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D. PELLEGRINO AND J. B. SEOANE-SEPÚLVEDA

(Communicated by I. Perić)

Abstract. In this paper we study various polynomial inequalities for 2-homogeneous polyno-
mials on the circular sector {reiθ : r ∈ [0,1],θ ∈ [0, π

2 ]} . In particular, we obtain sharp Bern-
stein and Markov inequalities for such polynomials, we calculate the polarization constant of the
space formed by those polynomials and, finally, we provide the unconditional basis constant of
the canonical basis of that polynomial space.

1. Preliminaries

A straightforward consequence of the well-known Krein-Milman Theorem states
that any convex function f : K → R defined on a convex body (i.e., a convex and
compact subset with not empty interior) K ⊂ Rn attains its maximum at the extreme
points of K . This idea, which will be referred to, from now on, as the Krein-Milman
approach, has been used repeatedly in the past by many authors in order to obtain a wide
range of sharp inequalities. In this paper we apply the Krein-Milman approach in a very
specific setting, namely, the space of 2-homogeneouspolynomials on the circular sector
{reiθ : r ∈ [0,1],θ ∈ [0, π

2 ]} , or D
( π

2

)
for short. If P is a 2-homogeneous polynomial

on R
2 , we define its norm ‖P‖D( π

2 ) by

‖P‖D( π
2 ) := sup

{
|P(x)| : x ∈ D

(π
2

)}
.

Similarly, if L is a bilinear form on R2 , we also define

‖L‖D( π
2 ) := sup

{
|L(x,y)| : x,y ∈ D

(π
2

)}
.

The spaces of 2-homogeneous polynomials, bilinear forms and symmetric bilinear
forms on R2 endowed with the above norms will be represented, respectively, by
P

(
2D

(π
2

))
, L

(
2D

(π
2

))
and L s

(
2D

(π
2

))
. The unit ball and the unit sphere of
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P
(
2D

(π
2

))
will be represented by BD( π

2 ) and SD( π
2 ) respectively, whereas the ex-

treme points of BD( π
2 ) will be denoted by ext

(
BD( π

2 )
)

. The mapping that assigns

to every (a,b,c) ∈ R
3 the polynomial P(x,y) = ax2 + by2 + cxy allows us to identify

P
(
2D

(π
2

))
with (R3,‖ · ‖D( π

2 )) , where ‖(a,b,c)‖D( π
2 ) = ‖P‖D( π

2 ) . This latter rep-

resentation together with the usual polynomial representation of P
(
2D

(π
2

))
will be

interchanged throughout the paper.
In [28] the authors provide a formula for ‖ · ‖D( π

2 ) and an explicit description

of ext
(
BD( π

2 )
)

(among the description of polynomial spaces on circular sectors of

different amplitudes from π
2 ). More specifically:

LEMMA 1. (Theorem 3.1, [28]) If a,b,c ∈ R and P(x,y) = ax2 +by2 + cxy then

‖P‖D( π
2 ) = max

{
|a|, |b|, 1

2
|a+b+ sign(c)

√
(a−b)2 + c2|

}
.

LEMMA 2. (Theorem 5.2, [28]) The set of extreme points of BD( π
2 ) is given by

ext
(
BD( π

2 )
)

= {±Pt, ±Qt : −1 � t � 1}∪{±(1,1,0)},

where

Pt = (t,1,−2
√

2(1+ t)),

Qt = (1,t,−2
√

2(1+ t)).

Using this geometrical information in combination with the Krein-Milman ap-
proach we obtain

1. sharp Bernstein-Markov inequalities in P
(
2D

(π
2

))
,

2. the exact polarization constant of the polynomial space P
(
2D

( π
2

))
, and

3. the precise value of the unconditional constant of the canonical basis of the space
P

(
2D

(π
2

))
.

This article complements three previous works, namely [1], [14] and [34], where
similar questions are addressed for 2-polynomials on the circular sector of amplitude
π/4, D

(π
2

)
, the unit square � and the simplex Δ (the three in R2 ) respectively.

