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Abstract. The main purpose of this paper is to sharpen some upper and lower bounds on products
of cross-section measures of centered convex bodies. The bounds are given in terms of relative
inner and outer radii of isoperimetrices of normed spaces, and improve previously known results
in the symmetric case. Thus, our results mainly refer to the geometry of finite dimensional real
Banach spaces.

1. Introduction

We recall that a convex body K in R
d ,d � 2, is a compact, convex set with

nonempty interior, and that K is said to be centered if it is symmetric with respect
to the origin o of R

d . As usual, Sd−1 denotes the standard Euclidean unit sphere in
R

d . We write λi for the i -dimensional Lebesgue measure (volume) in R
d , where

1 � i � d , and instead of λd we simply write λ . We denote by u⊥ the (d − 1)-
dimensional subspace orthogonal to u ∈ Sd−1 , and by lu the 1-subspace parallel to
u .

For a convex body K ⊂ R
d we denote by λd−1(K,u⊥) and λ1(K,u) the (d−1)-

dimensional and 1-dimensional inner cross-section measures of K , i.e., the maximal
measure of a hyperplane section of K normal to u ∈ Sd−1 , and the maximal chord
length of K in the direction u , respectively. Furthermore, λ1(K|lu) denotes the width of
K at u , and λd−1(K|u⊥) is called the (d−1)-dimensional outer cross-section measure
or brightness of K at u ∈ Sd−1 , where K|u⊥ is the orthogonal projection of K onto
u⊥ . These notions given above can be found in the monograph [3]. In [11] and [16] the
following results for cross-section measures were derived.

For a convex body K in R
d , d � 2, and every direction u ∈ Sd−1 we have

λ (K) � λd−1(K|u⊥)λ1(K,u) � dλ (K), (1)

and both sides are sharp.
On the other hand, for each u ∈ Sd−1 a convex body K in R

d , d � 2, satisfies

λ (K) � λd−1(K,u⊥)λ1(K|lu) � dλ (K), (2)
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again with sharpness on both sides.
Our main purpose is to establish strengthenings of (1) and (2) for centered convex

bodies. The inner radius and outer radius of isoperimetrices of normed spaces (for
Holmes-Thompson and Busemann measures) will be used to obtain these inequalities.
Thus, our main results will be related to finite dimensional real Banach spaces.

For a convex body K in R
d , the polar body K◦ of K is defined by

K◦ = {y ∈ R
d : 〈x,y〉 � 1,x ∈ K}.

We identify R
d and its dual space R

d∗ by using the standard basis. In that case, λi

and λ ∗
i coincide in R

d . The symbol εi stands for the volume of the standard Euclidean
unit ball in R

i .
For a convex body K in R

d and u ∈ Sd−1 , the support function of K is defined by

hK(u) = sup{〈u,y〉 : y ∈ K},
and with o as an interior point of K its radial function ρK(u) is defined by

ρK(u) = max{α � 0 : αu ∈ K}.
It is well known that

ρK◦(u) =
1

hK(u)
, u ∈ Sd−1 . (3)

If K is a centered convex body, then 2ρK(u) = λ1(K∩ lu) , and 2hK(u) = λ1(K|lu) for
any u ∈ Sd−1 .

The projection body ΠK of a convex body K in R
d is defined by hΠK(u) =

λd−1(K|u⊥) for each u ∈ Sd−1 (see [3, Chapter 4]). Note that any projection body is a
zonoid (i.e., a limit of vector sums of segments). In particular, if K is a polytope, then its
projection body is a zonotope centered at the origin (see [15] and [4] for many properties
and applications of this interesting class of convex bodies). We also refer to [1], [6],
[7], and [12] for affine isoperimetric inequalilties related to projection bodies. The
intersection body IK of a convex body K ⊂ R

d is defined by ρIK(u) = λd−1(K ∩u⊥)
for each u ∈ Sd−1 (cf. [5] and [3, Chapter 8]). If K is a centered convex body, then IK
is also a centered convex body (see [2]).

