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ON A GENERALIZATION OF A THEOREM OF LEVIN AND STEČKIN

AND INEQUALITIES OF THE HERMITE–HADAMARD TYPE
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(Communicated by C. P. Niculescu)

Abstract. We give new necessary and sufficient conditions for higher order convex ordering.
These results generalize the Levin-Stečkin theorem (1960) on convex ordering. The obtained
results can be useful in the study of the Hermite-Hadamard type inequalities and in particular
inequalities between the quadrature operators.

1. Introduction and preliminaries

In this paper we give useful criteria for the verification of higher order convex
orders. These criteria can be used to prove the Hermite-Hadamard type inequalities for
higher order convex functions.

Let f : [a,b]→ R be a convex function (a,b ∈ R , a < b ). The following double
inequality

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
(1.1)

is known as the Hermite-Hadamard inequality (see [9] for many generalizations and
applications of (1.1)).

In many papers, the Hermite-Hadamard type inequalities are studied based on the
convex stochastic ordering properties (see, for example, [10, 20, 18, 21, 23, 22, 15]).
In the paper [20], to get a simple proof of some known Hermite-Hadamard type in-
equalities as well as to obtaining new Hermite-Hadamard type inequalities, is used the
Ohlin lemma on sufficient conditions for convex stochastic ordering. Recently, the
Ohlin lemma is also used to study the inequalities of the Hermite-Hadamard type in
[18, 21, 23, 22, 15]. In the papers [23, 22, 15], furthermore, to examine the Hermite-
Hadamard type inequalities is used the Levin-Stečkin theorem [13] (see also [14]),
which gives necessary and sufficient conditions for the stochastic convex ordering.

Let us recall some basic notions and results on the stochastic convex order (see, for
example, [8]). As usual, FX denotes the distribution function of a random variable X
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and μX is the distribution corresponding to X . For real valued random variables X ,Y
with a finite expectation, we say that X is dominated by Y in convex ordering sense if

E f (X) � E f (Y )

for all convex functions f : R → R (for which the expectations exist). In that case we
write X �cx Y , or μX �cx μY .

In the following Ohlin’s lemma [16] are given sufficient conditions for convex
stochastic ordering.

LEMMA 1.1. ([16]) Let X ,Y be two random variables such that EX = EY . If
the distribution functions FX ,FY cross exactly one time, i.e., for some x0 holds

FX(x) � FY (x) if x < x0 and FX(x) � FY (x) if x > x0, (1.2)

then
E f (X) � E f (Y ) (1.3)

for all convex functions f : R → R .

REMARK 1.1. The inequality (1.1) may be easily proved with the use of the Ohlin
lemma (see[20]). Indeed, let X , Y , Z be three random variables with the distributions
μX = δ(a+b)/2 , μY which is equally distributed in [a,b] and μZ = 1

2 (δa + δb) , respec-
tively. It is easy to see that the pairs (X ,Y ) and (Y,Z) satisfy the assumptions of the
Ohlin lemma, then using (1.3), we obtain (1.1).

As we can see, the Ohlin lemma is a strong tool, however, it is worth noticing
that in the case of some inequalities, the distribution functions cross more than once.
Therefore a simple application of the Ohlin lemma is impossible and some additional
idea is needed.

In the papers [22, 15], the authors used the Levin-Stečkin theorem [13] (see also
[14], Theorem 4.2.7), concerning necessary and sufficient conditions for convex or-
dering of functions with bounded variation, which are distribution functions of signed
measures.

THEOREM 1.1. ([13]) Let a,b ∈ R , a < b and let F1,F2 : [a,b] → R be func-
tions with bounded variation such that F1(a) = F2(a) . Then, in order that

∫ b

a
f (x)dF1(x) �

∫ b

a
f (x)dF2(x)

for all continuous convex functions f : [a,b]→ R , it is necessary and sufficient that F1

and F2 verify the following three conditions:

F1(b) = F2(b), (1.4)∫ b

a
F1(x)dx =

∫ b

a
F2(x)dx, (1.5)

∫ x

a
F1(t)dt �

∫ x

a
F2(t)dt for all x ∈ (a,b). (1.6)
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Szostok [22] used Theorem 1.1 to make an observation, which is more general
than Ohlin’s lemma and concerns the situation when the functions F1 and F2 have
more crossing points than one. First we need the following definitions.

