7ﬁj)|7l H'@+fj||///;jj(R+,xa,xﬁ-fq-f/q+qj)' (15)
j:
Moreover, if pj > qj, o # —1 and ;—11 = % e " %7 then the constant factor
- 1
MTTIC(pj-q.q5,0.8)| (16)

Jj=1

is the best possible.

Similarly, letting ¢; — p;, j=1,2,---,m, we obtain the following corollary.

COROLLARY 2. With the assumptions as Corollary 1, if C(pj,p,pj,o,Bj) <0
and f; is a differentiable function such that f;(0) =0, j=1,2,---,m. Then

HT(flaf27'"afm)||Lﬂ(R+7xﬁ)

< MH |C(pj7p7pj7aaﬂj)|7l ||-@+fjHLPj(R+ xﬁjﬂj/P+P_/)7 (17)
=1 ’

where the constant factor MT} IC(pj,p,pj, 0, [3,-)|_1 is the best possible.

For some related Hilbert-type inequalities involving some operators on weighted
Lebesgue spaces, the reader is referred to the following references: [1] and [2].

2. Proof of the main results

First, we shall show the scaling law in the weighted Morrey space .7 (R ,x“,xﬁ)
forall 1 <g<p<e and o, € R. We prove Lemma 1.

Proof of Lemma 1. We calculate that

11 1
7 q 7
||f(l")H'/”qP(R+7xa7x,B) = Sl;p (/Iyo‘dy> (/If(t)’)qyﬁ dY>

1 1 1
_1_B P a
=4 7 sup (/y"‘dy> (/ If(y)qyﬁdy)
I I tl
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Proof of Lemma 2. Writing out the norm fully, we have

L2 1
”X—d(p,q,oc,/i)H///p(R oy = sup (/tzxadx> » g (/tzx_d(p,q,a,[})qﬂsdx)q
T 1>11>0 \/1 1

Notice that

(ot 1) (})—g) ~dp.aap)+ B <o ()

Thus, by the scaling argument, we have

t
—d(p,q.a.,B) = ¢
||x—dPa Hb/lqp(R+’xaﬁxl3) = sup (/1 X dx)

t>1

( /fx_d@.,q.,a,mwﬁ dx)"
1

I
N,

Assume first that o > —1. In this case, we have

+1 1 1
Pl dpgop) =t (5 1) >0
q q P
If we calculate the integral, then we have
||x—d P:q,0,B) || ///p R+,xa,xﬁ)
1.1 1
_ (a+1)7 7 _sup (1 — 1)#5 (,—d(p,q,a,li)q+l3+1 _ 1) 7

(ﬁ +1 _d(pqua7ﬁ)q)a =1

From (18), we deduce

11 1 - 1
(ot D F B 1 dlpgia )t = (1-2) " (ar )
Again from (18), we have
1 1
—d(p,q,0,B)g+B+1=gq - (a+1).

As the relation

ab_ (17— 1)V b/ ”lds—1<b/“ds
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fora>0,0<b<1and?>1 implies

(~dp.a.aBgtB+1 _ g :t(a+1)(1—%) < 1)17%'
Thus,
1
sup (1*+! — 1)%’5 (,—d(p,q,a,ﬁ)q+ﬁ+1_ 1) T
t>1

Hence (3) holds.
If ¢« < —1, then

1
—d
|[x—dPa-eB) ||///p (R xe By = SUP (/[ xadx)

0<r<1

<=
-

1
(/1xd(p7Q7a7ﬁ)q+ﬁ dx) !
t

by the scaling argument. Calculating the integral, we obtain
1_1 1
ol g N\r a [ dpgaflgtB 1 |4
fod(w,a?ﬁ)” (R0 ) = SUD <7> .
g (B4 0<t<1 —(O{—i—l) d(p7q7avﬁ)q_ﬁ_l

By the change of the variables, we have
1 1
g Td(p.g.0.B)a—B _ q
d(p7q7aaﬁ)q_ﬁ_l '

1
T—(OH-l) _1 p
—d(p,q,a,B) = _
x « py = SU
” I g0y = 500 ( (ot 1)

Going through a similar argument, we learn (3) holds.

