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A COMPLETE 3–DIMENSIONAL BLASCHKE–SANTALÓ DIAGRAM

RENÉ BRANDENBERG AND BERNARDO GONZÁLEZ MERINO

(Communicated by H. Martini)

Abstract. We present a complete 3-dimensional Blaschke-Santaló diagram for planar convex
bodies with respect to the four classical magnitudes: inradius, circumradius, diameter, and (min-
imal) width in Euclidean spaces.

1. Introduction

The focus of this paper is on the standard radii measured for the family K n of
convex bodies (compact and convex sets) K ⊂ Rn . The diameter D(K) of K is the
largest distance between two points of K . The width w(K) is the minimal breadth,
i. e. the smallest distance between any two different parallel supporting hyperplanes of
K . The inradius r(K) is the radius of a largest ball contained in K , and the circumra-
dius R(K) is the radius of the (unique) smallest ball containing K .

A natural and very intuitive question is the following: if K ∈ K n is given and
we have fixed values for some of the previous radii (say e. g. r , D and R), what is the
range of possible values of w depending on r,D and R? A comprehensive solution of
this task in K 2 is presented in the following in form of a Blaschke-Santaló diagram
(sometimes also called shape diagram).

Let us start with some historical and more general review: in [1] Blaschke pro-
posed the study of possible values for the volume V (K) , surface area S(K) , and integral
mean curvature M(K) for any K ∈ K 3 . For doing so, he considered the mapping

h : K 3 → [0,1]2, with h(K) :=
(

4πS(K)
M(K)2 ,

48π2V (K)
M(K)3

)
.

The image h(K 3) is known as Blaschke diagram. Blaschke realized that the isoperi-
metric inequality and the geometric inequalities of Minkowski were not sufficient for a
complete description of h(K 3) . A complete system of inequalities needed additional
geometric inequalities relating V , S and M , still a famous open problem in convex
geometry [14, 18].
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Reviving the idea of Blaschke, Santaló proposed in [19] the study of such diagrams
for all triples of the magnitudes r , w , D , R , p (perimeter) and A (area) (initially for
planar sets). Once a triple is fixed, say (r,D,R) , the corresponding function

g : K 2 → [0,1]2, with g(K) :=
(

r(K)
R(K)

,
D(K)
2R(K)

)

is considered, and its image g(K 2) is called a Blaschke-Santaló diagram. Full descrip-
tions of such diagrams for the triples (A, p,w) , (A, p,r) , (A, p,R) , (A,w,D) , (p,w,D) ,
and (r,D,R) are already derived in [19].

The first important ingredients to start the full description of the diagram for
(r,D,R) in [19] are the chain of well known (and easy to prove) inequalities

2r(K) � w(K) � D(K) � 2R(K) (1)

as well as the inequality of Jung [16]

R(K) �
√

n
2(n+1)

D(K) (2)

which are true for all K ∈ K n .
The validity of the inequalities

w(K) � r(K)+R(K) � D(K) (3)

was shown in [19] (there only for n = 2, but easy to see to be true in general dimensions,
see e. g. [4]). Equality in (3) holds true simultaneously, iff K is of constant width. See
[6] for more details and extensions of (3).

A final inequality derived in [19] holds true (in the given form) for K ∈ K 2 only:

2R(K)
(

2R(K)+
√

4R(K)2−D(K)2

)
r(K) � D(K)2

√
4R(K)2−D(K)2,

with equality, if K is an isosceles triangle.
This inequality, together with Jung’s inequality (2) and the relevant parts of (1)

and (3) forms a complete system of inequalities for (r,D,R) .
Moreover, Santaló observed that previously known inequalities did not form com-

plete systems of inequalities in any case of changing one of (r,D,R) to the width w .
Dekster in [9] and Hernández Cifre and Segura Gomis in [12, 15] found the miss-

ing inequalities:

(4R(K)2−D(K)2)D(K)4 � 4w(K)2R(K)4,

(4r(K)−w(K))(w(K)−2r(K))R(K) � 2r(K)3,

D(K)4(w(K)−2r(K))2(4r(K)−w(K)) � 4r(K)4w(K), and√
3(w(K)− r(K)) � D(K).
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Hernández Cifre and Segura Gomis showed that the new inequalities together with
(1) to (3) (restricted to those involving the appropriate radii) form complete systems of
inequalities for the triples (w,D,R) , (r,w,R) , and (r,w,D) . In [13] Hernández Cifre
computed complete systems of inequalities for the triples (A,D,R) and (p,D,R) and
Böröczky Jr., Hernández Cifre, and Salinas gave complete diagrams for the triples
(A,r,R) and (p,r,R) in [3].

There are still 7 out of the 20 possible triples involving also A and p where a full
description of the diagram is still missing. However, all 4 Blaschke-Santaló diagrams
of K 2 involving only the classical radii r,w,D , and R have been completed, which
means not only knowing a (minimal) complete system of inequalities describing them,
but also the extreme sets inducing the boundaries of the diagrams (which is possibly
more important).

Recently, Blaschke-Santaló diagrams have been used in pattern recognition and
image analysis (see [7, 8, 17]), as they help in the prediction of the size and shape
of 3-dimensional sets from their 2-dimensional projections. In [7, 17] for example,
the diagrams (in this context mostly called shape-diagrams) have been combined with
probabilistic methods, e. g. maximum likelihood estimation in [17].

Once there are complete systems of inequalities for some of the possible triples
of magnitudes amongst A, p,r,w,D,R , it is a natural step to consider complete systems
of inequalities for even more than three of those magnitudes, e. g. to obtain stronger
inequalities or for an even more accurate classification of convex sets in the mentioned
application in image analysis. In [23] the quadruple (A, p,w,D) has been considered,
without deriving a complete description (which is not so surprising, as even for the triple
(A, p,D) a complete description is still missing). We consider the case (r,w,D,R) ,
which is the unique diagram involving four of the above magnitudes, s. t. complete
descriptions of the diagrams are known for all subsets of three of these magnitudes. To
the best of our knowledge, besides [23] and the preliminary work of this paper in [4],
this is the only paper considering more than three of these magnitudes.

The study shows the necessity of new inequalities relating all four radii at once.
This is done by describing the diagram’s skeleton, i. e. its boundary structure consisting
of 0-,1-, and 2-dimensional differential manifolds (see below for a proper definition).

We now introduce some notation related to convex geometry. If l ∈ N , we abbre-
viate [l] := {1, . . . , l} . For a general set C ⊂ Rn , we write aff(C) and conv(C) for the
affine hull and the convex hull of C , respectively. For any x,y ∈ Rn we denote by [x,y]
the segment conv{x,y} whose endpoints are x and y . If K ∈ K n we write ext(K) for
the set of extreme points of K and any x ∈ ext(K) is said to be exposed, if there exists
a hyperplane H supporting K , s. t. K ∩H = {x} .

The Euclidean unit ball and unit sphere are denoted by B,S ⊂ Rn , respectively,
and the closed (open) semisphere {x ∈ S : uTx � 0} (respectively {x ∈ S : uTx > 0} )
with u ∈ Rn \{0} , by S�

u (S>
u ). By dist(A,B) we denote the usual Euclidean distance

between two closed sets A,B ⊂ R
n , and write dist(a,B) or dist(A,b) if one of the sets

is a singleton.
For a pair of bodies K,L ∈ K n , the Minkowski sum of K and L is defined as

K +L := {x1 + x2 : x1 ∈ K,x2 ∈ L} . The λ dilatation of K with λ ∈ R is λK := {λx :
x ∈ K} . We abbreviate K−L := K +(−L) and K + x := K +{x} for x ∈ R

n . A body
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K is 0 -symmetric if K = −K and centrally symmetric if there exists c ∈ Rn , s. t. K− c
is 0-symmetric.

For any body K ∈ K n , a completion of K is defined as a set K∗ satisfying K ⊂
K∗ and D(K) = D(K∗) = w(K∗) . Moreover, K∗ is called a Scott-completion of K
if, in addition, R(K) = R(K∗) (it was shown in [21] that in Euclidean space such a
completion always exists).

The next three propositions will be useful below. The first collects results taken
from [10]:

PROPOSITION 1.1. For any K ∈ K n

a) every pair of points p,q∈K s. t. ‖p−q‖= D(K) is a pair of exposed (and therefore
extreme) points in K .

b) every pair L1,L2 of parallel supporting hyperplanes of K at distance w(K) sup-
ports a segment with endpoints in K∩L1 and K ∩L2 perpendicular to both hyper-
planes. Moreover, if K ∈ K n is a polyhedron, then dim(K ∩L1)+dim(K ∩L2) �
n− 1 (which in case of n = 2 means that at least one of the intersections K ∩Li ,
i = 1,2 , contains a segment).

The first part of the following proposition about the Euclidean circumradius was
shown already in [2]. For the part about the inradius we refer to the general optimality
conditions for containment under homothetics given in [5].

PROPOSITION 1.2. Let K ∈ K n and c ∈ Rn be s. t. c+ ρB ⊆ K ⊂ B . Then

a) R(K) = 1 , iff there exist k ∈ {2, . . . ,n + 1} and p1, . . . , pk ∈ bd(K)∩ S , s. t. 0 ∈
conv{p1, . . . , pk} .

b) r(K) = ρ , iff there exist l ∈ {2, . . . ,n+1} , q1, . . . ,ql ∈ bd(K− c)∩ρS , and
u1, . . . ,ul ∈ S , s. t. (ui)T qi = ρ , i ∈ [l] , K − c ⊂ ⋂

i∈[l]{x ∈ Rn : (ui)T x � ρ} , and

0 ∈ conv{u1, . . . ,ul} .

The third proposition is ancient and best known as the “inscribed angle theorem”:

PROPOSITION 1.3. For any triangle T := conv{p1, p2, p3} with p1, p2, p3 ∈ S

and 0 and p3 on the same side of aff{p1, p2} let γ denote the angle of T at p3 . Then
the angle of the triangle conv{p1, p2,0} at 0 is 2γ (independently of the position of
p3 ).

Moreover, if p3 ∈ int(B) (respectively p3 /∈ B), but still on the same side of
aff{p1, p2} than 0, the angle in 0 is strictly smaller (or, respectively, strictly greater)
than 2γ .

The remainder of the paper is organized as follows: in Section 2 the way we
proceed for the description of the whole diagram is explained.

In Section 3 we present a collection of nine (generally) valid inequalities com-
pletely describing the diagram in Section 2. Six of these inequalities were known before
but three of them are totally new, relating all four basic radii at once (in a non-redundant
way).
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Since all inequalities have an algebraic representation, every family of sets at-
taining equality in one of the inequalities above is mapped onto a compact connected
subset of a 2-dimensional differential manifold within R3 . We call them facets of the
diagram. Moreover, the common boundaries between any two facets are called edges
of the diagram and the bodies appearing in the intersection of three (or more) facets are
called vertices of the diagram. The families forming the facets and edges, as well as all
vertices are described in Section 4.

Section 5 is devoted to the proofs of the new inequalities presented in Section 3,
while the paper concludes with some directions for future research in Section 6.

2. Main ideas for explaining the diagram

Following the idea of Blaschke and Santaló, we define

f : K n → [0,1]3, f (K) =
(

r(K)
R(K)

,
w(K)
2R(K)

,
D(K)
2R(K)

)
(4)

and call f (K n) a 3-dimensional Blaschke-Santaló diagram. The following is taken
from [4].

LEMMA 2.1. f (K n) = f ({K ∈ K n : B is the circumball of K}) is starshaped
with respect to f (B) = (1,1,1) .

Proof. For K ∈ K n , c ∈ R
n , λ ∈ [0,1] , and q being any of the four radii func-

tionals r,w,D,R , it obviously holds q(λ (K + c)) = λq(K) and q(λK + (1− λ )B) =
λq(K)+ (1−λ )q(B) . �

Lemma 2.1 means that the diagram has no “holes” and therefore it suffices to
describe the sets K ∈ K n , with circumball B , such that f (K) ∈ bd( f (K n)) .

LEMMA 2.2. Let K,K∗ ∈ K n be s. t.K∗ is a completion of K and Kλ := λK +
(1−λ )K∗ , λ ∈ [0,1] . Then D(Kλ ) = D(K) and w(Kλ ) = λw(K)+ (1−λ )w(K∗) .

Proof. Since K ⊂K∗ and D(K) = D(K∗) it immediately follows from K ⊂ Kλ ⊂
K∗ that D(Kλ ) = D(K) for every λ ∈ [0,1] . Now, let s∗ ∈ S be s. t. the breadth bs∗(K)
of K in direction of s∗ is bs∗(K) = w(K) . Since K∗ is of constant width and because
the breadth is linear with respect to the Minkowski sum, we obtain that

w(Kλ ) = min
s∈S

bs(Kλ ) = min
s∈S

(λbs(K)+ (1−λ )bs(K∗))

� λbs∗(K)+ (1−λ )w(K∗) = λw(K)+ (1−λ )w(K∗) � w(Kλ ). �

LEMMA 2.3. For any K ∈ K n satisfying the left inequality in (3) with equal-
ity (i. e. w(K) = r(K)+R(K)), K∗ being its Scott-completion, and Kλ := λK +(1−
λ )K∗ , λ ∈ [0,1] , it holds that f (Kλ ) = λ f (K)+(1−λ ) f (K∗) and therefore w(Kλ ) =
r(Kλ )+R(Kλ ) .
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Proof. Using Lemma 2.2 it immediately follows that D(Kλ ) = D(K) , R(Kλ ) =
R(K) , and w(Kλ ) = λw(K)+ (1−λ )w(K∗) for all λ ∈ [0,1] .

In [4] it was shown that w(K) = r(K)+R(K) implies that K has a unique inball
being concentric with the circumball. Now, restricting again to such sets K having B

as their circumball, we obtain that r(K)B ⊂ K ⊂ B with R(K) = 1.
Observe that if s ∈ S with −r(K)s ∈ bd(K) , then s ∈ K . This follows because a

supporting hyperplane in −r(K)s of K has to support r(K)B too, and therefore this
hyperplane has to be −r(K)s+ lin{s}⊥ . Thus the breadth of K in the direction s is at
most r(K)+R(K) , with equality iff s ∈ K .

Because of Part (b) in Proposition 1.2 there exist u1, . . . ,u j ∈ S , s. t. −r(K)ui ∈
bd(K) , i ∈ [ j] with 0 ∈ conv{u1, . . . ,u j} . Together with the observation above this
yields that ui ∈ K ∩ S and that the hyperplanes −r(K)ui + lin{ui}⊥ support K in
−r(K)ui , i ∈ [ j] .