In fact, this paper, together with [1], [14] and [34] are just four among many other
research works where the Krein-Milman approach can be used in order to obtain sharp
polynomial inequalities of all kinds (see for instance [21, 29, 30, 32] just to mention a
few). Actually, the list of potential applications of the Krein-Milman approach can be
substantially enlarged if one takes into consideration the vast literature devoted to the
study of the geometry of polynomial spaces (see for instance [2, 7, 8, 9, 15, 16, 17, 18,
19, 20, 23, 27, 33, 36]).
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The first of the three questions studied in this paper deals with estimates on the
derivative of polynomials. We are talking about the so called Bernstein and Markov
inequalities. This kind of estimates have been studied since the chemist D. Medeleev
posed the first Markov-type problem back in 1889. Mendeleev wanted to know how
large the derivative of a polynomial of degree 2 can get in comparison with its sup
norm on some interval. Mendeleev’s question was generalized a few years later by the
brothers V. Markov and A. Markov, who finally proved that for a real polynomial p of
arbitrary degree � n we have that

‖p(k)‖ � T (k)
n (1)‖p‖, (1)

where p(k) stands for the k -th derivative of p , ‖ · ‖ is the sup norm over the unit
interval and Tn(x) = cosnarccosx , for |x| � 1, is the n -th Chebyshev polynomial of
the first kind. Inequalities such as (1) are known as Markov-type inequalities, whereas
pointwise estimates on the derivative of a polynomial are widely known as Bernstein-
type inequalities. Bernstein and Markov inequalities have been studied in the general
setting of Banach spaces (see [22, 31, 39, 40] and the references therein), where most
of the classical results in one variable can also be proved. Bernstein and Markov-type
inequalities have also been studied for polynomials on a convex body without central
symmetry (see, e.g., [4, 24, 26, 34, 35]). In this particular setting, it is customary to
find estimates on the Euclidean length of the gradient of the polynomials rather than
estimates on the norm of the differential. In Section 2 we provide sharp estimates on
the length of the gradient of 2-homogeneous polynomials on D

(π
2

)
.

There is another question that arises from the study of Markov inequalities for
homogeneous polynomials on a Banach space that is treated in Section 3. If E is a
Banach space over the field K = R or C with closed unit ball BE and n ∈ N , then
we will denote by P(nE) and L s(nE) the space of all continuous n−homogeneous
polynomials on E and the space of all continuous symmetric n− linear forms on En

endowed respectively with the norms given by

‖P‖ = sup{‖P(x)‖ : x ∈ BE},
‖L‖ = sup{‖L(x1, . . . ,xn)‖ : x1, . . . ,xn ∈ BE}.

According to an old and well-known algebraic result, for every P ∈ P(nE) there
exists a unique P̌∈L s(nE) such that P(x) = P̌(x, n. . .,x) , for every x ∈ E and the map-
ping P(nE) � P �→ P̌ ∈ L s(nE) is an algebraic isomorphism. Furthermore, Martin
[25] proved that

‖P‖ � ‖P̌‖ � nn

n!
‖P‖, (2)

for every P ∈ P(nE) . It can be shown that the constant nn

n! cannot be improved in
general since equality is achieved for �n

1 and the polynomial defined by Φ(x1, . . . ,xn) =
x1 · · ·xn for every (x1, . . . ,xn) ∈ Kn . However, for a specific space E the constant nn

n!
in (2) can be improved. The best constant K(n;E) in the inequality

‖P̌‖ � M‖P‖,
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for every P ∈ P(nE) is called the n th polarization constant of E .
In Section 3 we give a version of (2) for 2-homogeneous polynomials on D

(π
2

)
.