Finally, let o = —1. Then we have
. 1_1 . 1
_ _ r 4q _ q
||x d(p7q7a7ﬁ)||l///,f(R+,x",xﬁ) = fg? </1 x ldx> </1 X ldX> =00

again by the dilation argument. [

Proof of Theorem 1. By the change of variables, we have

m

T(f17f27"'7fm)(x) :xmAn1 K(x7x)’1»x}’27~~»x}’m H xyj dyld)Q dy
¥

Since K is homogeneous of degree —m, we obtain
m
T(fl7f27 7.f;ﬂ / K yY15Y25 -+ Ym H xyj d}Hd)Q dym

By the triangle inequality, we have

HT(f17f27"'7fm)||,//{;(R+7xa7xﬁ)

T1505)
j=1

dyidy; -+ dyp.

</mK(l7Y1»y2»-~~a)’m) ’
R MR 03P
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By the Holder inequality (11), we have

||T(f17f2a~~~ 7fm)H,/%‘f(R+7x°‘,xﬁ)

m
g/RmK(layla.)Qa"')yM)]i[Hfj(yj')||'/[lfj(R+7xa7x'Bj‘ij/Q)dyldy2 dym
+ j=

J

Using Lemma 1, we obtain

mn m
/ N D = »7C(17’7q7q’7a7ﬁ’) . .
J.:H1 Hf/(yj )H///J/(RJMX(X’xﬁjqj/‘I) J;[ly/ J J J Hf]“L%Z,(R+,ya,yﬁ-fq-f/q)
and hence
m
”T(fl;fZ, e afm)Hb/[(f(R%xa,xﬁ) < MH Hfj||=///,;)7(R+.xa.xﬁj‘ij/‘1)' (19)
j=1 J e

As a result it follows that the integral operator T is a bounded linear operator from
H;”:l///tz.’ (R, x% xPiti/9) to ///f(]RJr,x“,xﬁ).
Now, we will show that the operator norm of T is exactly M. Taking

fi(x) =x CWPiaapeB) =

we calculate that
T(f1,f2re s fon) (x) = M 4P (20)
Thus we see that (9) holds. [

Proof of Corollary 1. By letting g; — p;, j=1,2,---,m on the inequality (19),
we have

IT(frsf2s s S o (m, w8y < ML H1 Fill o g, (Bimito): @D
p

Now, we prove that inequality (21) involves the best possible constant factor on its
right-hand side i.e.

Il =M.

T 20 (R P75 1 (R, )

First, suppose that there exists a positive constant C smaller than M| such that the
inequality

||T(f17f27---afm)HLﬁ(R+7xﬁ) < C'l_ll ||fjHLI’j(R+7x,le’j/l’)' (22)
j:

Let € > 0 be a sufficiently small number. We set
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for j =1,2,---,m. Considering the inequality (22) with functions ff defined by

fj‘?('x):xajx(l,m) (jzlaza"'am)a

we learn that the right-hand side reduces to

1 1
m m 1 ?/ 1 i
1'1:[1 ||ffHLP./(R+7xﬁij/p) = H (E) = (‘) . (23)

Jj=1 €

Let p > 1. We calculate that

HT(figvffw~~7f:1)||LI’(R+7xﬁ)

1

oo m p P
= </0 ( R K(xa}’b}%,)’m)Hff(YJ)dYIde> xﬁdx>
+

j=1

- m P L
= / / K(xa}’la}’2a~~~,)’m)Hy?de1---dym Pax) .
0 (1,00)m i

Then using the Holder inequality, we have

||T(f1£7f§77 ;181)||U’(R+7xﬁ)

1
* m P 7
> <‘/1 <‘/(1 )mK(xaylay2a"'7ym)Hyjjdyl'--dym> xﬁdx>

j=1

oo _L/ 00 m . ﬁ 1 £
2(/1 x‘l‘gdx> ,,/1 (/(1 : K(x7y17yz7m,ym)]_[yj"dyl---dym>x1’""”dx
j00)™ j=1

00 m
I=/ xloe / K(Ly1,y2,-vm) [167dvi---dym | dx.
1 (1/xeo)m 1

In the case p = 1, we can get a similar inequality as above without using the Holder
inequality.