We write (Rd , || · ||)= M
d for a d -dimensional real Banach space, i.e., a Minkowski

space with unit ball B which is a centered convex body; see [17]. The unit sphere of
M

d is the boundary ∂B of the unit ball.

2. Isoperimetrices and inner/outer radii in Minkowski spaces

A Minkowski space M
d possesses a Haar measure μ , and this measure is unique

up to multiplying the Lebesgue measure by a constant, i.e., μ = σBλ .
The following notions are well known; see [17, Chapter 5]. The d -dimensional

Holmes-Thompson volume of a convex body K in M
d is defined by

μHT
B (K) =

λ (K)λ (B◦)
εd

, i.e. , σB =
λ (B◦)

εd
,
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and the d -dimensional Busemann volume of K is defined by

μBus
B (K) =

εd

λ (B)
λ (K), i.e. , σB =

εd

λ (B)
(and μBus

B (B) = εd).

In order to define the Minkowski surface area of a convex body, one has to define
σB similarly in M

d−1 . That is, for the Holmes-Thompson measure we have σB(u) =
λd−1((B∩ u⊥)◦)/εd−1 , and for the Busemann measure σB(u) = εd−1/λd−1(B∩ u⊥)
(see [17, pp. 150–151]). The Minkowski surface area of K can be also defined in terms
of mixed volumes (see [14] for notation and more about mixed volumes) by

μB(∂K) = dV (K[d−1], IB),

where IB is that convex body whose support function is σB(u). For the Holmes-Thomp-
son measure, IB is given by IHT

B = Π(B◦)/εd−1, (cf. [17, p. 150 and p. 157] for detailed
explanation) and therefore it is a centered zonoid. For the Busemann measure we have
IBus
B = εd−1(IB)◦ (see again [17, pp. 150–151]). Among all homothetic images of IB
a unique one is specified, which is called the isoperimetrix ÎB and is determined by
μB(∂ ÎB) = dμB(ÎB) . The isoperimetrix for the Holmes-Thompson measure is defined
by

ÎHT
B =

εd

λ (B◦)
IHT
B =

εd

εd−1

1
λ (B◦)

ΠB◦ , (4)

and the isoperimetrix for the Busemann measure by

ÎBus
B =

λ (B)
εd

IBus
B =

εd−1

εd
λ (B)(IB)◦; (5)

see [17, Chapter 5].

DEFINITION 1. If K is a convex body in M
d , the inner radius of K is defined by

r(K, ÎB) := max{α > 0 : ∃x ∈ M
d with α ÎB ⊆ K + x},

and the outer radius of K is defined by

R(K, ÎB) := min{α > 0 : ∃x ∈ M
d with α ÎB ⊇ K + x}.

One should notice that r(K, ÎB) and R(K, ÎB) can be also defined in terms of the
support functions of the involved sets. In particular, if K is a centered convex body,
then r(K, ÎB) is the maximum value of α such that α � hK(u)/hÎB

(u) for all u∈ Sd−1 .

Similarly, R(K, ÎB) is the minimum value of α such that α � hK(u)/hÎB
(u) for all

u ∈ Sd−1 (see [13] and [18]).
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3. New inequalities for cross-section measures

We present now the announced stronger inequalities than (1) and (2), and some
consequences thereof.

THEOREM 2. If B is a centered convex body in R
d , and u∈ Sd−1 is a unit vector,

then
1

R(B◦, ÎHT
B◦ )

2εd−1

εd
� λd−1(B|u⊥)λ1(B∩ lu)

λ (B)
� 1

r(B◦, ÎHT
B◦ )

2εd−1

εd
.

Proof. Let B be a centered convex body in R
d . Then

r(B, ÎHT
B )ÎHT

B ⊆ B ⊆ R(B, ÎHT
B )ÎHT

B .