Finally, Section 4 is devoted to the calculation of the unconditional constant of the
canonical basis of the spaces P

(
2D

(π
2

))
. The problem can be stated in more general

terms as follows: Let xα denote the monomial xα1
1 · · ·xαm

m , where x = (x1, . . . ,xm)∈Rm

and α = (α1, . . . ,αm) with αk ∈ N∪ {0} , 1 � k � m . If P(x) = ∑|α |�n aαxα is a
polynomial of degree n on Rm , we define its modulus |P| by |P|(x)= ∑|α |�n |aα |xα . If
B ⊂ Rm is a convex body, we let Pn(B) and P(nB) represent, respectively, the space
of polynomials of degree at most n and the space of n -homogeneous polynomials on
R

m endowed with the norm

‖P‖B = sup{|P(x)| : x ∈ B}.

Now let Bn = {xα : |α| � n} be the canonical basis of Pn(B) and S ⊂ Bn . Then
it is easy to see that the unconditional constant of S coincides with the best possible
constant CB,S in the inequality

‖|P|‖B � CB,S ‖P‖B, (3)

for every P in the space generated by S . In particular, if S = {xα : |α| = n} , then
CB,S would be the unconditional constant of the canonical basis of P(nB) .

This type of inequalities have been studied since a long time ago. Of special im-
portance are the results obtained by Bohr in 1914 for infinite complex power series [6]
since they are the starting point of a prolific research line that continues to be produc-
tive nowadays (see for instance [3, 5, 10, 11, 12, 13]). It is interesting to note that the
relationship between unconditional constants in polynomial spaces and inequalities of
the type (3) was already noticed in [11].

2. Bernstein and Markov-type inequalities for polynomials on sectors

Using the Krein-Milman approach in combination with Lemma 2, we can obtain
the following Bernstein type estimate:

PROPOSITION 1. For every (x,y) ∈ D
(π

2

)
and P ∈ P

(
2D

(π
2

))
we have that

‖∇P(x,y)‖2 � Φ(x,y)‖P‖D( π
2 ),

with

Φ(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
16(x− y)2 +4(x2 + y2) if 0 � y � x

2 ,√
x4

y2 +4(x2 + y2) if 0 < x
2 < y � x,√

y4

x2 +4(x2 + y2) if 0 < x < y � 2x,√
16(y− x)2 +4(x2 + y2) if 2x < y � 1.
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Proof. We want to calculate

sup
{
‖∇P(x,y)‖2 : P ∈ ext

(
BD( π

2 )
)}

.

For P = (1,1,0) , we have ‖∇P(x,y)‖2
2 = 4(x2 + y2) .

For the rest of polynomials, the case xy = 0 is trivial and is left to the reader, so
assume that both x 	= 0 and y 	= 0. First, consider Pt = (t,1,−2

√
2(1+ t)) . Then,

‖∇Pt(x,y)‖2
2 = 4t2x2 +8(1+ t)y2−8t

√
2(1+ t)xy+4y2 +8(1+ t)x2−8

√
2(1+ t)xy.

Make now the change u =
√

2(1+ t) (so u ∈ [0,2]) to have

gx,y(u) := ‖∇Pu(x,y)‖2
2 = x2u4−4xyu3 +4y2u2 +4(x2 + y2).

The critical points for gx,y are u = 0, u = 2y
x and u = y

x . Notice g′′x,y(
2y
x ) > 0, so we

are in a relative minimum and therefore this point shall not be taken into consideration.
Also,

gx,y(0) = 4(x2 + y2),

gx,y

(y
x

)
=

y4

x2 +4(x2 + y2),

gx,y(2) = 16(x− y)2 +4(x2 + y2).

Hence,

sup
{‖∇Pt(x,y)‖2

2 : −1 � t � 1
}

=

{
max

{
gx,y(0),gx,y

( y
x

)
,gx,y(2)

}
if 0 � y

x � 2 ,

max
{
gx,y(0),gx,y(2)

}
otherwise.

=

{
max

{
gx,y

( y
x

)
,gx,y(2)

}
if 0 � y

x � 2 ,

gx,y(2) otherwise.

Since gx,y(2) � gx,y
( y

x

)
if 0 � y

x � 2, we conclude that

sup
{‖∇Pt(x,y)‖2

2 : −1 � t � 1
}

=

{
y4

x2 +4(x2 + y2) if 0 � y
x � 2 ,

16(x− y)2 +4(x2 + y2) otherwise.