Let j=1,---,m. We write

]DJ:D/('X) :{()’17)’27---,)’mﬁ0<}’j < l/xayi >O7l7éJ}

We also set

I,(.X):/ K(layl7y27"'aym)Hkady1"'dym.
2,9 =

J



272 TS. BATBOLD AND Y. SAWANO

In view of the overlapping of the D;(x)’s, we have

« dx mo o m
12/1 Ylte ( R,,,K(LyhyLm,y;n)Hyj’7dy1---dym> —/1 x ! €Y I;(x)dx
L Pt

1 J R 1;( x)
> 2 RmK(l,yl,yz, - Ym Hy, dyy -~ dym— / ——dx,

(24)

Without loss of generality, it suffices to find the appropriate estimate for the integral

/ K yV1:Y25 -5 Ym Hyjjdyl dym
i=1

To this end, we choose ¥ such that 0 < vy < 1+ay, so that

- IOgy 1S
for y; € (0,1]. Then by virtue of the Fubini theorem, we have

/ x U (x)dx
1

oo m
2/1 fl/D K(l,yl,yz,..~,ym)Hy?"dyl---dymdx
1 j=1

oo 1/x noo.
=/ X! l/ ,1/ K(ly)’h)’Z;---aym)HijdYI"'dym] dx
1 r71 Jo .

J=1

1 LIy I
:/ 71/ K(Lyl,yz,...,ym)Hy,» / X dx ) dyy - -dyp
rR71Jo j=1 " 1
1 moo
=/ 71/ (—logy))K(L,y1,y2,- - ym) [T dy1 -+ dym.
RT 0 j=1 X
From (25), we deduce
oo 1 _ m a
/ Xy (x)dx < —/ l/ (Ly1y2s-ym)yy ' Ty dyi - dym
1 Rm j=l v
1 _ a;
<— [ K(Lyi,yz,. o ym)y YHy,-’dyl---dym <o
e’y Rm j=1
Hence by (24), we have

TGS e S

A% uig 1\ 7
> - / K(17y17y27'”7ym H dyl dym_ - 0(1)
e) Jrn €

(25)
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Moreover, (22) and (23) imply that

m

C>/RmK(1aylay2a"'7ym H jdyl dym_ga(l)
+

Obviously, letting € — 07, it follows that C > M , which contradicts our assumption.
Hence, My is the best possible in (21). [

Proof of Theorem 2. Let us suppose d(p,q,0.,3) < 1. By the change of variables,

we have
1 X 1
=3 /O f(y)dy = /O fxy)dy

Using the triangle inequality and the scaling law, we have

1
VAN s a8 =H/'fwwdﬂ
///q (Ry x* xP) 0 =///;(R+,xa,xﬁ)
1
< [ IO piz oy
1
T T o) ey

To calculate the operator norm, we define f(x) = x~4(P4%B) Then

1
110, 00) = =g g )
1
m“f||//;(m+,xa,xﬁ)~

—d ;
[ x (’”q’o‘p)||,//4’(R+,xa,xﬁ)

If d(p,q,0,B) > 1,then Hf = oo for f(x) =x"4Pa%B) c PR, x* xP).
The proof is now complete. [

Proof of Theorem 3. In order to prove (15) we will rewrite the right-hand side of
inequality (19) in a form that is more suitable for the application of the inequality (13).
Namely, since