Now, because K∗ is a Scott-completion of K it obviously holds r(K∗)B ⊂ K∗ ⊂
B , ui ∈ K∗ , i ∈ [ j] . Since w(K∗) = r(K∗) + R(K∗) it also holds that the hyper-
planes −r(K∗)ui + lin{ui}⊥ support K∗ and its inball in −r(K∗)ui , i ∈ [ j] . Altogether
we obtain that −r(K)ui + lin{ui}⊥ and −r(K∗)ui + lin{ui}⊥ support K and K∗ in
the points −r(K)ui and −r(K∗)ui , respectively. Hence the hyperplanes −(λ r(K) +
(1− λ )r(K∗))ui + lin{ui}⊥ support λK + (1− λ )K∗ in the points −(λ r(K) + (1−
λ )r(K∗))ui , i ∈ [ j] . Using again Part (b) in Proposition 1.2, it follows r(λK + (1−
λ )K∗) = λ r(K)+ (1−λ )r(K∗) and from this the lemma follows. �

As mentioned in Section 1 the inequalities

D(K) � 2R(K), D(K) � r(K)+R(K), D(K) �
√

3R(K), and

2R(K)
(

2R(K)+
√

4R(K)2−D(K)2

)
r(K) � D(K)2

√
4R(K)2−D(K)2,

(5)

give a full description of

g : K 2 → [0,1]2, with g(K) :=
(

r(K)
R(K)

,
D(K)
2R(K)

)

(see Figure 1).
Since g(K 2) is just the projection of f (K 2) onto the first and last coordinate,

we may consider any valid pair of values (r,D/2) ∈ g(K 2) and solve

maxK∈K 2 w(K)
r(K) = r
D(K) = D
R(K) = 1

as well as

minK∈K 2 w(K)
r(K) = r
D(K) = D
R(K) = 1 .

Calling the solution of the maximization problem w∗(r,D) for any given pair (r,D/2)
and the solution of the minimization problem w∗(r,D) , the families

{w∗(r,D) : (r,D/2) ∈ g(K 2)} and {w∗(r,D) : (r,D/2) ∈ g(K 2)}
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Figure 1: The diagram g(K 2) with x -axis r/R and y-axis D/2R . The boundaries are given
via the inequalities collected in (5). The vertices are the Euclidean ball B , the line segment
L , the equilateral triangle I π/3 and the Reuleaux triangle RT (see Subsection 4.1 for their
explanation).

describe the upper and lower boundary of f (K 2) , respectively. To complete the full
diagram it now suffices to check the following: which of the inequalities in (5) still
describe facets of f (K 2) and which describe only edges. The former is the case if
there exists a pair (r,D/2) ∈ bd(g(K 2)) , s. t. the corresponding inequality is fulfilled
with equality and w∗(r,D) �= w∗(r,D) . The latter is the case if w∗(r,D) = w∗(r,D) for
all (r,D/2) ∈ g(K 2) fulfilling the inequality with equality.

3. Main inequalities

In this section we describe nine valid inequalities for f (K 2) . Three of them
are of the form w � w∗(r,D) , thus describing the upper boundary of the diagram; we
call them (ub j) , j = 1,2,3. Analogously, we write (lb j) , j = 1,2,3 for the three
inequalities w � w∗(r,D) (giving the lower boundary) and finally (ib j) , j = 1,2,3 for
the inequalities which are independent of w .

We start with those inequalities which are a-priori known:

PROPOSITION 3.1. Let K ∈ K 2 . Then

2r(K) � w(K) (lb1)

D(K) � 2R(K) (ib1)

w(K) � R(K)+ r(K) (ub1)

R(K)+ r(K) � D(K) (ib2)√
3R(K) � D(K) (ib3)

(4R(K)2−D(K)2)D(K)4 � 4w(K)2R(K)4 (lb2)

The remaining three inequalities for a complete description of f (K 2) are new.
Clearly, each of them involves all four radii r,w,D , and R simultaneously as otherwise
it would have been necessary for the description of the corresponding 2-dimensional
Blaschke-Santaló diagram.
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THEOREM 3.2. Let K ∈ K 2 . Then

w(K) � 2D(K)

√
1−
(

D(K)
2R(K)

)2

cos

[
arccos

(
D(K)

2(D(K)− r(K))

)
+ arccos

(
D(K)
2R(K)

)
− arcsin

(
r(K)

D(K)− r(K)

)]
(lb3)

REMARK 3.3. An algebraic representation of (lb3) can easily be calculated using
a computer algebra tool and looks like the following:

w(K) � 2D(K)

√
1−
(

D(K)
2R(K)

)2
[√

1− r(K)2

(D(K)− r(K))2

(
D(K)2

4R(K)(D(K)− r(K))

−
√(

1− D(K)2

4(D(K)− r(K))2

)(
1− D(K)2

4R(K)2

))
+

r(K)
D(K)− r(K)(

D(K)
2R(K)

√
1− D(K)2

4(D(K)− r(K))2 −
D(K)

2(D(K)− r(K))

√
1− D(K)2

4R(K)2

)]

THEOREM 3.4. Let K ∈ K 2 . Then

w(K) � r(K)

⎛
⎜⎝1+

2
√

2R(K)
D(K)

√√√√
1+

√
1−
(

D(K)
2R(K)

)2

⎞
⎟⎠ (ub2)

THEOREM 3.5. Let K ∈ K 2 . Then

w(K) � 2r(K)

⎛
⎝1+

2r(K)R(K)
D(K)2

⎛
⎝1+

√
1−
(

D(K)
2R(K)

)2
⎞
⎠
⎞
⎠ (ub3)

REMARK 3.6. One may recognize that

1+
(2
√

2R(K))
D(K)

√√√√
1+

√
1−
(

D(K)
2R(K)

)2

� 3,

which shows that (ub2) is a direct strengthening of the 2-dimensional version of Stein-
hagen’s inequality (cf. [22]). However, this is not the case for (ub3) (even so the two
sets L and Iπ/3 fulfilling Steinhagen’s inequality with equality fulfill (ub3) with equal-
ity, too) as, e. g. evaluating (ub3) at RT gives

w(RT)
r(RT)

� 3 < 2

⎛
⎝1+

2r(RT)R(RT)
D(RT)2

⎛
⎝1+

√
1−
(

D(RT)
2R(RT)

)2
⎞
⎠
⎞
⎠ .

It is also quite easy to see that for an equivalent of our diagram for higher dimen-
sional sets Steinhagen’s inequality induces a facet.
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4. The skeleton of the 3-dimensional diagram

This section is devoted to the description of families of bodies filling the faces of
bd( f (K 2)) .

We start in Subsection 4.1 describing the sets fulfilling three or more inequalities
with equality, the vertices of bd( f (K 2)) . In Subsection 4.2 we discuss the families of
sets fulfilling two inequalities with equality, the edges of bd( f (K 2)) . Finally, in Sub-
section 4.3 families of sets filling the different facets are explained. For the description
of these sets we always assume that B is the circumball, but for a better understanding
of the geometric inequalities we will keep the value R(K) in each description.

In case there does not exist a unique set, which is mapped to a boundary point
of the diagram, we will usually describe in some way the range of sets mapped to
that point, e. g. by giving maximal and minimal sets (with respect to set inclusion) if
appropriate. However, as this is not our main topic, we neither claim completeness nor
present detailed proofs.

4.1. Vertices of the diagram

The vertices, including their radii, and for each the inequalities which are fulfilled
with equality are listed in the following:

Figure 2: From left to right: the Euclidean ball B , the line L , the equilateral triangle I π/3 ,
and the Reuleaux triangle RT . Here and in all the forthcoming figures, the inballs are drawn in
green, the circumballs in blue, the diameters in dashed green, and the widths in dashed blue.

B Obviously, the Euclidean ball B is the unique set mapped to f (B) = (1,1,1) in
the diagram. It is extreme for the inequalities (lb1), (ib1), (ub1), and (ib2).

L The radii of the line segment L are easy to see, too: f (L) = (0,0,1) and also it is
the only set mapped to these coordinates. The inequalities it fulfills with equality
are (lb1), (lb2), (ib1), and (ub3). It also fulfills (ub2) with equality, but this is an
artefact which will be explained in Remark 4.1.

Iπ/3 The coordinates f (Iπ/3) = (1/2, 3/4,
√

3/2) of the equilateral triangle Iπ/3 are
well known. It is the unique set with these coordinates and extreme for the in-
equalities (ub1), (ub2), (ub3), (lb2), and (ib3).
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RT The Reuleaux triangle RT is the intersection of three Euclidean balls of radius√
3 centered at the vertices of Iπ/3 . On the one hand it has the same diameter

and circumradius as Iπ/3 . On the other hand it is of constant width, thus (lb1)

and (ib2) imply w(RT) = r(RT)+ R(RT) = D(RT) . Hence f (RT) = (
√

3−
1,

√
3/2,

√
3/2) and RT is the unique set mapped to this point of the diagram. It is

extreme for the inequalities (ub1), (ib2) and (ib3).

Iπ/2 The (isosceles) right-angled triangle Iπ/2 (for brevity we will sometimes omit
the term “isosceles”) has diameter D(Iπ/2) = 2R(Iπ/2) and its width coincides
with its height above the diameter edge, thus w(Iπ/2) = R(Iπ/2) . Using the
semiperimeter formula for triangles, we obtain that the inradius is

r(Iπ/2) =
D(Iπ/2)w(Iπ/2)

D(Iπ/2)+2
√

2R(Iπ/2)
=

R(Iπ/2)

1+
√

2
= (

√
2−1)R(Iπ/2).

Thus f (Iπ/2) = (
√

2− 1, 1/2,1) and there is no other K mapped to this coor-
dinates (as one may easily see in following the construction of a set mapped to
these coordinates). Iπ/2 is extreme for the inequalities (ub2), (ub3) and (ib1).

SB The (right-angled concentric) sailing boat SB is the intersection of B and a
homothet of Iπ/2 with incenter at 0 and a vertex v located where the two edges
of equal length intersect on S (see Figure 3(a)). Hence the in- and circumball of
SB are concentric and one can easily see from the construction, that 1/2D(SB) =√

2r(SB) = R(SB) . Its width is attained in the orthogonal directions to any three
of the edges of Iπ/2 . In particular by measuring between v and its opposite edge,
we obtain that

w(SB) = r(SB)+R(SB) = (1/
√

2+1)R(SB)

(a) The sailing boat SB in black and the pentagon
CP (sharing the vertices with SB ) in red.

(b) The sliced Reuleaux triangle SR in black
and SRmin (the minimal set sharing all radii
with SR ) in red.

Figure 3: Sailing boats and sliced Reuleaux triangles.
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and therefore f (SB) = (1/
√

2, 1/2(1/
√

2+1),1) . The sailing boat fulfills inequal-
ities (ub1), (ub2) and (ib1) with equality. Finally, denoting the (circumspherical)
pentagon formed from the five vertices of SB by CP , we obtain that f (K) =
f (SB) for any K ∈ K 2 , iff CP ⊂ K ⊂ SB .

SR The sliced Reuleaux triangle SR is the intersection of a Reuleaux triangle RT

and a halfspace H which supports a vertex of RT , say p1 , and the inball of RT

in a point v (see Figure 3(b)). By construction it keeps the same diameter, in-
and circumradius as RT . The width of SR is attained between the parallel lines
L = bd(H) , and L′ supporting SR in the vertex p2 furthest from v .

Defining α to be the angle between L and the line segment [p2, p3] , where p3

is the remaining vertex of Iπ/3 , one easily computes

r(SR) = R(SR)sin (π/6+ α) and w(SR) = D(SR)cos(π/6−α) .

Hence α = arcsin( r(SR)/R(SR))− π/6 and thus

w(SR) = D(SR)cos(π/3− arcsin( r(SR)/R(SR))) .

We obtain f (SR)=
(√

3−1,
√

3/2cos(π/3− arcsin(
√

3−1)),
√

3/2
)

and extremal-
ity for the inequalities (lb3), (ib2) and (ib3).

Denoting by SRmin the convex hull of the vertices and the inball of RT , one may
easily verify that f (K) = f (SR) for any K ∈ K 2 , iff SRmin ⊂ K ⊂ SR .

FR Let FR be the flattened Reuleaux triangle, obtained by replacing two of the
three edges of Iπ/3 by the corresponding arcs of RT . It has the same circum-
radius, diameter and width than Iπ/3 and defining a to be the distance from
the center of the inball to each vertex incident with the linear edge, it follows
a2 = r(FR)2 + 1/4D(FR)2 and D(FR) = a + r(FR) (see Figure 4(a)). Hence
4(D(FR)− r(FR))2 = 4r(FR)2 + D(FR)2 and, after dividing by D(FR) , we
obtain that 3D(FR) = 8r(FR) . Thus f (FR) = (

√
27/8, 3/4,

√
3/2) and hence FR

fulfills inequalities (lb2), (lb3) and (ib3) with equality.

Denoting the convex hull of Iπ/3 and the inball of FR by FRmin , it holds f (K) =
f (FR) , iff FRmin ⊂ K ⊂ FR (see Figure 4(a)).

BT Let p1, p2, p3, p4 ∈ S , s. t. conv{p1, p2, p3, p4} is a trapezoid with [p1, p2] be-
ing the longer and [p3, p4] the shorter parallel line, and s. t. conv{p1, p2, p3} as
well as conv{p1, p2, p4} are isosceles triangles (the first with [p1, p2] , [p1, p3]
the edges of equal length, the second with [p1, p2] , [p2, p4]), s. t. in both cases
the angle between the two equal edges is arcsin(3/4) (see Figure 4(b)). We
write Iarcsin( 3/4) for such an isosceles triangle (cf. Subsection 4.2). Substitut-
ing the edges [p1, p4] and [p2, p3] by two circular arcs of radius

∥∥p1− p2
∥∥ =

D(Iarcsin( 3/4)) and centers p1 and p2 , respectively, we obtain the bent trapezoid
BT .

By construction BT and Iarcsin( 3/4) have the same width w , diameter D , and
circumradius R = 1. We prove that the inball of BT is tangent to the two parallels
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(a) In black FR , in red FRmin . (b) In black BT , in red BTmin .

Figure 4: The flattened Reuleaux triangle and the bent trapezoid.

and the two arcs: Let B be a ball of radius r = 1/2w and center c = 1/4(p1 +
p2 + p3 + p4) , and denote the intersection point of the line through p2 and c with
the arc between p1 and p4 by q . We show that ‖c−q‖= r which then implies
r(BT) = r :

(i) ‖c−q‖= D−∥∥c− p2
∥∥ , (ii) r2 + 1/4D2 =

∥∥c− p2
∥∥2

, (iii) w = 3/4D.

From (iii) we obtain that D = 8/3r , and using (i) combined with (ii) gives

‖c−q‖= D−
√

r2 + 1/4D2 = 8/3r−
√

r2 + 16/9r2 = r,

as we wanted to show. Thus r(BT) = r = 1/2w .

For computing D , we use the fact that the line from p2 through 0 is the bisecting
line of the angle arcsin(3/4) between [p1, p2] and [p2, p4] at p2 , which means

D
2R

=
D(Iarcsin( 3/4))
2R(Iarcsin( 3/4))

= cos

(
1
2

arcsin

(
3
4

))
.