Since Qt(x,y) = Pt(y,x) , by symmetry, we obtain

sup
{‖∇Qt(x,y)‖2

2 : −1 � t � 1
}

=

{
x4

y2 +4(x2 + y2) if 0 � x
y � 2 ,

16(x− y)2 +4(x2 + y2) otherwise.

Putting all together we have that sup
−1�t�1

{‖∇Pt(x,y)‖2
2,‖∇Qt(x,y)‖2

2

}
is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
{

y4

x2 +4(x2 + y2),16(x− y)2 +4(x2 + y2)
}

if 0 � y
x � 1

2 ,

max
{

y4

x2 +4(x2 + y2), x4

y2 +4(x2 + y2)
}

if 1
2 � y

x � 2,

max
{

x4

y2 +4(x2 + y2),16(x− y)2 +4(x2 + y2)
}

if 2 � y
x .
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Figure 1: Graph of the mapping Φ(x,y)

Taking the latter into account, we can conclude that

‖∇P(x,y)‖2 � Φ(x,y)‖P‖D( π
2 ),

for any P ∈ D(π
2 ) , where

Φ(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
16(x− y)2 +4(x2 + y2) if 0 � y � x

2 ,√
x4

y2 +4(x2 + y2) if 0 < x
2 < y � x,√

y4

x2 +4(x2 + y2) if 0 < x < y � 2x,√
16(y− x)2 +4(x2 + y2) if 2x < y � 1.

�
Using the previous inequality we can derive the following Markov type estimate:

COROLLARY 1. For every (x,y) ∈ D
( π

2

)
, we have

‖DP(x,y)‖2 � 2
√

5‖P‖D( π
2 ), (4)

with equality attained for ±P1(x,y) = ±Q1(x,y) = ±(x2 + y2−4xy) .

Proof. It suffices to check that

max
(x,y)∈D( π

2 )
Φ(x,y) = 2

√
5,
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being the maximum attained at the points (1,0) and (0,1) . An inspection of the proof
of Proposition 1 reveals that equality in (4) holds for the extreme polynomials ±P1 =
±Q1 , or in other words ±(x2 + y2−4xy) . �

3. Polarization constants for polynomials on sectors

The main result of this section provides a sharp estimate on the norm of a polyno-
mial in P

(
2D

(π
2

))
in terms of the norm of its polar as an element of L s(2D

(π
2

)
. The

constant thus obtained is known as the polarization constant of the space P
(
2D

(π
2

))
.

The following easily verified lemma will be useful in the calculations to come.

LEMMA 3. Let f (t) = acost +bsint be defined for 0 � t � π
2 . Then,

max
0�θ� π

2

| f (t)| =
{

max{|a|, |b|} if ab � 0,√
a2 +b2 otherwise.

Now, as a consequence of the Krein-Milman approach in combinationwith Lemma
2 we have the following:

THEOREM 1. For every (x,y) ∈ D(π
2 ) and P ∈ P(2D(π

2 )) we have that

‖DP(x,y)‖D( π
2 ) � Ψ(x,y)‖P‖D( π

2 ), (5)

where

Ψ(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2(2x− y) if 0 � y < x
2 ,

2
(
y+ x2

2y

)
if x

2 � y < x,

2
(
x+ y2

2x

)
if x � y < 2x,

2(2y− x) if y � 2x.

Moreover, inequality (5) is optimal for each (x,y) ∈ D(π
2 ) .

Proof. In order to calculate Ψ(x,y) := sup{‖DP(x,y)‖D( π
2 ) : ‖P‖D( π

2 )) � 1} , by
the Krein-Milman approach, it suffices to calculate

sup{‖DP(x,y)‖D( π
2 ) : P ∈ ext(BD( π

2 ))}.

The easy case xy = 0 is left to the reader, so assume that both x 	= 0 and y 	= 0. Let us
deal first with the polynomials Qt = (1,t,−2

√
2(1+ t)) , with t ∈ [−1,1] .

