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A REAL COUNTEREXAMPLE TO TWO
INEQUALITIES INVOLVING PERMANENTS

STEPHEN DRURY

(Communicated by J.-C. Bourin)

Abstract. The objective of this article is to provide a counterexample to the permanent version
of Oppenheim’s inequality using real symmetric matrices. This also provides a countereample
to the permanent on top conjecture for real symmetric positive semidefinite matrices.

1. Introduction

In [2], Bapat and Sunder raised the question of whether the inequality
n
per(AoB) < per(A) [] b (1)
J=1

holds for hermitian positive semidefinite n x n matrices A and B. The quantity per(A)
denotes the permanent of A and the notation Ao B is for the Hadamard (entrywise)
product of A and B. This is the permanental version of Oppenheim’s inequality. It
was disproved in [4]. In the example presented there B = A’ and A is a complex 7 x 7
correlation matrix. It is the objective of the current article to provide a counterexample
with B=A and A areal correlation matrix. The reader may consult [1], [3] and [5] for
additional information about the permanental Oppenheim inequality.

PERMANENT ON TOP CONJECTURE. For a positive semidefinite n X n matrix A,
define the convolution operator TT(A) on the symmetric group S, by its matrix

M(A)gp = Hlacmp(/r
j:

Then per(A) is the largest eigenvalue of TI(A).

The permanent on top conjecture was recently disproved by Shchesnovich [6] us-
ing a matrix with complex entries. The matrix presented below gives a real matrix
counterexample since the permanent on top conjecture for a real positive semidefinite
matrix A implies (1) for all real symmetric positive semidefinite matrices A and B.
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To understand why, suppose that the permanent on top conjecture holds for a real
positive semidefinite matrix A and that B is a real correlation matrix of the same size.
Then we may write B = X'X where X is a real matrix. Then, denoting M,, the space
of all mappings from {1,...,n} toitself and S, the symmetric groupon {1,...,n} we
have

Hlbc(j)p(j) =2 wa»o(j)l_[lxw),p(j)
Jj= j=

AEM, j=1
and therefore

n

nlper(AoB) = 3 Y HXMJ').,G(/)l_[laou).,p(j)l_[xz(j),p(j)
-

o.pESHAEM, j=1 j

j=1
= 2 &4,

AEM,

< X In@|lig?

AEM,

<per(d) Y, Y T156)00)

AEM, €S, j=1

=per(A) X, [Tbo()00)

ocs, j=1

= nlper(A)

where &, denotes the function

&.(0) =[Tx20.00)
=1

written as a column vector and ||TI(A)|| denotes the operator norm (largest eigenvalue)
of TI(A).

2. The Counterexample

With n = 16, we will take and B = A. We describe the matrix A informally.
Take a regular dodecahedron circumscribed in the unit sphere centred at the origin in
3-dimensional Euclidean space. It has 20 vertices on the unit sphere. Now take the cen-
tral point of each face and project that radially onto the unit sphere. This gives twelve
points, the vertices of a regular icosahedron also circumscribed in the unit sphere. Con-
sider all 32 vertex points. Clearly they occur in antipodal pairs. For each of the 16
antipodal pairs, select one of its points. Now let X be the 16 x 3 matrix in which each
row is the position vector of the corresponding selected point. There are many ways of
doing this. One yields
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AoA. Calculations show that
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