This is equivalent to

r(B, ÎHT
B )

εd

λ (B◦)
ΠB◦

εd−1
⊆ B ⊆ R(B, ÎHT

B )
εd

λ (B◦)
ΠB◦

εd−1
.

Hence

r(B, ÎHT
B )

εd

λ (B◦)εd−1
hΠB◦(u) � hB(u) � R(B, ÎHT

B )
εd

λ (B◦)εd−1
hΠB◦(u).

If we set B to be B◦ and use the identity (3), we obtain

r(B◦, ÎHT
B◦ )

εd

λ (B)εd−1
hΠB(u)ρB(u) � 1 � R(B◦, ÎHT

B◦ )
εd

λ (B)εd−1
hΠB(u)ρB(u).

Therefore,

r(B◦, ÎHT
B◦ )

λd−1(B|u⊥)λ1(B∩ lu)
λ (B)

� 2εd−1

εd
� R(B◦, ÎHT

B◦ )
λd−1(B|u⊥)λ1(B∩ lu)

λ (B)
,

yielding

1

R(B◦, ÎHT
B◦ )

2εd−1

εd
� λd−1(B|u⊥)λ1(B∩ lu)

λ (B)
� 1

r(B◦, ÎHT
B◦ )

2εd−1

εd
. �

REMARK 3. We recall (see [9]) that

1

R(B◦, ÎHT
B◦ )

2εd−1

εd
� 1,

and
1

r(B◦, ÎHT
B◦ )

2εd−1

εd
� d.
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THEOREM 4. If B is a centered convex body in R
d and u ∈ Sd−1 is a unit vector,

then

r(B, ÎBus
B )

2εd−1

εd
� λd−1(B∩u⊥)λ1(B|lu)

λ (B)
� R(B, ÎBus

B )
2εd−1

εd
.

Proof. Let B be a centered convex body in R
d . Then

r(B, ÎBus
B )ÎBus

B ⊆ B ⊆ R(B, ÎBus
B )ÎBus

B .

This can also be written as

r(B, ÎBus
B )

λ (B)
εd

εd−1(IB)◦ ⊆ B ⊆ R(B, ÎBus
B )

λ (B)
εd

εd−1(IB)◦.

Hence

r(B, ÎBus
B )

λ (B)
εd

εd−1h(IB)◦(u) � hB(u) � R(B, ÎBus
B )

λ (B)
εd

εd−1h(IB)◦(u).

From the relation between the support function and the radial function we obtain

r(B, ÎBus
B )

λ (B)
εd

εd−1 � hB(u)ρIB(u) � R(B, ÎBus
B )

λ (B)
εd

εd−1,

and therefore

r(B, ÎBus
B )

2εd−1

εd
� λd−1(B∩u⊥)λ1(B|lu)

λ (B)
� R(B, ÎBus

B )
2εd−1

εd
. �

REMARK 5. We recall (see [10]) that

r(B, ÎBus
B )

2εd−1

εd
� 1.

Also,

R(B, ÎBus
B )

2εd−1

εd
� d.

From Theorem 2 and Theorem 4, we deduce the following statement.

COROLLARY 6. If B is a centered convex body in R
d and u ∈ Sd−1 is a unit

vector, then

r(B◦, ÎHT
B◦ )r(B, ÎBus

B ) � λd−1(B∩u⊥)λ1(B|lu)
λd−1(B|u⊥)λ1(B∩ lu)

� R(B◦, ÎHT
B◦ )R(B, ÎBus

B ).

REMARK 7. From Remarks 3 and 5 we get the inequalities r(B◦, ÎHT
B◦ )r(B, ÎBus

B ) �
1/d and R(B◦, ÎHT

B◦ )R(B, ÎBus
B ) � d .
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THEOREM 8. If B is a centered convex body in R
d , then

1
d

� R(B, ÎBus
B )r(B◦, ÎHT

B◦ ) � 1,

1
d

� R(B, ÎHT
B )r(B◦, ÎBus

B◦ ) � 1.