H(9:£)) = [ £/(0di = ) = £0) = fl2),

we have that

MH”fJH R+xaxﬁqu/q _MHHXH @+f])“ xaxﬁ]q]/q (26)



274 TS. BATBOLD AND Y. SAWANO

Now, due to the inequality (13), it follows that
||XH(@+f])H R X9 ﬁ/l]j/l])

||H(-@+f/>H R+ o xﬁ/l]j ‘1*‘1,)
1

<
1 —d(pj,qj,, Bjqj/a+4q;)
1
= Cnaan a7l ag e e proiieray @
Hence, the inequality (15) holds due to (19), (26) and (27).
It remains to show that M T}, |C(p;,q.q;, ¢ B;) | =1 is the best possible constant
in (15) when p; > ¢q;, a# —1 and (8) holds. Now, for each j=1,2,...,m consider
the function f;(x) = x~C(P4:4;:%B;)  Then

HngffHL%‘ZJ(R+7xaﬂxﬁ_jl]j/l]+l]j)

@.t,_fj (X) = _C(pj7CI7CIj7 avﬁj)xC(ph%q'ha’ﬁj)_l

Thus we see that the constant factor (14) is the best possible. [

Proof of Corollary 2. The proof is similar to the proof of Corollary 1. We leave
the details to the reader. [

3. Examples

In this section, we discuss our main results with regard to some particular choices
of kernels.

3.1. Three convergent integrals

We give the necessary and sufficient conditions for the multiple integral in these
theorems to converge.
We calculate

y1u1y2’12 ey Aam
=/ ———dydy;--- dyn,
Ri max(17y1a~~~7ym>

Y14y ey

— dyidy; - dym,

/R’i (T y1tyzt oy 2
Y1 a1y2a2"'ymam

R (143124924 +yn?)?

K= e dyrdys - dyp.

LEMMA 3. Let ay,ay,...,an € R. Then the following are equivalent:
1. ay,ap,....ay,,>—1 and a;+ar+---+a, <O0.

2. I <o,
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3. T <oo.

4. K<oo.

Proof. Clearly I and J are simultaneously finite since

max(L,y1,y2,. .., Ym) < L4+y1+y2+ -+ yu <mmax(L,y1,y2,...,Ym)-

Likewise I and K are simultaneously finite. By the polar coordinate K is finite if and
only if

Ay, a2 ...y Am
L:/ Yioy2 Ym T dyydyy - dyy
1<y 4yt <4 (1412 +y22 4+ ym?) ?

and
/ ,,a1+a2+ +am+m—1

C(1+)F

are both finite. Thus, I is finite if and only if ay,as,...,a,, > —1 and a1 +ar+--- +
a,<0. 0O

LEMMA 4. Let aj,ay, ... ,ay € (—1,00) satisfy a; +a,+ -+ ay, <O0.

I 1= —m US|
L aitarttap e+l
2 Jo IN—a;—ay— - —an)lT(a;+ D (ay+1)---T(an+1)
. T(m) .
P 1"(“1+“2+'2"+am+m)r‘(’“—al—azz—"'—am) ﬁr<a +1>
2"C(m)T (%) il

Proof. (1) This integral is calculated in [3, Claim 1]. Here for the sake of conve-
nience for readers we supply the proof. We calculate

Y122 ey
I =/ dyydyy---dy
" 0<Y1, Y250 Ym—1 <Ym <0 max(lvylv"'7ym)m "

By simplifying the expression, we have

yla1yZa2 ym

I, = / dyi1dy; -+ dym.
0<Y1,Y250 e Ym—1<ym <o max(l,ym)

If we integrate against yi,y2,...,Vm—1, we have
m—1+atax+-+am

1 Vm
I, =
" (ar+ D) (ag 1) (@ +1) R, max(l,y,)™"

dyidy; -+ dyp.
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Since
/ ymm—1+a1+a2+~~+am dyl dy2 N dy
R, max(l,y,)" "
1 1
T mtaitarttam artat-+an
—m

(m+a+ax+--+am)(ar+az+--+am)

(2) By the change of variables, we have

am

ylalyzaz ©Vm

/yl+}’2+"'+)’m<R7)’17)’27-~-7)’m>0 (I+y1+y2+-+ym)
_ Rzn+a1+a2+'~+am

—dyidy:-- - dym

am

></ ylalyzaz...ym
Vit <Ly yeym>0 (1+RY1 + Ryy + -+ + Ry

)m dy1 dy2~~~ dym.