Since Qt(x,y) = x2 + ty2−2
√

2(1+ t)xy , then

∇Qt(x,y) =
(
2x−2

√
2(1+ t)y,2ty−2

√
2(1+ t)x

)
.
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Therefore,

‖DQt(x,y)‖D( π
2 ) = sup

(h,k)∈D( π
2 )

∣∣∣(2x−2
√

2(1+ t)y
)

h+
(
2ty−2

√
2(1+ t)x

)
k
∣∣∣ .

In order to calculate the above supremum we can restrict attention to the extreme points
of D

(π
2

)
(except for the point (h,k) = (0,0) that does not contribute anything to the

supremum). Thus, putting (h,k) = (cosθ ,sinθ ) with 0 � θ � π
2 and λ = y

x ,

sup
−1�t�1

‖∇Qt(x,y)‖D( π
2 ) = 2x sup

(t,θ)∈C

∣∣∣(1−
√

2(1+ t)λ
)

cosθ+
(
tλ−

√
2(1+ t)

)
sinθ

∣∣∣ ,
where C = [−1,1]× [0, π

2 ] .
Define

fλ (t,θ ) =
(
1−

√
2(1+ t)λ

)
cosθ +

(
tλ −

√
2(1+ t)

)
sinθ ,

and consider the following cases:

• 0 < θ < π
2 , −1 < t < 1.

The critical points of fλ in the interior of C are the solutions of the equations:

∂ fλ
∂ t

(t0,θ0) =
−√

2λ
2
√

1+ t0
cosθ0 +

(
λ −

√
2

2
√

1+ t0

)
sinθ0 = 0, (6)

∂ fλ
∂θ

(t0,θ0) = −
(
1−

√
2(1+ t0)λ

)
sinθ0 +

(
t0λ −

√
2(1+ t0)

)
cosθ0 = 0. (7)

Working with equation (6), we get to the next expression:

sinθ0 =

√
2

2
√

1+t0
λ

λ −
√

2
2
√

1+t0

cosθ0 =
√

2λ
2λ

√
1+ t0−

√
2

cosθ0 (8)

and, plugging the expression in (8) into equation (7) we obtain

⎡
⎣(t0λ−

√
2(1+t0)

)
−
√

2λ
(
1−√2(1+t0)λ

)
2λ

√
1+t0−

√
2

⎤
⎦cosθ0 =

[
t0λ−

√
2(1+t0)+λ

]
cosθ0

= 0.

Now, since 0 < θ0 < π
2 we can have cosθ0 	= 0 and hence,

λ (1+ t0) =
√

2(1+ t0),

from which t0 = 2
λ 2 −1.
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If we now apply the condition −1 < t0 < 1 we get the restriction λ > 1, that is,
we will only have critical points in the interior of C when y > x .

Now, plugging t0 in (8), we obtain tanθ0 = λ , from which

sinθ0 =
λ√

1+ λ 2
and cosθ0 =

1√
1+ λ 2

.

Then,

2x| fλ (t0,θ0)| = 2x

∣∣∣∣∣
(

1−
√

4
λ 2 λ

)
1√

1+ λ 2
+

[(
2

λ 2 −1

)
λ −

√
4

λ 2

]
λ√

1+ λ 2

∣∣∣∣∣
= 2x

∣∣∣∣ −1√
1+ λ 2

− λ 2
√

1+ λ 2

∣∣∣∣= 2x
√

1+ λ 2 (9)

• t = −1 and 0 � θ � π
2 .

Using lemma 3, we may conclude that

2x max
0�θ� π

2

| fλ (−1,θ )| = 2xmax{1,λ}. (10)

• t = 1, 0 � θ � π
2 .

In this case we shall study the expression 2x| fλ (1,θ )| = 2x|(1− 2λ )cosθ + (λ −
2)sinθ | . Again, by lemma 3, we have the following:

max
0�θ� π

2

2x| fλ (1,θ )| =
{

2xmax{|1−2λ |, |λ −2|} if 0 � λ < 1
2 or λ > 2,

2x
√

(2λ −1)2 +(2−λ )2 if 1
2 � λ � 2.