This implies

D = 2cos(1/2arcsin(3/4))R =
√

2+
√

7/2R,

and using the above properties on the radii of BT we obtain that

2r = w = 3/4D = 3/4

√
2+

√
7/2R.

Hence

f (BT) =
(

3/8

√
2+

√
7/2, 3/8

√
2+

√
7/2, 1/2

√
2+

√
7/2

)
,
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and one may easily check that it fulfills the inequalities (lb1), (lb2), and (lb3) with
equality.

Denoting the convex hull of p1, p2, p3 and B by BTmin , it holds f (K) = f (BT) ,
iff BTmin ⊂ K ⊂ BT (cf. Figure 4(b)).

H The last vertex satisfies (lb1), (ib2) and (lb3) with equality, whereby its shape is
determined as follows: from (lb1) there must exist two parallel lines supporting
the inball of the set and because of (ib2) it must have concentric in- and circum-
ball. The two parallels supporting the inball contain two separated arcs of the
circumsphere between them. Let p1, p2, p3 be points, s. t. p2 and p3 lie in one
arc and each in one of the supporting lines, while p1 lies in the other arc and
equidistant from p2 and p3 . Finally, we connect p2 and p3 by a circular arc
centered at p1 , its radius and the radius of the inball chosen, s. t. the arc is tan-
gent to the inball (cf. Figure 5). The convex set bounded by the two supporting
parallel lines and the three arcs with centers p1, p2, p3 and radius

∥∥p1− p2
∥∥ is

called the hood and denoted by H .

Figure 5: The hood H in black and Hmin in red.

Recall that we always assume 0 to be the circumcenter and let γ be s. t. Iγ =
conv{p1, p2, p3} is the isosceles triangle built by p1, p2, p3 , where γ denotes
the angle between the two edges of equal length. Thus R(H) = R(Iγ) , D(H) =
D(Iγ ) = r(H)+ R(H) and 2r(H) = w(H) . For the computation of r(H) let ζ
denote the distance from 0 to [p2, p3] . Considering the two right-angled triangles
conv

{
0, p2, 1/2(p2 + p3)

}
and conv

{
p1, p2, 1/2(p2 + p3)

}
we obtain that

(i) r(H)2 + ζ 2 = R(H)2 and (ii) D(H)2 = (ζ +R(H))2 + r(H)2

(cf. Figure 5).

Solving (i) for ζ and inserting it into (ii), taking into account that D(H) = r(H)+
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R(H) , we obtain that

(r(H)+R(H))2 = D(H)2 = (
√

R(H)2− r(H)2 +R(H))2 + r(H)2.

Solving for r(H) gives the unique positive real solution

r(H) =

(
1
2

√
ς + ξ +

√
−ς − ξ +

16√
ς + ξ

−1

)
R(H),

where ς = 1/3(864−96
√

69) 1/3 and ξ = 2(2/3) 2/3(9+
√

69) 1/3 . Thus

f (H) = (r(H),r(H), 1/2(r(H)+1)) ≈ (0.7935,0.7935,0.8967).

Denoting the convex hull of the inball of H and p1, p2, p3 , by Hmin , it holds
f (K) = f (H) , iff Hmin ⊂ K ⊂ H (cf. Figure 5).

Name Symbol Approximate Coordinates lb1,2,3 ib1,2,3 ub1,2,3

Ball B (1,1,1) +−−++−+−−
Equilateral triangle Iπ/3 (0.5,0.75,0.8660) −+−−−++++

Line segment L (0,0,1) ++−+−−−±+

Reuleaux triangle RT (0.7321,0.8660,0.8660) −−−−+++−−
Right-angled triangle Iπ/2 (0.4142,0.5,1) −−−+−−−++

Sailing boat SB (0.7071,0.8536,1) −−−+−−++−
Sliced Reuleaux tr. SR (0.7321,0.8440,0.8660) −−+−++−−−
Flattened Reuleaux tr. FR (0.6495,0.75,0.8660) −++−−+−−−
Bent trapezoid BT (0.6836,0.6836,0.9114) +++−−−−−−
Hood H (0.7935,0.7935,0.8967) +−+−+−−−−

Table 1: The table lists the planar sets mapped to vertices of the 3-dimensional Blaschke-Santaló
diagram, their (approximate) radii, and the inequalities they fulfill with equality (+ ) or not (− ).
The ± for the line segment in the (ub2)-column points out that L attaining equality is an artefact.

REMARK 4.1. Considering Table 1 we may observe the following: all inequalities
besides (ub3) are fulfilled with equality by exactly four vertices. Moreover, since all
three vertices of (ub3) also fulfill (ub2) with equality (and since we will later prove
these two inequalities more or less within one proof), we may understand them as one
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inequality in two parts. Doing so all inequalities are fulfilled by exactly four vertices, a
fact which in a polytopal setting would be quite exceptional. (One should mention that,
accepting the two inequalities to be a joint one, the right-angled triangle would not be
a vertex anymore due to our definition, but nevertheless we think the whole matter is
remarkable.)

4.2. Edges of the diagram

Next we give constructions of explicit families of convex sets mapped onto the
intersection of two of the facets collected in Section 3. In particular, every family of
sets {Kt}t∈[t1,t2] described, induces a closed curve f ({Kt : t ∈ [t1,t2]}) in R3 (which
is differentiable again as it has an algebraic parametric description). In our nomencla-
ture they form the edges of the diagram. Each edge is named via its two endpoints,
e. g. (Iπ/3,B) denotes the edge between Iπ/3 and B .

(RT,B) It is a well known property that w(K) = r(K) + R(K) = D(K) , iff K is of
constant width. Thus all sets of constant width fulfill (ub1) and (ib2) with
equality. Essentially all edges with B as an endpoint are real linear edges of
the diagram: because of Lemma 2.1 we may fill the full edge from RT to B

with rounded Reuleaux triangles, i. e. the outer parallel bodies (1−λ )RT+
λB , λ ∈ [0,1] of the Reuleaux triangle.

(L,B) Whenever K is centrally symmetric it satisfies the equations D(K) = 2R(K)
and w(K) = 2r(K) . Thus f maps K onto the linear edge formed from the
equality cases of (lb1) and (ib1). Again, because of Lemma 2.1, the outer
parallel bodies (1−λ )L+λB , λ ∈ [0,1] , of L (called sausages) already fill
the whole edge.

(SB,B) Lemma 2.1 implies that all rounded sailing boats (1−λ )SB+λB , λ ∈ [0,1]
satisfy the inequalities (ub1) and (ib1) with equality and fill the corresponding
edge of the diagram.

(H,B) Because of Lemma 2.1 the rounded hoods (1−λ )H+λB , λ ∈ [0,1] satisfy
the inequalities (lb1) and (ib2) with equality and their images through f fill
the corresponding edge.

(L,Iπ/3) As defined above, Iγ denotes an isosceles triangle with an angle γ between
the two edges of equal length (see Figure 6(a)). If γ ∈ [0, π/3] , the two
edges of equal length attain its diameter D = D(Iγ ) = 2Rcos( γ/2) , where
R = R(Iγ ) = 1. Abbreviating also r = r(Iγ ) and w = w(Iγ ) , it was shown in
[15] and [19] that(

2+
√

4− (D/R)2
)

r = w and 2wR = D2
√

4− (D/R)2.

Thus one may check that Iγ fulfills (ub3) and (lb2) with equality for any
γ ∈ [0, π/3] .
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(a) Iγ , γ ∈ [0, π/3] . (b) Iγ , γ ∈ [π/3, π/2] .

Figure 6: (Acute) isosceles triangles.

(Iπ/2,Iπ/3) Consider the family of isosceles triangles Iγ as described above, but now
with γ ∈ [π/3, π/2] . Obviously their diameter D(Iγ) is attained by the edge
opposite to γ . Using Lemma 1.3 we obtain that the angle at the circumcenter
between the height onto the diametrical edge and the segment between the
center and one of the diametrical vertices is again γ (cf. Figure 6(b)). The
width is obviously attained orthogonal to the diametrical edge and thus it is
the sum of the inradius and the distance from the incenter to the opposing
vertex. Considering the right angled triangle with the incenter, the midpoint
and one of the endpoints of the diametrical edge as vertices, it is easy to
check that the interior angle at that endpoint is (π−γ)/4 . Hence 2r(Iγ) =
D(Iγ ) tan((π−γ)/4) and using trigonometric identities it follows

tan

(
π − γ

4

)
=

1− cos( (π−γ)/2)
sin((π−γ)/2)

=
1− sin( γ/2)

cos( γ/2)
=

1
cos( γ/2)

− tan
( γ

2

)
.

Altogether, omitting arguments we have

D = 2Rsin(γ), w = r

(
1+

1
sin(γ/2)

)
, and

r =
D
2

(
1

cos(γ/2)
− tan

( γ
2

))
.

Finally, again using trigonometric identities, we may remove γ from the
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width formula in two ways

w = r

(
1+

1
sin(γ/2)

)
= r

(
1+

√
2

1− cos(γ)

)

= r

(
1+

√
2

sin(γ)

√
1+ cos(γ)

)
= r

⎛
⎜⎝1+

2
√

2R
D

√√√√
1+

√
1−
(

D
2R

)2

⎞
⎟⎠

or

= r

(
1+

1
sin(γ/2)

)
= 2r

(
1+

1
2

(
1

sin(γ/2)
−1

))

= 2r

(
1+

1/cos(γ/2)− tan(γ/2)
2tan(γ/2)

)

= 2r

(
1+

r
D tan(γ/2)

)
= 2r

(
1+

r(1+ cos(γ))
Dsin(γ)

)

= 2r

⎛
⎝1+

2rR
D2

⎛
⎝1+

√
1−
(

D
2R

)2
⎞
⎠
⎞
⎠

proving that Iγ , γ ∈ [π/3, π/2] is extreme for (ub2) and (ub3).

(L,Iπ/2) The next family we consider are the right-angled triangles T
π/2
r , where r ∈

[0,r(Iπ/2)] denotes their inradius. Naming the lengths of their edges a,b and

(a) T
π/2
r . (b) In black RBr and in red a Yamanouti set with

the same radii.

Figure 7: A right-angled triangle and a Reuleaux blossom.
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D = D(T
π/2
r ) = 2R(T

π/2
r ) , abbreviating w = w(T

π/2
r ) and recognizing that the

inball touches the diametrical edge, s. t. it is split into two segments of lengths

a− r and b− r (see Figure 7(a)), we easily see that the perimeter p of T
π/2
r

is 2r+2D (or 2r+4R). Thus using the semiperimeter formula for the width,
we obtain that

wD = 2A = rp = 2r(r+D).

One may easily calculate that the right-angled triangles are extreme for the
inequalities (ub3) and (ib1).

(Iπ/3,RT) For any r ∈ [r(Iπ/3),r(RT)] we call RBr = ( r/r(I π/3)Iπ/3)∩RT a Reuleaux
blossom, s. t. RBr(I π/3) = RB1/2 = Iπ/3 and RBr(RT) = RB√

3−1 = RT (see

Figure 7(b)). Obviously r(RBr) = r , D(RBr) =
√

3R(RBr) , and w(RBr) =
r + R(RBr) . Hence the Reuleaux blossoms are extreme for the inequalities
(ub1) and (ib3).

A Yamanouti set of inradius r is mapped onto the same coordinates in the 3-
dimensional Blaschke-Santaló diagram as the Reuleaux blossom RBr . They
are the convex hull of Iπ/3 and the intersection of three balls with centers in
the vertices of Iπ/3 and radius taken in [w(Iπ/3),w(RT)] (see [19] and cf.
Figure 7(b)). While the Yamanouti set is a unique minimal set (with respect
to set inclusion) mapped to these coordinates, the corresponding Reuleaux
blossom is maximal but not unique (as one may support the inball in different
points than the chosen ones). However, the Reuleaux blossoms are the only
maximizers which possess the same symmetry group as Iπ/3 .

(a) In black SB�
γ , in red the pentagon CP�

γ . (b) In black SBr, π/2 , in red the pentagon SBmin
r, π/2 for

the case that w(SBr, π/2) >
√

2R(SBr, π/2) .

Figure 8: A concentric and a right-angled sailing boat.
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(Iπ/3,SB) Let γ ∈ [π/3, π/2] and c the incenter of Iγ . Now rescale Iγ − c by a fac-
tor ρ , s. t. the vertex p of ρ(Iγ − c) between the two edges of equal length
touches the boundary of B . Then the concentric sailing boat is defined as
SB�

γ = ρ(Iγ − c)∩B (see Figure 8(a)). Obviously, R = R(SB�
γ ) = 1 and

D = D(SB�
γ ) = D(Iγ) = Rsin(γ) . Moreover, since SB�

γ is concentric and the
distance of the center from p is R we obtain that

r = r(SB�
γ ) = Rsin

( γ
2

)
and w = r+R = r

(
1+

1
sin( γ/2)

)
.

However, since D = Rsin(γ) it follows exactly by the same argument as for
w(Iγ ) in the (Iπ/3,Iπ/2)-edge that

w = r

(
1+

1
sin( γ/2)

)
= 2r

⎛
⎝1+

2rR
D2

⎛
⎝1+

√
1−
(

D
2R

)2
⎞
⎠
⎞
⎠ .

Hence the concentric sailing boats are extreme for the inequalities (ub1) and
(ub2). Denoting the concentric pentagon built from the vertices of SB�

γ by
CP�

γ , it holds f (K) = f (SB�
γ ) , iff CP�

γ ⊂ K ⊂ SB�
γ (cf. Figure 8(a)).

(Iπ/2,SB) Let r ∈ [r(Iπ/2),r(SB)] and v ∈ R2 be s. t. the vertex of v + ( r/r(I π/2))Iπ/2

between the two edges of equal length belongs to S and the edges of equal
length induce equal caps in B (cf. Figure 8(b)). Then SBr,π/2 = (v+( r/r(I π/2))
Iπ/2)∩B is a right-angled sailing boat. Hence D(SBr,π/2) = 2R(SBr,π/2) ,
r(SBr,π/2) = r(v + ( r/r(I π /2))Iπ/2) = r , and w(SBr,π/2) = r/r(I π /2)w(Iπ/2) =
(
√

2 + 1)r . Thus right-angled sailing boats are extreme for the inequali-
ties (ub2) and (ib1) and it holds K ⊂ SBr,π/2 for any set K with f (K) =
f (SBr,π/2) . Concerning possible minimal sets mapped to the same coordi-
nates in the diagram, let p1, p2, p3 ∈ S be s. t. conv{p1, p2, p3} = Iπ/2 , with

the right-angle at p3 . Now, if w(SBr,π/2) �
√

2R(SBr,π/2) , the set SBmin
r,π/2 :=

conv
(
Iπ/2,(p3 +w(SBr,π/2)B)∩SBr,π/2

)
fulfills SBmin

r,π/2 ⊂ K , for all K with

f (K)= f (SBr,π/2) . In case of w(SBr,π/2)>
√

2R(SBr,π/2) (i. e. r > (2−√
2)

R(SBr,π/2)), let L be the supporting line to the inball in v , and let p4, p5 ∈
L be at distance w(SBr,π/2) from the segments [p1, p3] and [p2, p3] , re-
spectively. Then the pentagon SBmin

r,π/2 := conv{pi, i ∈ [5]} is a minimal set
mapped to the same coordinates as SBr,π/2 . However, one should recognize
that SBmin

r,π/2
is only one (maybe the “nicest”) possible choice for such a set

(cf. Figure 8(b)).