Define the number of sign changes of a function ϕ : R → R by

S−(ϕ) = sup{S−[ϕ(x1),ϕ(x2), . . . ,ϕ(xk)] : x1 < x2 < .. .xk ∈ R , k ∈ N},
where S−[y1,y2, . . . ,yk] denotes the number of sign changes in the sequence y1,y2, . . . ,yk

(zero terms are being discarded). Two real functions ϕ1,ϕ2 are said to have n crossing
points (or cross each other n -times) if S−(ϕ1 −ϕ2) = n . Let a = x0 < x1 < .. . < xn <
xn+1 = b . We say that the functions ϕ1,ϕ2 crosses n -times at the points x1,x2, . . . , ,xn

(or that x1,x2, . . . , ,xn are the points of sign changes of ϕ1−ϕ2 ) if S−(ϕ1−ϕ2) = n and
there exist a < ξ1 < x1 < .. . < ξn < xn < ξn+1 < b such that S−[ξ1,ξ2, . . . ,ξn+1] = n .

In [22] is given some useful modification of the Levin-Stečkin theorem [13], which
can be rewritten in the following form.

LEMMA 1.2. ([22]) Let a,b ∈ R , a < b and let F1,F2 : (a,b)→ R be functions
with bounded variation such that F(a) = F(b) = 0 ,

∫ b
a F(x)dx = 0 , where F = F2−F1 .

Let a < x1 < .. . < xm < b be the points of sign changes of the function F . Assume that
F(t) � 0 for t ∈ (a,x1) .

• If m is even then the inequality

∫ b

a
f (x)dF1(x) �

∫ b

a
f (x)dF2(x) (1.7)

is not satisfied by all continuous convex functions f : [a,b] → R .

• If m is odd, define Ai ( i = 0,1, . . . ,m, x0 = a, xm+1 = b)

Ai =
∫ xi+1

xi

|F(x)|dx.

Then the inequality (1.7) is satisfied for all continuous convex functions f : [a,b]→
R if, and only if, the following inequalities hold true:

A0 � A1,

A0 +A2 � A1 +A3,

...

A0 +A2 + . . .+Am−3 � A1 +A3 + . . .+Am−2.

(1.8)

REMARK 1.2. Let

H(x) =
∫ x

a
F(t)dt.

Then the inequalities (1.8) are equivalent to the following inequalities

H(x2) � 0, H(x4) � 0, H(x6) � 0, . . . ,H(xm−1) � 0.
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Now we are going to study Hermite-Hadamard type inequalities for higher-order
convex functions. Many results on higher order generalizations of the Hermite-Hada-
mard type inequality one can found, among others, in [1, 2, 3, 4, 5, 9, 20, 21]. In
recent papers [20, 21] the theorem of M. Denuit, C. Lefèvre and M. Shaked [8] on
sufficient conditions for s-convex ordering was used to prove Hermite-Hadamard type
inequalities for higher-order convex functions.

Let us review some notations. The convexity of n -th order (or n -convexity) was
defined in terms of divided differences by Popoviciu [17], however, we will not state it
here. Instead we list some properties of n -th order convexity which are equivalent to
Popoviciu’s definition (see [12]).

PROPOSITION 1.1. A function f : (a,b) → R is n-convex on (a,b) (n � 1) if,
and only if, its derivative f (n−1) exists and is convex on (a,b) (with the convention
f (0)(x) = f (x)).

PROPOSITION 1.2. Assume that f : [a,b] → R is (n+1)-times differentiable on
(a,b) and continuous on [a,b] (n � 1 ). Then f is n-convex if, and only if, f (n+1)(x) �
0 , x ∈ (a,b) .

For real valued random variables X ,Y and any integer s � 2 we say that X is
dominated by Y in s-convex ordering sense if E f (X) � E f (Y ) for all (s−1)-convex
functions f : R → R , for which the expectations exist ([8]). In that case we write
X �s−cx Y , or μX �s−cx μY , or FX �s−cx FY . Then the order �2−cx is just the usual
convex order �cx .

A very useful criterion for the verification of the s-convex order is given by Denuit,
Lefèvre and Shaked in [8].