The above integral is known as the Dirichlet integral. Thus,

/ ylaly2112 .. .ymam
Vvt by <Ry Ly eyn>0 (LE YL+ Y2+ + Y
_ Rm+a1+a2+m+am . F(al + 1)]"(a2 + 1) .. .r‘(am + 1) /1 tm—1+a1+a2+'~+am
Tm+a+a+---+an) Jo (1+Re)m
C(a; + D(ag+1) - T(ay +1) [Ryn-Iratatta
C(m+a+ax+--+an) /0 (I+2)m

)m dyldy2 tee dym

dt

dt.

Since
=, 5, TA+ATB-A-1)
/01(1+t> dr = S (28)

for A> —1 and B > —A — 1, we have the desired result.
(3) By the polar coordinate, we have

oo ra1+a2+'~+am+n—l

K= Yy .oy, mdo ></ ———d
Yy Y ) b (11 22 r

sm—1

1 e a . o0 ral/2+a2/2+"'+am/2+n/271
—— 1 2 ... m

2 sm—1 Yy Ym dG(y) * /() (1 + r)’“/2 dl"

In view of (28), we have

1

K:— ay a .. made
2T (m) /SW1 Yy Y )

Xr<a1+a2+---+am+m>r(m—al—az—m—am).

2 2
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Note that
/ 1y1“1y2“2---ymamdc5(y)></ e_rzrm_ldr
sm= 0
~Jr mhal)’z“z"'ym“"’efy'tyzz*'"*y’”zd)ﬂdY2"'dym
+
1 —1 am—1 N VA
:2—m/ V1 2 y2 2 C Ym 2 e Y1—y2 y"’d)’1d}’2"'d)’m
R+m
1 2 aj+1
=3 (%),
Jj=1
Thus,

1 -1 1
/ Vi 2y do(y) = —— ( ) Hr<a1+ ) 0
sm—1 2 =1
3.2. The kernel K(x,y1,y2,...,Vm) = (max{x,y1,...,ym}) "

An interesting example of a homogeneous kernel with degree —m, is the function

1
(max{x7yl7”'7ym})m

K(xaylay2a"' ,ym) =

COROLLARY 3. Let m € N. Suppose we have real parameters o, 3, Bj,p.q,p;,q;
for j=1,--- m satisfying
I<gsp<e, 1<gj<pj<ee

for j=1,2,....m. Assume

C(p7Q7CI7a7ﬁ)<Ov C(P17476117avﬁ1)>_17 j:1727"'7m

1 1 1 1 1 1 1 1
—= e —, —_— =t — e —, ﬂ:ﬂ1+...+ﬂm.
P P1 P2 Pm q q1 q2 qm

Then the m-linear Hardy-Littlewood-Pdlya operator

1 m
TH(f17f27...,ﬁn)(x):/Rm(max{xyl WA H (vj)dyidys---dym (x> 0)

is a bounded linear operator from 1L My (R+,x°‘,xﬁf‘l-//’1) to MY R, x* xP).
Moreover, if p; > q;, o0 # —1 and (8 ) holds, then

17zl ., ///’,f Ry 3 PiiT)  pP (R x 1B

m
1
- . (29)
C(p 4,9, ) ,1;[1 1+C(pj.q.q5,0.B;)
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Proof. We have only to calculate

1 m
MH:/ 44128 @y, dys - dyy. O
rr (max{l,y1,...,ym})" U !