(Iπ/3,FR) For any r ∈ [r(Iπ/3),r(FR)] there exists c ∈ R2 , s. t. c+ rB is contained in
FR (by the definition of the inradius) and tangent to the linear edge of FR

(cf. Figure 9). Assuming c to be equidistant from the endpoints of that linear
edge, the sets BIr,π/3 = conv(Iπ/3,v+rB) , r ∈ [r(Iπ/3),r(FR)] are called bent
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equilaterals and they satisfy r(BIr,π/3) = r , D(BIr,π/3) =
√

3R(BIr,π/3) and
w(BIr,π/3) = w(Iπ/3) . Thus the bent equilaterals with r ∈ [r(Iπ/3),r(FR)] are
extreme for the inequalities (lb2) and (ib3).

With respect to set inclusion BIr,π/3 is a minimal set mapped onto these coor-
dinates. However, since there is some freedom in placing c , it is not a unique
minimal set.

Choosing two common supporting halfspaces Hi with bd(Hi) = Li , i = 1,2,
of BIr,π/3 and its inball, s. t. c+ rB is the inball of FR∩H1∩H2 , one gets a
maximal set containing BIr,π/3 (but neither the choice of the halfspaces Hi ,
i = 1,2 is unique nor is the choice of c , cf. Figure 9).

Figure 9: In black a bent equilateral BIr, π/3 , r ∈ [r(I π/3),r(FR)] (for which all radii keep
constant moving the inball horizontally), in red one possible maximal set containing BIr, π/3 .

(FR,SR) On the contrary, for any r ∈ [r(FR),r(SR)] , let c ∈ R2 be s. t. c+ rB is tan-
gent to the two (non-linear) arcs of FR (see Figure 10(b)). Then we define
the maximally-sliced Reuleaux triangle SRr,wr as follows: take the intersec-
tion of RT with a halfspace supporting c + rB and containing a vertex of
FR , which is adjacent to its linear edge, on the boundary line of the halfs-
pace. Abbreviating D = D(SRr,wr) and R = R(SRr,wr) = 1 again, it holds
r(SRr,wr) = r and D =

√
3R . Considering the angles α,β ,γ inside SRr,wr

(as given in Figure 10(b)), we have

(i) cos(α) = D/2(D−r), (ii) sin(α + β ) = r/(D−r), (iii) cos(γ) = w/D.

Passing (i) into (ii) one obtains that

β = arcsin

(
r

D− r

)
− arccos

(
D

2(D− r)

)

and since γ = π/6−β it follows from (iii) for the width w = w(SRr,wr) that

w = Dcos

(
π
6
− arcsin

(
r

D− r

)
+ arccos

(
D

2(D− r)

))
.
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The sliced Reuleaux triangles fulfill the inequalities (lb3) and (ib3) with equal-
ity. Moreover, calling BIr,π/3 := conv(Iπ/3,c+ rB) , with r ∈ [r(FR),r(SR)]
again a bent equilateral, it holds f (K) = f (SRr,wr) , iff BIr,π/3 ⊂ K ⊂ SRr,wr

(cf. Figure 10(b)).

(a) In black a concentric sliced Reuleaux tri-
angle SR�

γ and in red BYγ .
(b) In black a maximally-sliced Reuleaux
triangle SRr,wr , in red a bent equilateral
BIr, π/3 , r ∈ [r(FR),r(SR)] .

Figure 10: Sliced Reuleaux triangles

(SR,RT) Let L be a line containing a vertex of RT , say p , not cutting the interior of
the inball of RT . Then consider the angle γ ∈ [arcsin(

√
3− 1)− π/6, π/6]

between L and one of the segments joining p with one of the other two ver-
tices (see Figure 10(a)). The family of concentric sliced Reuleaux triangles
SR�

γ is obtained from intersecting RT with the halfspace induced by L . The
concentric sliced Reuleaux triangles have the same diameter, in-, and circum-
radius as RT , while the width is attained orthogonally to the line L . Hence
w(SR�

γ ) = D(RT)sin (π/3+ γ) . Concentric sliced Reuleaux triangles are ex-
treme for the inequalities (ib2) and (ib3).

Denoting the convex hull of r(SR�
γ )B and the Yamanouti set sharing the same

width, diameter and circumradius with SR�
γ by BYγ , we obtain f (K) =

f (SR�
γ ) , iff BYγ ⊂ K ⊂ SR�

γ (see Figure 10(a)).

(L,BT) The construction of the sets in the edge (L,BT) is a generalization of that
of the bent trapezoid BT in Subsection 4.1. Let Iγ = conv{p1, p2, p3} with
γ ∈ [0,arcsin(3/4)] be s. t. γ is the angle at p1 . Moreover, let p4 �= p3 in the
circumsphere of Iγ be s. t. conv{p1, p2, p4} is congruent to conv{p1, p2, p3}
and possesses its angle γ at p2 . Substituting the two edges [p1, p4] and
[p2, p3] by two arcs of radius D(Iγ) with centers in p1 and p2 , respectively,
the resulting set is a (general) bent trapezoid BTγ , γ ∈ [0,arcsin(3/4)] (see
Figure 11(a)). It holds D(BTγ ) = D(Iγ) = 2R(Iγ)cos( γ/2) and w(BTγ) =
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w(Iγ ) = D(Iγ )sin(γ) and since they possess two parallel edges touching the
inball in antipodal points we have w(BTγ ) = 2r(BTγ ) .

The bent trapezoids are extreme for the inequalities (lb1) and (lb2). While
BTγ is the unique maximal set with respect to set inclusion, which is mapped
onto these coordinates in the diagram, there does not exist a unique minimal
set. Essentially, the convex hull of Iγ and any of the possible inballs of BTγ
shares all four radii with BTγ and is minimal in that sense.

(BT,FR) Adopting the construction of the bent trapezoids with γ ∈ [0,arcsin(3/4)]
above, we define the (general) bent trapezoid BTγ with γ ∈ [arcsin(3/4), π/3]
(see Figure 11(a)). Bent trapezoids with γ > arcsin(3/4) still fulfill D(BTγ) =
D(Iγ ) = 2R(Iγ)cos( γ/2) , and w(BTγ ) = w(Iγ ) = D(Iγ)sin(γ) , but in differ-
ence to the bent trapezoids with γ < arcsin(3/4) , the ones with γ � arcsin(3/4)
have an inball touching the two diametrical arcs and only the longer of the
parallels. Thus it holds 1/4D(BTγ)2 + r(BTγ)2 = (D(BTγ )− r(BTγ ))2 from
which we obtain that 3/4D(BTγ)2 − 2D(BTγ)r(BTγ ) = 0 or 8r(BTγ) =
3D(BTγ ) . Hence the sets BTγ , γ ∈ [arcsin(3/4), π/3] , fulfill inequalities (lb2)
and (lb3) with equality.

BTγ is the unique maximal set with respect to set inclusion. The bent isosce-
les given by the convex hull of one of the two possible copies of Iγ inside BTγ
and the inball of BTγ is a minimal set with respect to set inclusion mapped to
the same coordinates (see Subsection 4.3 for details about bent isoscles). It is
unique up to mirroring along the symmetry axis of BTγ , cf. Figure 11(b).

(a) In black BTγ with γ < arcsin( 3/4) , in
red a minimal set whose inball is tangent to
one of the curved edges of BTγ .

(b) In black BTγ with γ > arcsin( 3/4) , in
red a corresponding bent isosceles.

Figure 11: Bent trapezoids.

(SR,H) Now, we generalize the hood H as constructed in Subsection 4.1: For any γ ∈
[2arcsin( r(H)/D(H)) , π/3] let Iγ = conv{p1, p2, p3} be, s. t. D(Iγ)=

∥∥p1 − p2
∥∥

=
∥∥p1 − p3

∥∥ . Then we define the area contained between
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– the arcs with centers in the vertices of Iγ and radius D(Iγ) ,

– the line L , passing through p2 , supporting the ball
(
D(Iγ)−R(Iγ)

)
B , and

possessing the smaller angle β between it and [p1, p2] , as well as

– the parallel line L′ to L supporting Iγ in p3 ,

as the (general) hood Hγ (see Figure 12(a)).

One can easily see that D(Hγ) = D(Iγ) = 2R(Iγ)cos( γ/2) and r(Hγ )= D(Hγ )
−R(Hγ) .

Observe that the angle between [p1, p2] and [0, p2] in p2 is γ/2 . Now, let
α be the angle between [p2, p3] and the perpendicular of L in p2 and let
β = γ/2−α be the angle between [p1, p2] and L in p2 . Then, omitting the
argument Hγ , we obtain

(i) D = 2Rcos(γ/2) , (ii) r = Rsin(γ/2 + β ) = Rsin(γ −α),

(iii) w =
∥∥p2− p3

∥∥cos(α) = 2Dsin(γ/2)cos(α).

From (i) and (ii) one immediately gets that γ/2 = arccos(D/2R) and that α =
γ − arcsin( r/R) . Thus (iii) can be rewritten as

w = 2Dsin(arccos(D/2R))cos(γ − arcsin(r/R))

= 2D

√
1−
(

D
2R

)2

cos

(
2arccos

(
D

2(D− r)

)
− arcsin

(
r

D− r

))
.

The hoods Hγ with γ ∈ [2arcsin( r(H)/D(H)) , π/3] are extreme for the inequal-
ities (lb3) and (ib2). While Hγ is maximal with respect to set inclusion, the
bent isosceles conv(Iγ ,(D(Hγ )−R(Hγ ))B) is minimal sharing all radii with
Hγ (see Figure 12(a)).

(BT,H) Let r ∈ [r(BT),r(H)] and γr be the maximal γ ∈ [0, π/3] s. t. we can find
c ∈ R2 for which

(i) c+ rB is tangent to the two arcs with centers p1 and p2 and radius D(Iγr)
above the segments [p2, p3] and [p1, p3] , respectively, as well as

(ii) two parallel lines L and L′ , which both support c+ rB , also support Iγr in
p2 and p3 , respectively (cf. Figure 12(b)).

The bent pentagon BPr,γr is defined as the area contained between the lines
L,L′ and the three arcs with radius D(Iγr) centered in the vertices of Iγr .
These bent pentagons satisfy D(BPr,γr)= D(Iγr)= 2R(Iγr)cos( γr/2) , r(BPr,γr)=
r , and w(BPr,γr) = 2r(BPr,γr) and are extreme for the inequalities (lb1) and
(lb3).

Defining the bent isosceles BIr,γr := conv(Iγr ,c+ rB) (as we will do in Sub-
section 4.3), we obtain that f (K) = f (BPr,γr) , iff BIr,γr ⊂ K ⊂ BPr,γr .
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(a) In black a general hood Hγ , in red a bent
isosceles.

(b) In black a bent pentagon BPr,γr and in red a
bent isosceles BIr,γr , r ∈ [r(BT),r(H)] .

Figure 12: Sets from the two edges meeting in H and bounding (lb3).

4.3. Facets of the diagram

For each of the inequalities stated in Section 3 we will describe families of sets
in K 2 , s. t. for every point x ∈ [0,1]3 in the induced facet of f (K 2) a set Kx with
f (Kx) = x is given.

(lb1) Due to Lemma 2.1, all outer parallel bodies K , of either the bent trapezoids
BTγ belonging to the (L,BT)-edge or the bent pentagons BPr,γ belonging to the
(BT,H)-edge, fulfill the equation

2r(K) = w(K).

This means (lb1) induces a linear facet of the diagram, which is bounded by the
edges (L,BT) (bent trapezoids with γ � 3/4), (BT,H) (bent pentagons), (L,B)
(sausages) and (H,B) (rounded hoods).

(ib1) If K is an outer parallel body of a right-angled triangle T
π/2
r or a right-angled

sailing-boat SBr,π/2 as described in Section 4.2, then Lemma 2.1 ensures

D(K) = 2R(K),

which means equality in (ib1). Hence (ib1) induces a linear facet of the dia-
gram bounded by the edges (L,B) (sausages), (L,Iπ/2) (right-angled triangles),
(Iπ/2,SB) (right-angled sailing-boats), and (SB,B) (rounded sailing boats).

Many more sets are mapped to the two facets induced by (lb1) and (ib1) . Recall
that, e. g., all symmetric sets are mapped to the edge obtained from the intersec-
tion of the two facets.



A COMPLETE 3D BS-DIAGRAM 325

(ub1) Due to Lemma 2.1 any outer parallel body K of a Reuleaux blossom RBr or of
a concentric sailing boat SB�

γ fulfills w(K) = r(K)+R(K) . Moreover, if K∗ is
a Scott-completion of a concentric sailing boat SB�

γ , we obtain from Lemma 2.3
that any of the sets Kλ := λK +(1−λ )K∗ , λ ∈ [0,1] , fulfills w(K) = r(K)+
R(K) , too. Thus (ub1) defines a linear facet of the diagram, bounded by the edges
(Iπ/3,RT) (Reuleaux blossoms) and (RT,B) (rounded Reuleaux triangles), as
well as (Iπ/3,SB) (concentric sailing boats) and (SB,B) (rounded sailing boats).

(ib2) Lemma 2.1 ensures that any outer parallel body K of a general hood Hγ or of a
concentric sliced Reuleaux triangle SR�

γ fulfills

D(K) = r(K)+R(K).

Thus we obtain a filling of the linear facet plainly from the star-shapedness with
respect to B . In addition, if K is a set from the edges (SR,H) or (H,B) and
K∗ a corresponding Scott-completion, then, by Lemma 2.3, the sets Kλ := λK +
(1−λ )K∗ , λ ∈ [0,1] , fulfill D(K) = r(K)+R(K) too. Hence using Lemma 2.3,
we obtain a filling of the facet in horizontal lines with respect to the inradius-axis.

Either way we see that (ib2) induces the fourth linear facet. Its boundary edges are
(SR,H) (general hoods), (H,B) (rounded hoods), (SR,RT) (concentric sliced
Reuleaux triangles), and (RT,B) (rounded Reuleaux triangles).

(ib3) As shown in [16] a set K ∈ K 2 fulfills

D(K) =
√

3R(K),

iff K contains an equilateral triangle Iπ/3 of the same circumradius. Since RT

is the unique Scott-completion of Iπ/3 , we obtain that Iπ/3 ⊂ K ⊂ RT .