(11)

It can be easily checked that the expression we have arrived at in (11) is greater than
(9).

• θ = 0, −1 � t � 1.

We need to calculate

2x max
−1�t�1

| fλ (t,0)| = 2x max
−1�t�1

∣∣∣1−√
2(1+ t)λ

∣∣∣= 2xmax{1, |1−2λ |}

=

{
2x if 0 � λ < 1,

2x(2λ −1) if λ � 1.
(12)

Observe that the latter is always greater that (10).

• θ = π
2 , −1 � t � 1.

We have to calculate
2x max

−1�t�1
|tλ −

√
2(1+ t)|,
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for which we define h(t) = tλ −√
2(1+ t), for t ∈ [−1,1] . The critical points of h

satisfy

h′(t) = λ −
√

2

2
√

1+ t
= 0,

from which

t1 =
1

2λ 2 −1.

Observe that t0 ∈ [−1,1] if and only if |λ | � 1
2 .

To summarize we have equation

2x max
−1�t�1

|tλ −
√

2(1+ t)| =
{

2xmax{|h(−1)|, |h(1)|, |h(t1)|} if λ � 1
2 ,

2xmax{|h(−1)|, |h(1)|} if 0 � λ < 1
2 ,

=

{
2x
(
λ + 1

2λ
)

if λ � 1
2 ,

2x(2−λ ) if 0 � λ < 1
2 .

(13)

Since we have already discarded (9) and (10), putting together (11), (12) and (13)
we arrive at the fact that 2x sup

(t,θ)∈C
| fλ (t,θ )| is given by

2x

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max{|1−2λ |, |2−λ |,1} if 0 � λ � 1
2 ,

max
{√

(2λ −1)2 +(2−λ )2,1,
(
λ + 1

2λ
)}

if 1
2 � λ � 1,

max
{√

(2λ −1)2 +(2−λ )2,2λ −1,
(
λ + 1

2λ
)}

if 1 � λ � 2,

max
{(

λ + 1
2λ
)
, |1−2λ |, |2−λ |} if λ � 2.

The only comparisons in the previous expression with some difficulty are

λ +
1

2λ
and

√
(2λ −1)2 +(λ −2)2.

Through standard calculations, we deduce that λ + 1
2λ �

√
(2λ −1)2 +(λ −2)2 when-

ever λ � 1+
√

2
2 . Since we shall consider this situation when λ � 1

2 , we conclude

sup
−1�t�1

‖∇Qt(x,y)‖D( π
2 ) = Ψ1(x,y),

where

Ψ1(x,y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2(2x− y) if 0 � y < x
2 ,

2
(
y+ x2

2y

)
if x

2 � y < 1+
√

2
2 x,

2
√

(2x− y)2 +(2y− x)2 if 1+
√

2
2 x � y < 2x,

2(2y− x) if y � 2x.
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Using the symmetry Pt(x,y) = Qt(y,x) , we may see

sup
−1�t�1

‖∇Pt(x,y)‖D( π
2 ) = Ψ2(x,y),

where

Ψ2(x,y) = Ψ1(y,x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2(2x− y) if 0 � y < x
2 ,

2
√

(2x− y)2 +(2y− x)2 if x
2 � y <

(
2
√

2−2
)

x,

2
(
x+ y2

2x

)
if
(
2
√

2−2
)

x � y < 2x,

2(2y− x) if y � 2x.

Therefore, we conclude

Ψ(x,y) = max{Ψ1(x,y),Ψ2(x,y)}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(2x− y) if 0 � y < x
2 ,

max
{

2
√

(2x− y)2 +(2y− x)2,2
(
y+ x2

2y

)}
if x

2 � y �
(
2
√

2−2
)

x,

max
{

2
(
y+ x2

2y

)
,2
(
x+ y2

2x

)}
if
(
2
√

2−2
)

x � y � 1+
√

2
2 x,

max
{

2
(
x+ y2

2x

)
,2
√

(2x− y)2 +(2y− x)2
}

if 1+
√

2
2 x � y � 2x,

2(2y− x) if y � 2x.