PROPOSITION 1.3. ([8]) Let X and Y be two random variables such that E(X j−
Y j) = 0 , j = 1,2, . . . ,s−1 (s � 2 ). If S−(FX −FY ) = s−1 and the last sign of FX −FY

is positive, then X �s−cx Y .

Proposition 1.3 can be rewritten in the following form.

PROPOSITION 1.4. ([8]) Let X and Y be two random variables such that

E(X j −Y j) = 0, j = 1,2, . . . ,s (s � 1).

If the distribution functions FX and FY cross exactly s-times at points x1 < x2 < .. . < xs

and
(−1)s+1 (FY (x)−FX(x)) � 0 for all x � x1,

then
E f (X) � E f (Y ) (1.9)

for all s-convex functions f : R → R .
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Proposition 1.4 is a counterpart of the Ohlin lemma concerning convex ordering.
This proposition gives sufficient conditions for s-convex ordering, and is very useful
for the verification of higher order convex orders, however, it is worth noticing that
in the case of some inequalities, the distribution functions cross more than s-times.
Therefore a simple application of this proposition is impossible and some additional
idea is needed.

In this paper we give a theorem on necessary and sufficient conditions for higher
order convex stochastic ordering, which is a counterpart of the Levin-Stečkin theorem
[13] concerning convex stochastic ordering. Based on this theorem, we give useful cri-
teria for the verification of higher order convex stochastic ordering, which can be useful
in the study of Hermite-Hadamard type inequalities for higher order convex functions,
and in particular inequalities between the quadrature operators. Moreover, our criteria
can be easier to checking of higher order convex orders, than those given in [8, 11].

2. Main results

Let F1,F2 : [a,b]→ R be two functions with bounded variation and μ1 , μ2 be the
signed measures corresponding to F1 , F2 , respectively. We say that F1 is dominated
by F2 in (n+1)-convex ordering sense (n � 1) if

∫ b

a
f (x)dF1(x) �

∫ b

a
f (x)dF2(x)

for all continuous n -convex functions f : [a,b]→ R . In that case we write F1 �(n+1)−cx
F2 , or μ1 �(n+1)−cx μ2 .

In the following theorem we give necessary and sufficient conditions for (n+1)-
convex ordering of two functions with bounded variation.

THEOREM 2.1. Let a,b ∈ R , a < b, n ∈ N and let F1,F2 : [a,b] → R be two
functions with bounded variation such that F1(a) = F2(a) . Then, in order that

∫ b

a
f (x)dF1(x) �

∫ b

a
f (x)dF2(x)

for all continuous n-convex functions f : [a,b] → R , it is necessary and sufficient that
F1 and F2 verify the following conditions:

F1(b) = F2(b), (2.1)

∫ b

a
F1(x)dx =

∫ b

a
F2(x)dx, (2.2)

∫ b

a

∫ xk−1

a
. . .

∫ x1

a
F1(t)dtdx1 . . .dxk−1

=
∫ b

a

∫ xk−1

a
. . .

∫ x1

a
F2(t)dtdx1 . . .dxk−1 for k = 2, . . . ,n, (2.3)
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(−1)n+1
∫ x

a

∫ xn−1

a
. . .

∫ x1

a
F1(t)dtdx1 . . .dxn−1

� (−1)n+1
∫ x

a

∫ xn−1

a
. . .

∫ x1

a
F2(t)dtdx1 . . .dxn−1 for all x ∈ (a,b). (2.4)

First we prove the following lemma.

LEMMA 2.1. Let F : [a,b]→ R be a function with bounded variation. Let f : [a,b]
→ R be an n-convex function of the class Cn+1 on (a,b) . Then

∫ b

a
f (x)dF(x) =

[
F(x) f (x)

]x=b

x=a
−

∫ b

a
F(x) f ′(x)dx, (2.5)

∫ b

a
f (x)dF(x) =

[
F(x) f (x)

]x=b

x=a
−

[∫ x

a
F(t)dt f ′(x)

]x=b

x=a
+

∫ b

a

∫ x

a
F(t)dt f ′′(x)dx,

(2.6)

∫ b

a
f (x)dF(x) =

[
F(x) f (x)

]x=b

x=a
−

[∫ x

a
F(t)dt f ′(x)

]x=b

x=a
+

[∫ x

a

∫ x1

a
F(t)dtdx1 f ′′(x)

]x=b

x=a

+ . . .+
[
(−1)k

∫ x

a

∫ xk−1

a
. . .