Consider a Reuleaux blossom RBr = 2rIπ/3 ∩RT with r ∈ [r(Iπ/3),r(RT)] . We
describe a continuous transformation of RBr , keeping the inradius, diameter and
circumradius constant and decreasing the width until it becomes a set from the
edge (Iπ/3,FR) or (FR,SR) . Let pi , i = 1,2,3 be s. t. Iπ/3 = conv{p1, p2, p3} .
While the transformation ending in the sets from the edge (Iπ/3,FR) can be done
within one step (Step (i) below), the transformation of the sets which should
approach the edge (FR,SR) must be done in two steps (Step (i) and (ii) below):

(i) We translate 2rIπ/3 in direction of p1 , until either its inball becomes tan-
gent to [p2, p3] (when r(Iπ/3) � r � r(FR)) or tangent to both arcs of RT

intersecting in p1 (when r(FR) � r � r(SR) , see Figure 13(a)). We de-
fine the (non-concentric) Reuleaux blossom by RBr,v := (v+2rIπ/3)∩RT ,
where v is a point on the segment [0,t p1] with 0 � t < 1 chosen, s. t. in case
of v = t p1 one of the two stopping reasons for the translation is reached (cf.
Figure 13(a)).
Observe that when r(Iπ/3) � r � r(FR) all radii of RBr,t p1 coincide with
the ones of a bent equilateral BIr,π/3 (cf. Figure 9), which means that we
finished the transformation.
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(a) In black a non concentric Reuleaux blos-
som and in red the corresponding minimal
set.

(b) In black a sliced Reuleaux triangle and
the corresponding minimal set in red.

Figure 13: Examples for the sets, which are maped onto (ib3) , corresponding to the cases (i)
and (ii) in the description.

(ii) In case of r(FR) � r � r(SR) the width needs to be further reduced. How-
ever, since the tangent lines to the inball do not support the diameter arcs
of RT intersecting in p1 , we first “fill” the area between RBr,t p1 and these
arcs, keeping all radii constant, but obtaining a maximal set. Afterwards
let L be a line containing p3 and cutting the extreme Reuleaux blossom
RBr,t p1 , s. t. the distance of p1 and L is the same as the width of RBr,t p1 .
Then we rotate L continuously until it becomes tangent to the inball of
RBr,t p1 (see Figure 13(b)). Let L− denote the halfspace bounded by L and
containing the inball. Then the set SR2,r,w = RBr,t p1 ∩L− is called a general
sliced Reuleaux triangle. Finally, when L− becomes tangent to the inball,
we need to “fill” again, this time the complete area of RT inside L− .

Observe that in that moment the general sliced Reuleaux triangle reaches the edge
(FR,SR) , becoming a maximally sliced Reuleaux triangle. Moreover, starting
with the Reuleaux triangle the general sliced Reuleaux triangles become concen-
tric sliced Reuleaux triangles and the transformation finally approaches SR .

Both, non-concentric Reuleaux blossoms and general sliced Reuleaux triangles
are maximal sets with respect to set inclusion. The corresponding minimal sets
are the convex hull of conv(Iπ/3,v+ rB) with the intersection of the three balls
centered in the vertices of Iπ/3 and each of radius w(RBr,v) or w(SR2,r,w) , de-
pending if we are in case (i) or (ii).

(lb2) It was shown in [15] that every isosceles Iγ , γ ∈ [0, π/3] , fulfills

(4R(K)2−D(K)2)D(K)4 = 4w(K)2R(K)4
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with equality. But as already described in [4] they are not the only ones. Since
r does not appear in this inequality any superset of an isosceles Iγ keeping the
same circumradius, diameter, and width is mapped to the same facet. This is
true, e. g. for all bent trapezoids BTγ on the edges [L,BT] and [BT,FR] and
surely also for any minimal version conv(Iγ ,cγ + r(BTγ)B) , where cγ denotes
an incenter of BTγ . Thus choosing any r ∈ [r(Iγ),r(BTγ )] and an appropriate
incenter c the sets conv

(
Iγ ,c+ rB

)
would have inradius r and the same circum-

radius, diameter, and width than Iγ and BTγ (see Figure 14). Let us remark that
in many cases the choice of the incenter above will not be unique, as the centers
cγ of BTγ where not always unique, neither.

Figure 14: An example of a minimal set from (lb2) .

Hence the facet induced by (lb2) is filled by those sets and bounded by the edges
(L,Iπ/3) (isosceles triangles with γ ∈ [0, π/3]), (L,BT) , and (BT,FR) (both
kinds of bent trapezoids), as well as by the edge (Iπ/3,FR) (bent equilaterals
with the inball being tangent to an edge of Iπ/3 ).

One should observe that for any fixed incenter c the sets conv
(
Iγ ,c+ rB

)
are

minimal sets with respect to set inclusion mapped to these coordinates in the
diagram and are constructed in the same way than the bent isosceles in (lb3)
below.

(lb3) For any r ∈ [0,1] and γ ∈ [0, π/3] let

(i) p1, p2, p3 ∈ S be s. t. Iγ = conv{p1, p2, p3} with D(Iγ) =
∥∥p1− p2

∥∥ =∥∥p1− p3
∥∥ ,

(ii) c ∈ R2 be s. t. the ball c+ rB is tangent to the two arcs with centers p1, p2

and radius D(Iγ) ,
(iii) L1 be the one of the two lines containing p2 and supporting c+ rB , pos-

sessing the smaller angle with [p1, p2] , and
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(iv) L2 be the parallel line of L1 passing through p3 .

Then a generalized bent pentagon BPr,γ is defined as the area surrounded by
L1,L2 , and the three arcs of radius D(Iγ) with centers p1, p2 , and p3 (see Figure
15).

If we can ensure that Iγ ⊂ BPr,γ , that c + rB is the inball of BPr,γ , and that
w(BPr,γ) = d(L1,L2) , we simply call it a bent pentagon (see Figure 15(a)).

(a) A bent pentagon BPr,γ (black) and a bent
isosceles BIr,γ (red), the maximal and mini-
mal sets mapped to the same coordinates in
(lb3) .

(b) A generalized bent pentagon not being a
bent pentagon as r(BPr,γ ) < r .

Figure 15: Generalized bent pentagons

Recall the following edges: the bent trapezoids from (BT,FR) , the bent pen-
tagons from (BT,H) , the maximally-sliced Reuleaux triangles from (FR,SR) ,
and the general hoods from (SR,H) . It is easy to check from their construction
that all of them are particular cases of bent pentagons in the above sense. We
will justify why these four edges describe the boundaries of (lb3) in showing
that they bound the range of the parameters r,γ , s. t. a generalized bent pentagon
is a bent pentagon. To be more precise, we show that the bent pentagons and the
bent trapezoids bound γ from below, while the general hoods and the maximally-
sliced Reuleaux triangles bound γ from above.

LEMMA 4.2. Let r ∈ [0,1] , 0 � γ < γ � π/3 , and let L1,L2 as well as
L1,L2 be the corresponding parallels in the construction of the generalized bent
pentagons BPr,γ and BPr,γ , respectively. Then

a) the ball c+ rB , used in the construction, intersects (is tangent to) [p1, p2] ,
iff 8r � 3D(Iγ) (8r = 3D(Iγ)).

b) restricting to the case 8r � 3D(Iγ) , it holds that d(L1,L2) < d(L1,L2) .
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Proof.

a) The distance from c to [p1, p2] is at most r , iff [p1, p2] intersects c+ rB ,
that is, when d(c, [p1, p2])2 = (D(BPr,γ)− r)2− 1/4D(BPr,γ)2 � r2 (cf. the
right-angled triangle T = conv{c, p2, 1/2(p1 + p2)} in Figure 15(a)). From
simplifying we obtain that this is equivalent to 3/4D(BPr,γ)− 2r � 0 or
8r � 3D(BPr,γ) with equality, iff r = d(c, [p1, p2]) , which means that the
inball is tangent to [p1, p2] .

b) We use the complete notation as in the construction of the bent pentagons,
with a bar on top for BPr,γ and assume that [p1, p2] as well as [p1, p2] are

horizontal, below 0 with p1
1 � p2

1 and p1
1 � p2

1 . Then it follows from Part
(a) that all lines Li,Li , i = 1,2, have non-negative slope. Since the function
f (x) = (x− r)2− 1/4x2 is increasing, if x � 2r it follows

d(c, [p1, p2]) =
√

(D(BPr,γ)− r(BPr,γ))2 − 1/4D(BPr,γ)2

>
√

(D(BPr,γ )−r(BPr,γ ))2−1/4D(BPr,γ )2 = d(c , [p1, p2]).

Using again the triangle T defined above and the pythagorean theorem, we
obtain that

p2
2 = −

√
1− 1/4D(BPr,γ)2 > −

√
1− 1/4D(BPr,γ )2 = p2

2.

Moreover, since γ < γ , rotating Iγ around S until p1 becomes p1 , it
follows p j, j = 2,3 belong to the smaller of the two arcs of S with end-
points p j, j = 2,3. Thus in particular it holds p3

2 < p3
2 after the rotation.

Undoing the rotation, i. e. p1 moves upward and p2, p3 downwards into
their old positions, it still holds p3

2 < p3
2 and therefore also both points

p2, p3 still lie in the shorter arc of S with endpoints p j, j = 2,3. Now,

it follows from γ < γ that
∥∥p1− p2

∥∥ >
∥∥∥p1 − p2

∥∥∥ , which together with

d(c, [p1, p2]) > d(c, [p1, p2]) means that the slope of L1 is less than the
one of L1 . Using this fact, we see that if one rotates Li , i = 1,2, around
pi , i = 2,3, s. t. they become parallel to Li , i = 1,2, their distance de-
creases, but is still bigger than the distance between L1 and L2 . Hence
w(BPr,γ) = d(L1,L2) < d(L1,L2) = w(BPr,γ ) . �

We see that only if Part (a) of Lemma 4.2 holds (which is, because of D(Iγ) =
2R(Iγ)cos( γ/2) , equivalent to γ � 2arccos(4/3r)), we have Iγ ⊂ BPr,γ , the latter
implying that R(BPr,γ) = R(Iγ) and D(BPr,γ) = D(Iγ ) .

Now considering c+ rB , we show that it is the inball of BPr,γ (which means that
r(BPr,γ) = r ), whenever r,γ are in the range described by the edges above. To do
so, it is enough to show that L2 does not intersect the interior of c+rB . However,
using Part (b) of Lemma 4.2, it follows that if r,γ determine a bent pentagon with
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maximal γ depending on r (i. e. BPr,γ belongs to (FR,SR) or (SR,H)) then L2

does not intersect c+ rB . Decreasing γ decreases monotonously d(L1,L2) until
BPr,γ becomes a set in (BT,FR) or (BT,H) . Moreover, in both cases L2 does
not intersect c+ rB at any point of the transformation (except that when BPr,γ
belongs to (BT,H) it becomes tangent).

Finally, from Part (b) of Proposition 1.1, we know that the width of BPr,γ must
be attained between two parallel supporting lines touching the endpoints of a
perpendicular segment in BPr,γ . However, considering the construction of the
generalized bent pentagons, any such pair of parallel supporting lines, except
L1,L2 , touches an arc of BPr,γ and the vertex it is drawn around. Thus the dis-
tance of any such pair of parallel supporting lines is D(BPr,γ) � d(L1,L2) (cf.
Figure 15(a)), proving w(BPr,γ) = d(L1,L2) . Observe that this argument fails if
the pentagon does not fulfill Part (a) of Lemma 4.2, as p1 would not belong to
BPr,γ anymore.

The given boundaries for the bent pentagons are best possible. Considering
the upper bounds first, on the one hand γ � π/3 by definition and for all r ∈
[r(FR),r(SR)] this bound is reached by a maximally-sliced Reuleaux triangle
SRr,wr = BPr,π/3 . On the other hand, in case of r ∈ [r(SR),r(H)] , inequality
(ib2) implies that D(BPr,γ) � r +R(BPr,γ) = D(BPr,2arccos( (r+1)/2)) . Taking into
account that D(BPr,γ)= D(Iγ) = 2R(Iγ)cos( γ/2) as well as D(Iγ) being descend-
ing as a function of γ , the former implies that γ � 2arccos((r+1)/2) . Equality in
this situation is attained by the general hoods.

Regarding the lower bounds, in both cases choosing γ below the given bound
yields a generalized bent pentagon not being a bent pentagon: As already men-
tioned, Part (a) of Lemma 4.2 implies γ � 2arccos(4/3r) in general. And in
case of r ∈ [r(BT),r(H)] choosing 2arccos(4/3r) � γ < γ = γr , Part (b) of
Lemma 4.2 says that d(L1,L2) < d(L1,L2) . But since L1 supports c+ rB and
both Li, i = 1,2 support the inball of BPr,γr , it follows that L2 would intersect
the interior of c+ rB .

For the computation of the radii we denote the angle in p2 between [p1, p2] and
[c, p2] by α , the angle in p2 between [p1, p2] and L1 by β , as well as the
angle in p2 between [p2, p3] and the line perpendicular to L1 by μ = γ/2− β
(cf. Figure 15(a)). Omitting again the argument BPr,γ in the radii functionals, it
holds

(i) cos(α) =
D

2(D− r)
, (ii) sin(α +β ) =

r
D− r

, (iii) cos(μ) =
w

‖p2− p3‖ .

From (i) and (ii) we obtain that β = arcsin( r/D−r)− arccos(D/2(D−r)) , which
together with γ = 2arccos(D/2R) implies that

μ =
γ
2
−β = arccos(D/2R)+ arccos(D/2(D−r))− arcsin( r/D−r) .
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Figure 16: Bottom view of the diagram f (K 2) .

Inserting μ and
∥∥p2 − p3

∥∥= 2D
√

1− (D/2R)2 into (iii) results in

w = 2D
√

1− (D/2R)2

cos

(
arccos

(
D

2(D− r)

)
+ arccos

(
D
2R

)
− arcsin

(
r

D− r

))
.

(6)

Thus each BPr,γ satisfies (lb3) with equality.

Again, we also define the bent isosceles BIr,γ := conv(Iγ ,c + rB) , which obvi-
ously fulfill R(BIr,γ) = R(BPr,γ) , D(BIr,γ) = D(BPr,γ) , and r(BIr,γ) = r(BPr,γ) .
Using Lemma 4.2, we know that c+rB intersects all three edges of Iγ . However,
from Part (b) of Proposition 1.1 it follows, that the width of BIr,γ is necessar-
ily attained between a parallel pair of lines, from which one supports the inball
and a vertex and the other a different vertex. Doing a direct comparison among
the six pairs of such parallel supporting lines, we easily obtain that w(BIr,γ) =
d(L1,L2) = w(BPr,γ) (cf. Figure 15(a)). Hence it holds f (K) = f (BPr,γ) , iff
BIr,γ ⊂ K ⊂ BPr,γ .