Furthermore, for both inequalities the upper bound on the right cannot be reduced.

Proof. Let B be a centered convex body in R
d . Since R(B, ÎHT

B ) � r(B, ÎHT
B )

and R(B, ÎBus
B ) � r(B, ÎBus

B ) , we have R(B, ÎBus
B )r(B◦, ÎHT

B◦ ) � r(B, ÎBus
B )r(B◦, ÎHT

B◦ ) , and
R(B, ÎHT

B )r(B◦, ÎBus
B◦ ) � r(B, ÎHT

B )r(B◦, ÎBus
B◦ ) . Thus, the lower bound for both inequalities

follows from Remark 7.
It is well known that IB⊆ΠB , and that for d � 3 equality holds iff B is a centered

ellipsoid (see [8]). Therefore (ΠB)◦ ⊆ (IB)◦ , also equivalent to

λ (B)
εd

(
ΠB
εd−1

)◦
⊆ λ (B)

εd
εd−1(IB)◦.

Thus
λ (B)

εd
(IHT

B◦ )◦ ⊆ λ (B)
εd

IBus
B , from which it follows that

(ÎHT
B◦ )◦ ⊆ ÎBus

B , (6)

and for d � 3 equality holds iff B is a centered ellipsoid.
As we know,

r(B, ÎHT
B )ÎHT

B ⊆ B ⊆ R(B, ÎHT
B )ÎHT

B .

Therefore,
1

R(B, ÎHT
B )

(ÎHT
B )◦ ⊆ B◦ ⊆ 1

r(B, ÎHT
B )

(ÎHT
B )◦.

Setting B◦ to be B and using (6), we obtain

B ⊆ 1

r(B◦, ÎHT
B◦ )

(ÎHT
B◦ )◦ ⊆ 1

r(B◦, ÎHT
B◦ )

ÎBus
B .

From the definition of the outer radius for the Busemann isoperimetrix, we get

R(B, ÎBus
B ) � 1

r(B◦, ÎHT
B◦ )

,

which establishes the first inequality.
To obtain the second inequality, we write

r(B◦, ÎBus
B◦ )ÎBus

B◦ ⊆ B◦ ⊆ R(B◦, ÎBus
B◦ )ÎBus

B◦ .

Hence
1

R(B◦, ÎBus
B◦ )

(ÎBus
B◦ )◦ ⊆ B ⊆ 1

r(B◦, ÎBus
B◦ )

(ÎBus
B◦ )◦.
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Using (6) when B is replaced by B◦ and applying polarity we also get (ÎBus
B◦ )◦ ⊆

ÎHT
B . Therefore,

B ⊆ 1

r(B◦, ÎBus
B◦ )

ÎHT
B .

Again, from the definition of the outer radius for the Holmes-Thompson case, we
get

R(B, ÎHT
B ) � 1

r(B◦, ÎBus
B◦ )

.

The following example shows that the upper bound is attained for both inequali-
ties. Let B = αE , where α is a positive real number and E is the standard unit ball in
R

d . Then one can easily show that ΠB = αd−1εd−1E , ÎHT
B = αE , and ÎHT

B◦ = (1/α)E .
Therefore, R(B, ÎHT

B ) = r(B, ÎHT
B ) = R(B◦, ÎHT

B◦ ) = r(B◦, ÎHT
B◦ ) = 1.