3.3. The kernel K(x,y1,y2,...,ym) = (x+y1+y2+-+ym) ™"

The standard example of a homogeneous kernel with the negative degree of ho-
mogeneity is the function, defined by

K(x,1,525 - ,¥m) = (x+y1+y2+ - +ym) ™"

The constant M, appearing in (7), can be expressed in terms of the usual Gamma func-
tion I'.
For this kernel, Theorem 1 yields the following.

COROLLARY 4. Let m € N. Suppose we have real parameters o, 3, Bj,p.q,p;,q;
for j=1,---.m satisfying

I<g<p<e, 1<gj<pj<e
for j=1,2,....m. Assume
1 1
ﬁ:ﬁ1+"'+ﬁm7 —_ =t — e — = — 4 — 4 —.
p q q
Assume that

C(p,q.9,2,B) <0, C(pj,q,q;,2.Bj) > —1,
Jor j=1,2,---.m. Then the m-linear Hilbert operator

1
X+yi+y2+-+Im

oo S0 = [ T 1":‘[f»<y,f>dy1---dym (x> 0)

is a bounded linear operator from [T}, Q///(Z:" (R+7x°‘7xﬁf‘11'/’1) to g///(f(Rﬁxo‘,xﬁ).
Moreover, if pj > qj, a# —1 and (8) holds, then

||T£B||Hm R+xaxﬁqu/q H/”P(Reraxﬁ)
I(- C(p 4,9, B))
= T0m) HF 14+C(pj,q.9),0.B))) - (30)

Proof. We have only to calculate

1 m
M / =C(Pj:a:9),%B) gyi dys -+ dy,. [
= o T | Hy, yidys - dyp

It should be noticed here that for g; — p;, j=1,2,---,m, Corollary 3 reduces to
the weighted version of [3, Claim 3.3].
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3.4. The kernel K(x,y;,y2,

s Vm) = (x2 —|—y12 +y22 . _|_ym2)—m/2
For this kernel, Theorem 1 yields the following

COROLLARY 5. Let m € N. Suppose we have real parameters o, 3, Bj,p,q,p;j.q;
for j=1,--- m satisfying

1<g<p<e, 1<gj<pj<ee
for j=1,2,....,m. Assume
1 1 1 1 1 1 1 1
ﬂ:ﬁl‘i‘""Fﬁm, —_ —_—t — et —, = P
P1 P2 Pm q q1 q2 qm
Assume that

C(p7CI7CI7aaﬁ) <0, C(pj7CI7CIjva7Bj)

,m. Then the m-linear Hilbert-type operator

1 m

for j=1,2,--

> 1,

is a bounded linear operator from T} ///p (Ry,x*,xPi®i/9) to M} (R, x* xP).
Moreover, if p; > q;, o0 # —1 and (8 ) holds, then

|| ﬁBHHm s (R+ X ﬁ,q//q)q///l(Rera xB)

m— C(p’q’q’a,ﬁ) m+C(p,q.4,0.B)
F( 2 >r< 2 )ﬁr( pJ7qu’aﬁJ) ) (31)
2'"1“(m)1“(%)

Jj=1 2

4. Remarks
4.1. Weighted Lebesgue spaces

It may be interesting to compare these results with existing ones

First, our results are located as extensions of the earlier results. In 2006, Bényi
and Oh obtained the following result [3, Claim 1]

THEOREM4 Let me N, 1< p,p1,
1

<, Pm < o be such that %—l—i—i----—i-
—)[O,oo

p Furthermore, let K : R’f”l ) be a measurable function homogeneous

of degree —m satisfying

m__

Cm:/RmK(la}’b}’an)’m H ]dyl dym<°°
.

Then the operator T is a bounded linear operator from [1jL; L7/ (R.) to LP(R+).
Moreover,

1Tl 1)1 ey = Con (32)
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In particular,

J . 1
HTeBHHm (LPT(Ry)—LP(Ry) = (—HF< ) (33)

J=l pJ

Note that Corollary 1 recaptures Theorem 4 as a special case of § = f; =, =
o =B =0.
In 2012, Fu et al. proved the following weighted partial extension of (33) [7,
Theorem 3].