(ub2) Let γ ∈ [π/3, π/2] , r ∈ [r(Iγ),r(SB�
γ )] , and p1, p2, p3 be s. t. conv{p1, p2, p3} =

Iγ . Then IK = r
r(Iγ ) (Iγ − p3)+ p3 = conv{q1,q2, p3} is an isosceles triangle of

inradius r , s. t. qi = r
r(Iγ ) pi +(1− r

r(Iγ ) )p
3 , i = 1,2 (cf. Figure 17(a)). We call the

sets SBr,γ = IK ∩B (general) sailing boats, generalizing the concentric and right-
angled sailing boats which are mapped to the edges (Iπ/3,Iπ/2) and (Iπ/3,SB) .

It follows directly from the definition that p1 ∈ [q1, p3]∩S and p2 ∈ [q2, p3]∩S .
Hence R(SBr,γ) = R(Iγ ) , D(SBr,γ) = D(Iγ) = 2R(SBr,γ)sin(γ) and r(SBr,γ) =
r(IK) = r . Moreover, since Iγ ⊂ SBr,γ ⊂ SB�

γ , the width of SBr,γ is obviously
taken between [q1,q2] and p3 , s. t.

w(SBr,γ) = r
w(Iγ )
r(Iγ)

= r

(
1+

1
sin( γ/2)

)
= r

⎛
⎜⎝1+

2
√

2R
D

√√√√1+

√
1−
(

D
2R

)2

⎞
⎟⎠ .

Thus all general sailing boats SBr,γ are extreme for the inequality (ub2).
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Since SBr(Iγ ),γ = Iγ , SBr(SB�
γ ),γ = SB�

γ , and SBr,π/2 is a right-angled sailing-

boat, the edges (Iπ/3,Iπ/2) , (Iπ/3,SB) , and (Iπ/2,SB) form the boundaries of
this facet.

(a) A general sailing boat SBr,γ in black, and a
corresponding minimal set in red.

(b) An acute triangle Tr,D .

Figure 17: The general sailing boats and acute triangles fill the two remaining facets of the
upper boundary.

All sets K with f (K) = f (SBr,γ) fulfill K ⊂ SBr,γ , but in general there do not ex-
ist unique minimal sets, as we have already discussed for the edge (Iπ/2,SBr,π/2) .
However, if w(SBr,γ) �

∥∥p1− p3
∥∥ , then conv

(
Iγ ,(p3 +w(SBr,γ)B)∩SBr,γ

)
is a

minimal unique set (cf. Figure 17(a)).

(ub3) Any acute triangle is circumspherical, i. e. all its vertices are situated on the
circumsphere. For any D ∈ [

√
3/2,1] consider the two angles 0 � γ1 � π/3 �

γ2 � π/2 , s. t. D(Iγ1) = D(Iγ2) = D . It is easy to see that for any r ∈ [r(Iγ1),r(Iγ2)]
there exists an acute triangle Tr,D with inradius r and the same circumradius and
diameter as Iγ1 and Iγ2 .

Since every acute triangle is enclosed (in the above sense) between two isosceles
triangles with the same diameter and circumradius, the edges (L,Iπ/3) , (Iπ/3,Iπ/2)
(both kinds of isosceles triangles), and the edge (L,Iπ/2) (right-angled triangles)
form the relative boundary of this facet.

Let γ denote the angle of Tr,D at the vertex p3 , opposing the diametrical edge
[p1, p2] and s the distance within the other two edges of p3 to the touching points
of the inball with these edges (see Figure 17(b)). Then, as we have used already
in the computations of the edge (L,Iπ/2) in Subsection 4.2, the perimeter of Tr,D

is 2(s + D) . Thus using the semiperimeter formula for the area of a triangle,
Proposition 1.3, and simple trigonometry, we have

(i) wD = 2r(s+D), (ii) D = 2Rsin(γ) (iii) r = s tan ( γ/2) ,
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(cf. Figure 17(b)). Now, substituting the value of s in (i) by s = r
tan( γ/2) obtained

from (iii), while using (ii) to replace γ , we finally arrive in

wD = 2r

(
D+

r

tan
(

1
2 arcsin

(
D
2R

))
)

= 2r

⎛
⎝D+

2rR
D

⎛
⎝1+

√
1−
(

D
2R

)2
⎞
⎠
⎞
⎠ .

Figure 18: Top view of the diagram f (K 2) .

5. Proofs of the main results

In this section we give the proofs of the main theorems. For preparation, we first
state a corollary and some technical lemmas.

COROLLARY 5.1. Let K ∈ K n , c ∈ Rn be, s. t. c + r(K)B ⊂ K ⊂ B , and let
p1, . . . , pk , u1, . . . ,ul be as in Proposition 1.2 (a) and (b), respectively. Moreover, let
T = c+

⋂l
i=1{x ∈ Rn : (ui)T x � ρ} and T ′ = conv{p1, . . . , pk} . Then

a) at least two of the vertices of T do not belong to int(B) , and

b) T ′ separates bd(T ) from 0.

Proof. Both statements follow directly from 0 ∈ T ′ ⊂ K ⊂ T , recognizing that, if
all but at most one vertex of T would belong to int(B) , it would follow that R(K) �
R(T ) < 1, a contradiction. �

While Proposition 1.2 in Section 1 deduces properties of the inradius and the cir-
cumradius separately from their definitions, Corollary 5.1 combines them. In the fol-
lowing lemmas, we derive some more properties from the interaction between both
parts of Proposition 1.2 and the diameter.

We recall that we always assume B to be the circumball of K , even though keeping
the value R(K) in the equations.

LEMMA 5.2. Let K ∈ K n and c ∈ Rn be s. t. c + r(K)B ⊂ K ⊂ B . Moreover
let u1, . . . ,ul , T be as in Corollary 5.1. Then there exists u ∈ S , s. t. S�

u ⊂ T ∩S and
S

>
u ∩bd(T ) = /0 , iff K = B , r(K) = 1 and c = 0 .
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Proof. For the “if”-direction, we easily see that if K = B then choosing l = 2,
u2 = −u1 , and any u orthogonal to u1 , we obtain that T ∩ S = S ⊃ S�

u and S>
u ∩

bd(T ) = /0 .
For proving the “only if”-direction let us assume r(K) < 1. By the definition of

the points u1, . . . ,ul , we have 0 ∈ conv{u1, . . . ,ul} and therefore there exists j ∈ [l] ,
s. t. uT u j � 0, which means u j ∈ S�

u . Since c+ r(K)B ⊂ B , it holds ‖c‖+ r(K) � 1,
which means r(K) � (u j)T u j −‖c‖∥∥u j

∥∥ � (u j − c)T u j and “=” holds, iff c = (1−
r(K))u j .

Now, in case of (u j − c)Tu j > r(K) , it follows u j /∈ c+{x∈ Rn : xT u j � r(K)} ⊃
T ⊃ S

�
u .On the other hand, if (u j − c)Tu j = r(K) , it holds u j = c+ r(K)u j ∈ c+{x ∈

K : xT u j = r(K)} ⊂ bd(T ) . However, since S>
u ∩ bd(T ) = /0 , it follows u j ∈ S�

u \
S>

u = S∩ {x : uT x = 0} and therefore uT u j = 0. Now, since 0 ∈ conv{u1, . . . ,ul} ,
there exists k ∈ [l] \ { j} , s. t. uTuk � 0. But, since c + r(K)uk ∈ S would mean that
there exist two different points of c + r(K)B in S , contradicting r(K) < 1, we must
have c+ r(K)uk /∈ S . Hence (uk − c)uk > r(K) as shown above with j instead of k ,
contradicting uk ∈ S�

u . �

LEMMA 5.3. Let K ∈ K 2 and c ∈ R2 be s. t. c + r(K)B ⊂ K ⊂ B , as well as
p1, p2, p3 (possibly with p2 = p3 ), u1,u2,u3 (possibly with u2 = u3 ), T , and T ′ as in
Corollary 5.1 for the case n = 2 . The common supporting lines of K and c+ r(K)B
with outer normals u1,u2,u3 are denoted by L1,L2,L3 , respectively, the halfspaces
induced by these lines containing K by L−

1 ,L−
2 ,L−

3 (thus T ′ := conv{p1, p2, p3} and
T := L−

1 ∩L−
2 ∩L−

3 ). Finally, define C := T ∩B , and Si := Li ∩C, i = 1,2,3 . Then

a) the line segments of T ′ separate the line segments Si of T from 0 within B .

b) the length of each line segment Si , i = 1,2,3 , is at most D(K) .

c) the diameter of C is taken between two points on different arcs of C∩S or D(C) =
2 .

d) there exist q1,q2 ∈C∩S , s. t.
∥∥q1−q2

∥∥= D(K) and the segment [q1,q2] separates
one of the segments Si , i = 1,2,3 , from the other two segments and the origin 0
(see Figure 19 as an example).

Proof.

a) This is a direct interpretation of Part (b) of Corollary 5.1, which holds for R2 (but
not in general).

b) If the length of Si would be greater than D(K) , the same would be true for the
segment of T ′ separating Si from 0, a contradiction as T ′ ⊂ K .

c) By Proposition 1.1, there exist extreme points z1,z2 of C , s. t.
∥∥z1 − z2

∥∥ = D(C) .
Using Part (a) of Corollary 5.1, we distinguish the cases where no or one vertex of
T belongs to int(B) .
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Figure 19: A convex set K and all elements of Lemma 5.3. Observe that q1 /∈ K .

In the case that no vertex of T belongs to int(B) , the boundary of C alternates
between the three segments Li , i = 1,2,3 (possibly shrinking to a single point) and
three arcs in C∩S . Hence z1,z2 ∈ ext(C) = C∩S . We show that if K �= B , then z1

and z2 do not belong to the same arc of C∩S . Let us assume that z1 and z2 belong
to the same arc of C∩S and that this arc is in between L1 and L2 . Then we denote
by z i , i = 1,2 the one of the two endpoints of Li , which belongs to the same arc
of C∩S than z1 and z2 (see again Figure 19). Using Lemma 5.2, we know that
if K �= B the arc containing z1,z2 is at most an open semisphere. Hence D(C) =∥∥z1− z2

∥∥�
∥∥∥z1− z2

∥∥∥ and therefore {z1,z2}= {z1, z2} , w. l. o. g. zi = z i , i = 1,2.

We may first assume that Li ∩ int(B) �= /0 , i = 1,2. Since 0 ∈ conv{u1,u2,u3} the
lines Li , i = 1,2 are parallel or intersect in a vertex of T on the same side of 0 than
the segment [z1,z2] . However, if the two lines are parallel or intersect, the distances
between z1 and any point in L2 ∩ int(B) or the distance between z2 and any point
in L1 ∩ int(B) is strictly bigger than

∥∥z1 − z2
∥∥ = D(C) , a contradiction. Now, let

us assume that Li ∩ int(B) = /0 for at least one i ∈ {1,2} , w. l. o. g. for i = 1. This
means {z1} = L1∩S and therefore L1 supports B in z1 . By definition L1 supports
c+r(K)B . Hence we obtain that L1 support c+r(K)B in z1 . Using the fact that the
arc containing z1,z2 is at most an open semisphere, we have z2 �=−z1 and therefore
D(C) � D(conv({z2}∪ (c+ r(K)B)) >

∥∥z1− z2
∥∥= D(C) , again a contradiction.

Finally, consider the case that one vertex of T belongs to int(B) . Then C pos-
sesses only two arcs in C ∩ S (possibly be split by a single pointed Li ). Ap-
plying Part (a) of Proposition 1.2 for C , there exist p1, p2, p3 in this two arcs,
s. t. 0∈ conv{p1, p2, p3} . However, as two of the pi have to be on the same arc, the
negative of the third has to be on that arc, too, proving D(C) = 2 for that case.

d) In case of K = B the claim is trivially true. Hence we may assume K �= B .

Using Part (a) of Corollary 5.1, we distinguish again the cases with no or one vertex
of T belonging to int(B) .
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In the first case, it was shown in Part (c) that any pair of diametrical points z1 and z2

of C lie in different arcs of C∩S . This means that [z1,z2] separates one of the seg-
ments Si from the other two segments and the origin 0, say S3 (cf. Figure 19). From
Part (b) we know that the length of S3 is at most D(K) � D(C) =

∥∥z1− z2
∥∥ . Hence

there exist q1 and q2 in the same arcs as z1 and z2 , respectively, s. t.
∥∥q1−q2

∥∥ =
D(K) and [q1,q2] still separates S3 in the same way as [z1,z2] does.

In case that one vertex of T belongs to int(B) , it follows from Part (c) that D(C) =
2, which means z2 = −z1 . Thus [z1,z2] separates the two segments intersecting in
int(B) from the third. Again because of Part (b) there must exist q1 and q2 with∥∥q1−q2

∥∥= D(K) separating this third segment from the other two and 0. �

LEMMA 5.4. Consider the same setting and notation as in Lemma 5.3. In the
following we assume that the single separated segment in Part (d) of Lemma 5.3 is S3

and w. l. o. g. that S3 is horizontal below 0 as well as separated by [q1,q2] from S1 ,
S2 , and 0 . Moreover, we denote the point in C farthest from L3 by y, the intersection
points of Li , i = 1,2 with L3 by ti , i = 1,2 , respectively, and assume that t11 � 0 � t21
(which is possible when S3 is horizontal and means that L1 bounds S3 on the left while
L2 bounds S3 on the right, see Figure 19).

a) The first coordinate of the intersection points of L1 and S is bounded from above by
D(K)/2 while the first coordinate of the intersection points of L2 and S is bounded
from below by −D(K)/2 .

b) It holds |y1| � D(K)/2 .

c) One can modify the choice of q1 and q2 satisfying Part (d) in Lemma 5.3, s. t. the
interior angles of conv{y,q1,q2} in q1 and q2 are at most π/2 .

Proof.

a) It suffices to show the upper bound in case of L1 . Since S3 is the separated segment,
it follows that t1,t2 �∈ int(B) and since S3 is horizontal, (a) is obviously true for
z1 . Let us denote the other endpoint of S1 by x1 and assume x1

1 � 0 as otherwise
there is nothing to show. Since S3 is horizontal and lower bounding C , we have
t12 � x1

2 . Together with t11 � 0 this means L1 has a positive slope. Moreover, to keep
0 within C it must hold that −z1

1 � x1
1 . Now, assuming x1

1 > D(K)/2 would also
imply z1

1 < −D(K)/2 and therefore that the length of S1 would be strictly greater
than D(K) , which contradicts Part (b) of Lemma 5.3.

b) Again, it suffices to show y1 � D(K)/2 , because of symmetry in the argument. If L1

and L2 intersect within int(B) , they must intersect in y . Hence y1 � x1
1 � D(K)/2

using the notation as in Part (a). Otherwise y lies on the arc of C∩S bounded by
x1 and the upper intersection point x2 of L2 and S . However, with e2 denoting the
second unit vector, that would mean y ∈ {x1,x2,e2} , which again proves the claim
because of Part (a).
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c) We suppose w. l. o. g. that qi , i = 1,2, belong to the arc of S induced by Si and S3 ,
i = 1,2, respectively. Now, assuming that one of the interior angles of conv{y,q1,q2}
in q1 or q2 is bigger than π/2 would mean that y lies in one of the two open caps
of B separated from 0, obtained from cutting B with aff{q1,−q2} or aff{−q1,q2} .
Denoting the intersection point of L1 and L2 by t3 , we know from Part (b) that
y ∈ {x1,x2,e2, t3} . In any of the four cases [q1,q2] separates y from S3 .