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2(2x− y) if 0 � y < x
2 ,

2
(
y+ x2

2y

)
if x

2 � y < x,

2
(
x+ y2

2x

)
if x � y < 2x,

2(2y− x) if y � 2x.

�
Taking the maximum of Ψ(x,y) with (x,y)∈D

( π
2

)
we can obtain the polarization

constant of P
(
2D

(π
2

))
:

COROLLARY 2. Let P ∈ P
(
2D

(π
2

))
and assume L ∈ L

(
2D

(π
2

))
is the polar

of P. Then

‖L‖D( π
2 ) � 2‖P‖D( π

2 ).

Moreover, equality is achieved for P1(x,y) = x2 + y2−4xy.
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Figure 2: Graph of the mapping Ψ(x,y)

4. Unconditional constants for polynomials on sectors

As in the preceding sections, a combination of the Krein-Milman approach and
Lemmas 1 and 2 allows us to proof the following:

PROPOSITION 2. The unconditional constant of the canonical basis of the space
P(2D(π

2 )) is 3. In other words, the inequality

‖|ax2 +by2 + cxy|‖D( π
2 ) � 3‖ax2 +by2 + cxy‖D( π

2 ),

holds for all a,b,c ∈ R and 3 is optimal since equality is achieved for the polynomials
±(x2 + y2−4xy) .

Proof. Observe that the extreme polynomials in the unit ball of P(2D(π
2 )) are

Pt(x) = tx2 + y2−2
√

2(1+ t)xt,

Qt(x) = x2 + ty2−2
√

2(1+ t)xt,

with t ∈ [−1,1] . If we plug these polynomials in Lemma 1, due to the symmetry of the
problem we end up with the maximum of

max

{
|t|,1,

1
2

∣∣∣∣|t|+1+
√

(|t|−1)2 +8(1+ t)
∣∣∣∣
}

.

The latter function attains its maximum at 1 and turns out to be 3. �
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5. Conclusions

Comparing the results obtained in [21] and [34] for polynomials on the simplex Δ ,
in [1] for polynomials on the sector D

(π
4

)
, in [14] for polynomials on the unit square

� and the results obtained in the previous sections, we have the following:

P(2Δ) P
(
2D

(π
2

))
P

(
2D

(π
4

))
P(2�)

Markov constants 2
√

10 2
√

5 4(13+8
√

2)
√

13

Polarization constants 3 2 2+
√

2
2

3
2

Unconditional Constants 2 3 5+4
√

2 5

Furthermore, all the constants appearing in the previous table are sharp. Actually, the
extreme polynomials where the constants are attained are the following:

1. ±(x2 + y2−6xy) for the simplex.

2. ±(x2 + y2−4xy) for the sector D
(π

2

)
.

3. ±
(
x2 +(5+4

√
2)y2− (4+4

√
2)xy

)
for the sector D

(π
4

)
.

4. ±(x2 + y2−3xy) for the unit square.

Compare the previous table with similar results that hold for 2-homogeneous poly-
nomials on the Banach spaces �2

1 , �2
2 and �2

∞ :

P(2�2
1) P

(
2�2

2

)
P(2�2

∞)

Markov constants 4 2 2
√

2

Polarization constants 2 1 2

Unconditional Constants 1+
√

2
2

√
2 1+

√
2

Observe that the Markov constants of the spaces P(2�2
1) and P(2�2

∞) can be calcu-
lated taking into consideration the description of the geometry of those spaces given in
[9]. Also, the Markov constant of P(2�2

2) is twice its polarization constant, or in other
words, 2.

On the other hand, the constants appearing in the second line of the previous table
are well-known results (see for instance [38]).

Finally, the unconditional constants corresponding to the third line of the previous
table were calculated in Theorem 3.5, Theorem 3.19 and Theorem 3.6 of [21].
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mials, J. Math. Anal. Appl. 340 (2008), 1069–1087.
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