THEOREM 5. Let meN, 1 <p <eo,1 <py, -+, py <o and Bi1,Ba,...,Bm sat-

isfy
1 1
—p<1+—><ﬂ,»<p<1——>, j=1.2,....m (34)
pPj ’ Pj
Assume that p and B satisfy

1 1 1 1
ﬁ :ﬁ1+...+ﬁm7 _—t — e — = .
P1 P2 Pm p
Then the operator Tg, is bounded from T1}_; LP/ (R, xPiri/Py 10 LP(Ry ,xB). More-
over,

b (B[l B
1Tl 2s s 70— ) = T) (T) [1r (Fz vy

Jj=1
1
Bi<p (1 - —)
’ Dj

in order that (7) holds. It seems that the left inequality in (34) is not necessary in the
light of Corollary 1.

As the following remark shows, the weight w» is less significant role in our gen-
eralized setting.

‘We need

REMARK 1. If

L(xayl 3 V25 7ym) = K(x7yl7y27 e 7ym)yl_ﬁl/qy2_ﬁ2/q o 'ym_ﬁ'"/q»

then

m

T(fl7f2a 7fm / K x 3 V15,Y25 -5 Ym H yj d}’1 d}’2 d Ym (x> O)

is a bounded linear operator from H;’Ll //,fjj (R+7x°‘,xﬁiqi/ 7) to AP (R+7x°‘,x/3) if
and only if

S(f17f27 afm / L.X 3 V15,Y25 -5 Ym Hf/ yj d}’1d}’2 d Ym (x>0)
Jj=

is a bounded linear operator from [T}, .#;/ o (R, x® xPidil) to A (R, x%).
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4.2. Hardy operator v.s. Hardy-Littlewood maximal operator

Next, let us compare Theorem 2 with the boundedness of the Hardy-Littlewood

maximal operator.
X
49 [1r)a
1l Ji

Let
be the Hardy-Littlewood maximal operator. We now place ourselves in the setting
of R instead of the half line R, so that we consider positive measurable functions
wi,wy : R — Ry . Then the weighted Morrey space .Z} (R, wi,wy) is the set of all
feLl (Ry) for which the norm

Mf(x)

1

11
1A ey g ) = Sule )7 q(/f )Iwa( )dy>
is finite, where
wih)= [w)dy

Here I moves over all intervals in R. The problem of finding the necessary and suffi-
cient condition for M to be bounded on .} (R, w1, w,) is open. We have the following:

THEOREM 6. Let 1 < g < p < oo and —n < o,3 < . The Hardy-Littlewood
maximal operator M on MY (R, |x|%, |x|P) is bounded if and only if

_%<1+a<1_§>><ﬁ<q—%<l+a<l—§>). (35)

Note that (35) consists of two parts; (12) and another condition. In both cases,
(12) comes about because of the test function x4(74:%B) for the Hardy operator and
|x|~4(P2-%B) for the Hardy-Littlewood maximal operator.

4.3. Fefferman-Phong inequality

According to Theorem 3, we have

-1
2 e = VS iy < (B3 ) 17 e,

with sharp constant together with the Morrey counterpart, which is nowadays called the
Olsen inequality [21, Theorem 2]. Recall that we define the fractional integral operator
I, with 0 < a < n by;

_ o)
lof(x) :/Rn Wdy

for all suitable functions f on R”. Olsen’s inequality is the one of the form

1§ Tafllz < Cllfllxlglly,
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where X,Y,Z are suitable Banach spaces. There is a vast amount of literatures on
Olsen inequalities; see [5, 24, 25, 26, 27, 28, 29, 30, 33] for theoretical aspects and
[L1, 12, 13,21] for applications to PDEs.
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