Now, we describe the choice of q1 and q2 satisfying the statement for each of the
four possible y’s: Since q1

1 < 0 and q2
1 > 0, e2 can obviously not belong to one of

the two open caps described above. To obtain that y = xi , i = 1,2, it must hold that
e2 does not belong to C . In that case either x1

1 > 0 and y = x1 or x1
2 < 0 and y = x2 .

We may assume w. l. o. g. that y = x1 or y = t3 and that, if y belongs to one of the
open caps, then it is contained in the cap induced by aff{−q1,q2} . Using Part (b) of
Lemma 5.3, we know that the length of S1 is at most D(K) =

∥∥q1−q2
∥∥ . However,

since y is contained in the open cap of B induced by aff{−q1,q2} , the length of
S1 can only be bounded by D(K) if S1 cuts through one of the segments [q1,q2]
or [−q2,−q1] . However, the first case would contradict that [q1,q2] separates S1

from S3 . Hence S1 must intersect [−q2,−q1] . Now, S3 is horizontal and therfore
S1 ascending (and S2 descending). Moreover, since y is in the open cap induced
by aff{−q1,q2} we have −q1 possesses a bigger second coordinate than y . Thus
the segment [q1,q2] must be ascending, even with a bigger slope than S1 , since
otherwise S1 and [−q2,−q1] could not intersect. But if this is the case, we may
move q1,q2 ∈ C ∩S , within the arcs they belong to, keeping their distance, until
[q1,q2] becomes parallel to S1 . Since this means [q1,q2] stays ascending with the
new points q1 and q2 , it still separates S3 from S1 , S2 and 0. Moreover, the open
caps now induced by aff{q1,−q2} and aff{−q1,q2} do not contain y anymore,
implying that the interior angles of conv{y,q1,q2} in q1 and q2 are at most π/2

now. �

Before considering the next Lemma, remember that we know from the facets (ub2)
and (ub3) in Subsection 4.3, that for every diameter D ∈ [

√
3,2] and inradius r ∈

[r(I2arccos(D/2)),r(SB�
arcsin(D/2))] there exist triangles Tr,D (in case of r � r(Iarcsin(D/2)))

or sailing boats SBr,arcsin(D/2) (in case of r � r(Iarcsin(D/2))).

LEMMA 5.5. Let D ∈ [
√

3,2] and r(I2arccos(D/2)) � r � r(SB�
arcsin(D/2)) . Then for

all K ∈ K 2 , s. t. D(K) = D and r(K) = r there exists

a) a triangle Tr,D , s. t. w(K) � w(Tr,D) , if r � r(Iarcsin(D/2)) , and

b) a sailing boat SBr,arcsin(D/2) , s. t. w(K) � w(SBr,arcsin(D/2)) , if r � r(Iarcsin(D/2)) .

Proof. Let c ∈ R2 be s. t. c + r(K)B and B are the in- and circumball of K ,
respectively. Using the notation as given in Lemma 5.3, remember that R(C) = R(K)
and r(C) = r(K) , whereas the monotonicity of the radii with respect to set inclusion
implies D(C) � D(K) and w(C) � w(K) .
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The idea of the present proof is to transform C in several steps into some triangle
or sailing boat C satisfying R(C) = R(K) , r(C) = r(K) , D(C) = D(K) , and w(C) �
w(K) .

More precisely, denoting the breadth of C in direction of u3 by bu3(C) , we know
from the definitions of the width that w(C) � bu3(C) = dist(y,L3) as the point y in
Lemma 5.4 is the farthest point from L3 in C .

Now, in every step of the transformation of C , we will increase the breadth in
direction of u3 , but, when arriving in C , it even holds w(C) = bu3(C) (as we have seen
when defining the triangle and sailing boat families).

(a) In (i) the lines L1,L2 may be rotated around
c+ rB .

(b) In (ii) we may move c+ rB downwards while
L1 (and/or L2 ) may be rotated around q1 (and/or
q2 ).

Figure 20: Examples for (i) and (ii) in Lemma 5.5. Here and in Figures 21 to 23 the start and
the end of a movement are indicated by dotted and, respectively, full lines.

(i) Rotate the lines L1 and L2 , s. t. they keep supporting c + r(K)B and contain
q1 and q2 , respectively, thus also keeping the separation of S1,S2 from S3 by
[q1,q2] . In the degenerate case of only two supporting parallel lines to c+ r(K)B
(which means by the choices in the proof of Lemma 5.3 that u1 = u2 ), we substi-
tute L1 by two lines L1 and L2 supporting c+ r(K)B and containing q1 and q2 ,
respectively, s. t. 0∈ int(conv{u1,u2,u3}) and arrive in the same situation than in
the non-degenerate case.

Thus, the y we have before the change still belongs to C afterwards and therefore
the new y (the point at maximum distance from L3 within the new C ) is not closer
to L3 than before. Applying Parts (b) and (c) of Lemma 5.4 for the new C , we
still have that |y1| � D(K)/2 and that conv{y,q1,q2} has interior angles in q1 and
q2 at most π/2 .

(ii) This step is only needed, if L1∩L2 /∈ B , which means that y ∈ {x1,x2,e2} . First,
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as long as y /∈ L2 we translate c + r(K)B downwards, parallel to L1 , rotate L2

around the point q2 and move L3 parallel to its prior position, s. t. L2 and L3

keep supporting c+r(K)B . Afterwards, as long as y /∈ L1 we translate c+r(K)B
downwards, parallel to L2 , rotate L1 around the point q1 , and move L3 again
parallel to its prior position, s. t. L1 and L3 keep supporting c + r(K)B . In the
end y is in L1 ∩L2 ∩S and since L3 moves always vertically downwards, but y
stays equal, the distance dist(y,L3) does not decrease.

(iii) Since the inner angles of conv{y,q1,q2} in q1 and q2 are at most π/2 , it holds∥∥t1− t2
∥∥�

∥∥q1−q2
∥∥ = D(K) , recalling that ti denotes the intersection point of

L3 with Li , i = 1,2. Hence there exist qi ∈ Li , i = 1,2, s. t. [q1, q2] is parallel

to L3 and
∥∥∥q1 − q2

∥∥∥= D(K) . Now, we translate T until qi , i = 1,2 become the

points
(
±D/2,−√1− (D/2)2

)T ∈ S (see Figure 21(a)).

From (ii) it follows y ∈ L1 ∩L2 ⊂ B and since T is only translated in (iii) neither

the dist(y,L3) nor the angle in y of T changes. Since we also have
∥∥∥q1− q2

∥∥∥=∥∥q1−q2
∥∥ Proposition 1.3 (with y in the role of p3 there) implies that after the

movement the vertex y is still in B , and moreover, if y ∈ S before the movement,
it will be in S after, too.

(a) In (iii) the set rotates until [q1,q2] becomes
parallel to L3 .

(b) In (iv) (if y ∈ S ) y moves inside S and may
become e2 whereas C = SBr,γ .

Figure 21: Examples of (iii) and (iv) from Lemma 5.5.

(iv) If y ∈ S , we move {y} = L1 ∩L2 around S towards e2 and L1 and L2 with it.
The inball is moved, s. t. it remains tangent to both L1 and L2 and the line L3

parallel to its prior position to keep tangent to the inball. We stop when y = e2

(see Figure 21(b)) or L3 contains the segment [q1,q2] (whichever comes first –
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the first stopping reason meaning that C becomes a sailing boat, the latter that C
becomes a triangle).

Before and after the transformation the inradius and the angles in the points y of
the two triangles coincide (see Proposition 1.3), while the line passing through the
incenter c and y becomes closer to be perpendicular to L3 . Hence the distance
dist(y,L3) does not decrease under this movement.

If y = e2 , then C = SBr(K),γ(D(K)) , otherwise, if L3 contains the segment [q1,q2] ,
C = Tr(K),D(K) . In both cases r(C) = r(K),D(C) = D(K) , R(C) = R(K) , and
w(C) = dist(y,L3) � bu3(K) � w(K) holds.

(v) If y ∈ int(B) , we rotate the lines L1,L2 around q1,q2 , repectively, s. t. {y} =
L1 ∩ L2 moves along aff{y,c} away from c . The inball moves, s. t. it remains
tangent to L1 and L2 , while L3 is shifted upwards, parallel to its original position
to remain tangent to the inball.

The transformation finishes when y ∈ S or the line L3 contains the segment
[q1,q2] .

Before and after the movement the triangle T has the same inradius and aff{y,c}
has the same angle with respect to L3 , but the angle in y decreases. Hence the
distance dist(y,L3) does not decrease.

If we arrive in y ∈ S , we are in a situation to apply (iv) again. If L3 con-
tains the segment [q1,q2] , then we may roll the inball along L3 and rotate Li ,
i = 1,2, s. t. they keep supporting the inball, until y ∈ S . Hence the inball of
conv{y,q1,q2} stays equal and it can easily be checked that the width of the tri-
angle does not decrease under this transformation. In fact, we again arrive in the
situation C = Tr(K),D(K) as after (iv), when y �= e2 . �

Proof of Theorem 3.4. The part of Theorem 3.4 that all sailing boats fulfill equality
for (ub2) directly follows from the description of sailing boats in Subsection 4.3. Thus
it only remains to show the general validity of the inequality (ub2).

Since there exist isosceles triangles Iγ and concentric sailing boats SB�
γ of the

same diameter and circumradius as a given K for an appropriate choice of γ ∈ [π/3, π/2] ,
we only have to distinguish the cases

(i) r(K) � r(Iγ ), (ii) r(Iγ) � r(K) � r(SB�
γ ), (iii) r(K) � r(SB�

γ ).

Again we abbreviate r = r(K),w = w(K),D = D(K) , and R = R(K) = 1.
In case of (ii), K fulfills the conditions of Part (b) in Lemma 5.5 and we obtain that

w � w(SBr,D) , which suffices as mentioned above. For the other two cases we extend
the construction of the general sailing boats from Subsection 4.3:

For any pair r,D obtained from K , let Iγ = conv{p1, p2, p3} , γ ∈ [π/3, π/2] be
the isosceles triangle with circumball B and diameter D =

∥∥p1− p2
∥∥ as well as IK :=

r/r(Iγ )(Iγ − p3)+ p3 the rescaled copy with inradius r , keeping the vertex p3 .
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By construction, IK belongs to the general sailing boats, D(IK) = r/r(Iγ )D , and
R(IK) = r/r(Iγ )R . Hence it fulfills (ub2) with equality. However, since

r(IK)

⎛
⎜⎝1+

2
√

2R(IK)
D(IK)

√√√√
1+

√
1−
(

D(IK)
2R(IK)

)2

⎞
⎟⎠

= r

⎛
⎜⎝1+

2
√

2R
D

√√√√
1+

√
1−
(

D
2R

)2

⎞
⎟⎠

it suffices to show that w � w(IK) .
Now, we first consider Case (i): using Lemma 5.5 and the notation used there,

we know there exists a triangle Tr,D = conv{q1,q2,y} , s. t.
∥∥q1−q2

∥∥ = D and w �
w(Tr,D) = dist(y, [q1,q2]) . Hence we just need to prove w(Tr,D) � w(IK) .

Similar to (iv) of Lemma 5.5, we now transform Tr,D by moving y within S un-
til y = p3 , ignoring the stopping condition “when L3 contains [q1,q2]”. Because of
ignoring the stopping condition, the inball will not touch [q1,q2] anymore, but a line
L parallel to [q1,q2] , which means that we obtained at a triangle congruente with Iγ
and inradius r , which is IK . Thus dist(p3,L) = w(IK) and we may argue as in (iv) of
Lemma 5.5 that w(Tr,D) � w(IK) , which shows the assertion.

Finally, assume we are in case of (iii). We know from Subsection 4.3 that the outer
parallel bodies K′ of a concentric saling boat or a Reuleaux blossom satisfy r(K′) = r ,
D(K′) = D , R(K′) = R , and w � w(K′) = r(K′)+R(K′) . Hence we just need to show
that w(K′) � w(IK) again.

Now, consider the concentric sailing boat SB�
γ . It shares p3 and its inside angle

γ with IK and has a smaller inradius. Thus it follows from the concentricity of the in-
and circumradius of SB�

γ that c2 < 0 holds for the incenter c of IK . Hence w(IK) =
r+R+ |c2| � r(K′)+R(K′) = w(K′) which finishes the proof. �

Proof of Theorem 3.5. In case of r(K) � r(Iarcsin(D(K)/2R(K))) Part (a) of Lemma 5.5
implies w(K) � w(Tr,D) , proving the validity of (ub3) in that case.

Thus we may assume w. l. o. g. that r(K) � r(Iarcsin(D(K)/2R(K))) . Observe two facts:
first, if r(K) = r(Iarcsin(D(K)/2R(K))) , then the two right hand sides of (ub2) and (ub3)
coincide and equal w(Iarcsin(D(K)/2R(K))) . Omitting again the argument K , we obtain that

w
r

= 1+
2
√

2R
D

√√√√
1+

√
1−
(

D
2R

)2

=
2
D

⎛
⎝D+

2rR
D

⎛
⎝1+

√
1−
(

D
2R

)2
⎞
⎠
⎞
⎠ (7)

in that case. The second fact to be observed is that in (7) the middle expression does not
depend on r , while the right hand part is increasing in r . Hence knowing the general
validity of (ub2), we may conclude

w
r

� 1+
2
√

2R
D

√√√√
1+

√
1−
(

D
2R

)2

� 2
D

⎛
⎝D+

2rR
D

⎛
⎝1+

√
1−
(

D
2R

)2
⎞
⎠
⎞
⎠ . �
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Now, we turn to the open part of the lower boundary and start with a technical
corollary needed in order to prove Theorem 3.2.

COROLLARY 5.6. Let K ∈ K n and c ∈ Rn be s. t. c+ r(K)B and B are the in-
and circumball of K , respectively. Moreover, let p1, . . . , pk ∈ K∩S be the points given
by Part (a) of Proposition 1.2, T ′ := conv{p1, . . . , pk} , and C := conv(T ′,c+ r(K)B) .
Then D(C) = max{D(T ′),

∥∥pi− c
∥∥+ r(C), i ∈ [k]} .