Similarly, IB = αd−1εd−1E , ÎBus
B = αE , and ÎBus

B◦ = (1/α)E . We also get R(B, ÎBus
B )

= r(B, ÎBus
B ) = R(B◦, ÎBus

B◦ ) = r(B◦, ÎBus
B◦ ) = 1. �

4. New inequalities for width and diameter of the
isoperimetrix in Minkowski spaces

The following results refer to extremal values of the Minkowskian width func-
tion of convex bodies involving inner and outer radii. Let B be the unit ball of a
Minkowski space. We denote by wB(K) and DB(K) the Minkowski thickness (or
Minkowski minimal width) and the Minkowski diameter of a convex body K , respec-

tively. They are defined as wB(K) = min
u∈Sd−1

2w(K,u)
w(B,u)

and DB(K) = max
u∈Sd−1

2w(K,u)
w(B,u)

,

where w(K,u) = hK(u)+ hK(−u) is the Euclidean width of K in the direction u . In
particular, if K is a centered convex body, then w(K,u) = 2hK(u) . Therefore, since
ÎHT
B is centered, using (4) we can expand wB(ÎHT

B ) as follows:

wB(ÎHT
B ) = min

u∈Sd−1

2w(ÎHT
B ,u)

w(B,u)
= min

u∈Sd−1

2hÎHT
B

(u)

hB(u)
= min

u∈Sd−1

2εd

εd−1

hΠB◦(u)ρB◦(u)
λ (B◦)

= min
u∈Sd−1

εd

εd−1

λd−1(B◦|u⊥)λ1(B◦ ∩ lu)
λ (B◦)

.

Similarly,

DB(ÎHT
B ) = max

u∈Sd−1

εd

εd−1

λd−1(B◦|u⊥)λ1(B◦ ∩ lu)
λ (B◦)

.

It has been proven that εd/εd−1 � wB(ÎHT
B ) and DB(ÎHT

B ) � dεd/εd−1 (see [10]).
We improve these bounds as follows (see Remark 3).

PROPOSITION 9. If B is the unit ball of a d-dimensional Minkowski space M
d ,

then
2

R(B, ÎHT
B )

� wB(ÎHT
B ),
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DB(ÎHT
B ) � 2

r(B, ÎHT
B )

.

Proof. From Theorem 2, we obtain that for any u ∈ Sd−1

2

R(B, ÎHT
B )

� εd

εd−1

λd−1(B◦|u⊥)λ1(B◦ ∩ lu)
λ (B◦)

� 2

r(B, ÎHT
B )

.

The results follow by taking min and max with respect to u∈ Sd−1 in the left-hand
inequality and the right-hand inequality, respectively. �

Using (5) we can also expand wB(ÎBus
B ) as follows:

wB(ÎBus
B ) = min

u∈Sd−1

2w(ÎBus
B ,u)

w(B,u)
= min

u∈Sd−1

2hÎBus
B

(u)

hB(u)

=
2εd−1

εd
min

u∈Sd−1

λ (B)
ρIB(u)hB(u)

=
4εd−1

εd
min

u∈Sd−1

λ (B)
λd−1(B∩u⊥)λ1(B|lu) .

Similarly,

DB(ÎBus
B ) =

4εd−1

εd
max

u∈Sd−1

λ (B)
λd−1(B∩u⊥)λ1(B|lu) .

It has also been proven that 4εd−1/(dεd) � wB(ÎBus
B ) , and DB(ÎBus

B ) � 4εd−1/εd

(see again [10]). We establish the following improved bounds for wB(ÎBus
B ) and DB(ÎBus

B )
(see Remark 5).

PROPOSITION 10. If B is the unit ball of a d-dimensional Minkowski space M
d ,

then
2

R(B, ÎBus
B )

� wB(ÎBus
B ),

DB(ÎBus
B ) � 2

r(B, ÎBus
B )

.

Proof. From Theorem 4, we get for any u ∈ Sd−1

1

R(B, ÎBus
B )

εd

2εd−1
� λ (B)

λd−1(B∩u⊥)λ1(B|lu) � 1

r(B, ÎBus
B )

εd

2εd−1
.

The results follow by taking min and max with respect to u∈ Sd−1 in the left-hand
inequality and the right-hand inequality, respectively. �
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