Proof. Since the statement is obviously true if K = B , we may assume w. l. o. g. that
K �= B and therefore C �= B . This means the diameter of C is bigger than 2r(C) , the
distance of two antipodal points of the inball. However, due to Proposition 1.1 the
diameter is attained between two extreme points. Thus if it is not attained between a
pair of the vertices p1, . . . , pk , it must be between one of them and its antipodal on the
insphere. �

REMARK 5.7. Let K ∈K 2 , c∈R
2 , p1, . . . , pk ∈K∩S , T ′ , and C be given as in

Corollary 5.6. Denoting by L1,L2 a pair of parallel supporting lines of C , s. t. w(C) =
d(L1,L2) we may assume w. l. o. g. due to Proposition 1.1 that L1 has at least two
contact points with C and (by renaming and defining p3 = p2 if necessary) that p1 is
situated in one of the arcs in S between L1 and L2 , while p2 and p3 belong to the other
with p2 closer to L1 and p3 closer to L2 . With this assumptions one of the following
cases holds:

(i) L1 contains p2 but not p1 and supports c + r(K)B , whereas L2 supports c +
r(K)B .

(ii) L1 contains p2 but not p1 and supports c + r(K)B , whereas L2 contains only
p3 .

(iii) L1 contains p1 but not p2 and supports c + r(K)B , whereas L2 contains only
p3 .

(iv) L1 contains [p1, p2] , whereas L2 contains p3 or supports c+ r(K)B .

Due to Proposition 1.1 one of the sets Li ∩C , i = 1,2, say L1 ∩C contains a smooth
boundary point of C . Hence L1 ∩C is either a segment containing at least one of the
points p1, p2 , which means we are in Case (ii),(iii), or (iv), or L1 supports the inball in
a unique point (see Figure 22(a) for an example of Case (ii)). However, in case L2 ∩C
is a segment, we may interchange the roles of L1 and L2 arriving again in Case (ii),
(iii), or (iv), or in the case that L2 also supports C only in a single boundary point of
the inball. In case of the latter situation we may rotate L1 and L2 around the inball,
s. t. we may assume Case (i).

The following lemma proves Theorem 3.2 apart from the general validity of the
inequality.

LEMMA 5.8. Let K ∈K 2 be s. t. there exists a bent pentagon BPr,γ from the facet
(lb3) with the same inradius, circumradius and diameter as K . Then w(K) � w(BPr,γ) .
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Proof. Using the same notation as in Corollary 5.6 we have r(C) = r(K) and
R(C) = R(K) by definition as well as D(C) � D(K) and w(C) � w(K) because of the
monotonicity of the radii with respect to set inclusion.

The idea of the proof is to transform C in several steps into a bent isosceles BIr,γ
from (lb3) of Subsection 4.3 keeping the same in- and circumradius at all time and
guaranteeing that D(BIr,γ) = D(K) and w(BIr,γ) � w(K) at the end of the transforma-
tion (and obtaining the corresponding solution for BPr,γ ). More precisely, we know that
the parallel supporting lines L1 and L2 of C from Remark 5.7 satisfy w(C) = d(L1,L2) .
Now, d(L1,L2) will be decreased in every step of the transformation of C , but when
arriving at BIr,γ it again holds w(BIr,γ) = d(L1,L2) (as shown in (lb3)).

To reduce notation formalities we assume w. l. o. g. that L1,L2 are embedded hor-
izontally and we denote the inball by c+ rB .

(a) The first step is only needed in case of c1 < 0. In this step all radii except the
diameter of C are kept constant, while the diameter may be reduced but not raised.

If L1 and L2 are arranged as in Case (iii) of Remark 5.7, then using Part (b) of
Proposition 1.1, we see that c1 < 0 is not possible as c1 � p3

1 � 0 holds. In case of
Case (ii) or Case (iv), we may translate c+ rB parallel to L1 until c1 = 0. Because
of Corollary 5.6 this transformation does not increase D(C) : in both cases the only
candidate distance for the diameter which is raised is

∥∥p1− c
∥∥+ r(C) , but in case

of (iv)
∥∥p1− c

∥∥ is before and after the transformation bounded from above by∥∥p2− c
∥∥ and in case of (ii) it is bounded from above by

∥∥p2 − c
∥∥ or by

∥∥p3− c
∥∥ .

Finally, Case (i) can be handled almost the same. If p3 is closer to L2 than p1 ,
again

∥∥p2 − c
∥∥ is bounded from above by

∥∥p2 − c
∥∥ or by

∥∥p3− c
∥∥ and we may

directly move c+ rB parallel to L1 until c1 = 0. If, on the contrary, p1 is the
point closer to L2 , then we first rotate C between L1 and L2 until p1 and p3 get
equidistant with respect to L2 and then we may do the movement of c+ rB .

(b) Translate p2 and p3 on S within the arcs between L1 and L2 they belong to,
until

∥∥p1− p2
∥∥ =

∥∥p1− p3
∥∥ = D(K) . Since c1 � 0 and D(C) � D(K) before

the transformation, we have D(C) = D(K) after the transformation and we keep at
least p1 on L1 or L1 tangent to the unit ball. Moreover, if necessary, moving L2

parallel to its prior position until it supports C again, L2 touches p3 or c+ rB (see
Figure 22(a)), d(L1,L2) does not increase, and r(C) and R(C) stay constant.

However, in each situation where we only touch two points after the transformation,
we may additionally rotate L1 and L2 around the vertices or along the insphere, re-
spectively, not increasing their distance, until we obtain a third touching point of
the two lines with C . In the following we distinguish the following cases, (ex-
changing, if necessary, the roles of L1,L2 and p2, p3 , respectively, to attain one of
them):

(i) L1 contains p1 , or

(ii) L1 contains p2 and supports c+ rB and L2 contains p3 , or

(iii) L1 does not contain any of the points pi , while L2 contains p3 but no other.
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In all three cases we will search for a situation, in which the angle between L1 with
one of the edges of Iγ is acute. If (i) holds, the angle between L1 and [p1, p3] must
always be acute as p3 lies on the right side of p1 .

In case of (ii), the angle between L1 and [p2, p3] can either be acute (see Figure
22(b)) or obtuse, as p3 could even be on the right of p2 . If the latter happens we
rotate L1 around p2 (thus possibly loosing contact with c+ rB) and L2 around
p3 , keeping them parallel. This is done until L2 supports c+ rB , allowing a zero
degree rotation in the case that L2 supported c+ rB from the beginning. This does
not increase d(L1,L2) .

Finally if (iii) holds, the angle between L2 and [p2, p3] could be obtuse. Then we
rotate both lines L1,L2 along c+ rB , loosing contact with p3 , until L2 touches
p1 or L1 touches p2 (whichever comes first). In case L2 touches p1 first we are
back in (i). Thus assume L1 touches p2 first and compare conv{p1, p2, p3,c+ rB}
with the bent isosceles BIr,γ we want to arrive at: Because of our movement in the
beginning of (b), we have that conv{p1, p2, p3} is an isosceles triangle with inball
c+ rB contained in C . Hence identifying it with Iγ ⊂BIr,γ yields that the support-
ing lines L′

1,L
′
2 of BIr,γ contain p2 and p3 , respectively, and contain between them

the inball of radius r . Thus it holds
∥∥p2− p3

∥∥ � 2r . Considering C again, since
the angle between L2 and [p2, p3] was obtuse before the rotation of L1,L2 in (iii),
the incenter c is closer to p3 than to p2 . But since

∥∥p2− p3
∥∥ � 2r , this means

(a) In (b), the tangencies correspond to Part (ii)
of Remark 5.7. While moving p2, p3,L1 and L2
some of the tangencies can be lost but we obtain
that Iγ is contained in C .

(b) We rotate L1,L2 around C until L1 or L2 sup-
ports more than one point of C , arriving, e. g., in
the situation in which L1 contains p2 and sup-
ports c+ rB , L2 supports p3 , and α is acute
here. Then we are back into the tangencies of Part
(ii).

Figure 22: Transformations of C during (b). Here the green bows indicate arcs of radius D and
centers in p1, p2, p3 , defining a region in which both, c+ rB and the pi , have to be contained.
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Figure 23: In (c) the inball moves, L1 is rotated around p2 reducing the angle with [p2, p3]
and L2 to keep parallel with L1 until C = BIr,γ .

after the rotation the angle between L1 and [p2, p3] must be acute. Exchanging if
necessary L1 with L2 and p2 with p3 , we are back again in the cases (i), (ii), (iii)
or (iv) of Remark 5.7, also not guaranteeing that the distance between those lines
defines the width of C , but knowing that the angle between L1 and [p2, p3] (if (i),
(ii) or (iv) hold) or L1 and [p1, p3] (if (iii) holds) is acute (see Figure 23).

(c) In the last step of the transformation of C we only move c+ rB and L1,L2 , keeping
r(C),D(C) , and R(C) constant. Independently of the tangencies (i)–(iv) of Remark
5.7, c+ rB is translated until it becomes tangent with the pair of arcs with centers
p1, p2 and radius D(K) , finishing the transformation of C into BIr,γ . Finally L1

is rotated around p1 (in case of (iii) of Remark 5.7) or around p2 (in all other
cases) keeping it tangent to c+ rB and L2 as well as keeping it parallel to L1 and
supporting C . A simple but crucial observation is the following: assuming that L1

contains p2 , it was shown in (lb3) of Subsection 4.3 that c+ rB is the inball of
BPr,γ , touching its boundary in the arcs with centers in p1, p2 of radius D(K) and
in L1 . Hence any translation of c+ rB within the region spanned by the two arcs
would lead to an intersection of L1 with the interior of c+ rB . The former means
that before the rotation of L1 , its angle with [p2, p3] was not smaller than after.
This observation implies that the breadth bs([p2, p3]) with s orthogonal to the two
lines is reduced by the rotation.

However, in Cases (ii) and (iii) of Remark 5.7 it obviously holds bs([p2, p3]) =
d(L1,L2) and since d(L1,L2) did not increase in any step of the transformation we
obtain that w(K) � d(L1,L2) � w(C) .

Finally, consider the remaining Cases (i) and (iv): they describe the extremal situ-
ation when C shares its radii with a set from the edges (BT,H) or (BT,FR) . In
case of (i) L1 and L2 support c+ rB , which means d(L1,L2) = 2r and therefore
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that w(C) = d(L1,L2) � w(K) . In case of (iv) we have L1 ⊃ [p1, p2] and p3 ∈ L2

parallel to L1 . Hence w(C) � d(L1,L2) = w(Iγ ) , within the given parameters for
γ , and since Iγ ⊂C it follows w(C) = d(L1,L2) . �

Proof of Theorem 3.2. As before we abbreviate r(K) = r and the same for the
other radii. In order to show the general validity of the inequality (lb3), we split the
proof into the following cases:

(i) 8r � 3D,γ � γr,r � r(H), (ii) 8r < 3D

(iii) γ < γr,r(BT) � r � r(H), (iv) r > r(H).

Recognize that in case of (i) there exists a bent pentagon BPr,γ , as we have shown with
the help of Lemma 4.2 in (lb3) . Thus we are under the conditions of Lemma 5.8 in that
case.

In the remaining cases, consider the generalized bent pentagon BPr,γ as defined in
the description of the facet (lb3) (together with all the notation used there) and observe
that the distance d(L1,L2) may in any case be computed as the width in (6). The angle
β may become −β in Case (ii) (cf. Figure 24) or the angle μ may become −μ in
Cases (iii) or (iv), whenever the angle between L1 and [p2, p3] is bigger than π/2 . In
both cases this change of sign does not affect the final value of the right hand side of
the inequality (lb3) to coincide with d(L1,L2) .

Hence it suffices to show w � d(L1,L2) . To do so, let us assume w. l. o. g. that
[p1, p2] is horizontal and below 0, that p1

1 � p2
1 , and that p3

2 � 0.
In case of (ii), Part (a) of Lemma 4.2 ensures that [p1, p2] does not intersect

c+ rB . Thus the slope of the lines Li , i = 1,2 is negative, and considering the line
L containing [p1, p2] , the angle between L1 and [p2, p3] is smaller than the angle
between L and [p2, p3] (cf. Figure 24). Hence, denoting the line containing p3 and
parallel to L by L′ , we obtain d(L1,L2) � d(L,L′) = w(Iγ ) � w .

Figure 24: If 3D > 8r , the angle β in the computations in (lb3) (cf. Figure 15(a)) becomes
−β , but does not change the final equation for d(L1,L2) .
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Now, let us assume that (iii) is true, but not (ii). Then we know from Part (b) of
Lemma 4.2, that the distance d(L1,L2) decreases if γ decreases. Using γ � γ ′ = γr we
obtain that d(L1,L2) � d(L′

1,L
′
2) = w(BIr,γr) = 2r � w .

Finally, for the treatment of (iv), one should first observe two easy facts: first,
since p2 ∈ L1 and p3 ∈ L2 we have d(L1,L2) �

∥∥p2− p3
∥∥ and second if r = r(H),γ =

2arccos(D(H)/2) , and LH
1 ,LH

2 are the corresponding support lines of H , then LH
1 ,LH

2 are
perpendicular to [p2, p3] and thus

∥∥p2− p3
∥∥= w(H) = 2r(H) (cf. the description of H

in Subsection 4.1). From (iv) and inequality (ib2) we obtain that D(H) = r(H)+1� r+
1 � D and since [p2, p3] is the shorter edge of Iγ we have

∥∥p2− p3
∥∥= D/R

√
4R2−D2

which is a decreasing function in D . Hence
∥∥p2− p3

∥∥ is maximized, when γ = γr ,
i. e. when

∥∥p2− p3
∥∥= w(H) . Thus using inequality (lb1) we obtain that

d(L1,L2) �
∥∥p2− p3

∥∥� w(H) = 2r(H) � 2r � w,

which completes the proof. �

6. Final remarks

For finishing the paper, let us give two final remarks:
First, for some practical purposes it could be of some value to be able to replace

the sometimes quite unhandy non-linear inequalities by linear ones. Thus knowing the
full extend of the diagram now, it would be worthwhile to develope a complete system
of linear inequalities supporting the diagram. Since the convex hull of the vertices does
not contain the full diagram (the supporting plane of L,Iπ/3 , and Iπ/2 separates SB�

γ
from major parts of the diagram) and since all edges and facets are smooth, this system
cannot be finite.

Second, especially considering the application of Blaschke-Santaló diagrams given
in [7, 8, 17], consider the following problem: suppose two convex sets K and K′ are
mapped to the same point in the diagram, how “different” may K and K′ be? For this
neither the usual Hausdorff nor the Banach-Mazur distance can be taken. For the Haus-
dorff distance any K and some of its rotations may be quite far from each other, while
the Banach-Mazur distance would mark (e. g.) all simplices equal. A good choice for
this task could be taking the Hausdorff distance within the class of similarities of the
two sets (cf. [11]).
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[16] H. JUNG, Über die kleinste Kugel, die eine räumliche Figur einschließt, J. Reine Angew. Math., 123

(1901), 241–257.
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