∫ x1

a
F(t)dtdx1 . . .dxk−1 f (k)(x)

]x=b

x=a

+(−1)k+1
∫ b

a

∫ x

a

∫ xk−1

a
. . .

∫ x1

a
F(t)dtdx1 . . .dxk−1 f (k+1)(x)dx

for k = 2, . . . ,n. (2.7)

Proof. The proof is by induction. Integrating by parts and using the equalities
F(x) = (

∫ x
a F(t)dt)′ and

∫ x
a F(t)dt = (

∫ x
a

∫ x1
a F(t)dtdx1)

′ , we obtain immediately (2.5),
(2.6) and (2.7) for k = 2.

Put

Ik(x) =
∫ x

a

∫ xk

a
. . .

∫ x1

a
F(t)dtdx1 . . .dxk for x ∈ (a,b), k = 1,2, . . . ,n.

Then we have

Ik−1(x) = (Ik(x))
′ for x ∈ (a,b), k = 1,2, . . . ,n. (2.8)

Assume that (2.7) holds for some k = 2, . . . ,n−1. Integrating by parts and using (2.8),
we obtain that the last summand in (2.7) can be rewritten in the form

(−1)k+1
∫ b

a

∫ x

a

∫ xk−1

a
. . .

∫ x1

a
F(t)dtdx1 . . .dxk−1 f (k+1)(x)dx

= (−1)k+1
∫ b

a
Ik−1(x) f (k+1)(x)dx

=
[
Ik(x) f (k+1)(x)

]x=b

x=a
+(−1)k+2

∫ b

a
Ik(x) f (k+2)(x)dx,
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which implies that (2.7) holds for k + 1. Thus (2.7) holds for all k = 2, . . . ,n . The
lemma is proved. �

The proof of Theorem 2.1 is an immediate consequence of the following lemma.

LEMMA 2.2. Let F : [a,b] → R be a function with bounded variation such that
F(a) = 0 . Then in order that

∫ b

a
f (x)dF(x) � 0 (2.9)

for all continuous n-convex functions f : [a,b] → R , it is necessary and sufficient that
F satisfies the following conditions:

F(b) = 0, (2.10)∫ b

a
F(x)dx = 0, (2.11)

∫ b

a

∫ xk−1

a
. . .

∫ x1

a
F(t)dtdx1 . . .dxk−1 = 0 for k = 2, . . . ,n, (2.12)

(−1)n+1
∫ x

a

∫ xn−1

a
. . .

∫ x1

a
F(t)dtdx1 . . .dxn−1 � 0 for all x ∈ (a,b). (2.13)

Proof. Via an approximation argument we may restrict to the case when f is of
the class Cn+1((a,b)) .

We now prove the sufficiency. By Lemma 2.1, using (2.6) and (2.7) with k = n ,
and taking into account (2.10)–(2.12) we get

∫ b

a
f (x)dF(x) = (−1)n+1

∫ b

a

∫ x

a

∫ xn−1

a
. . .

∫ x1

a
F(t)dtdx1 . . .dxn−1 f (n+1)(x)dx.

(2.14)
Then, by (2.13) and Proposition 1.2, we obtain (2.9).

We now prove the necessity. The necessity of (2.10) follows by checking our
statement for f = 1 and f = −1.

The necessity of (2.11) follows by checking our statement for f (x) = x and f (x) =
−x and by using (2.10), (2.5).

The necessity of (2.12) we prove by induction on k . The necessity of (2.12) for
k = 2 follows by checking our statement for f (x) = x2 and f (x) = −x2 , using (2.6)
and taking into account (2.10), (2.11). Assume, that the equality

∫ b

a

∫ xl−1

a
. . .

∫ x1

a
F(t)dtdx1 . . .dxl−1 = 0 (2.15)

holds for some k = 2, . . . ,n− 1 and all l = 2, . . . ,k . Then we check our statement for
f (x) = xk+1 and f (x) = −xk+1 . Using (2.7) and taking into account (2.10), (2.11) and
(2.15) for l = 2, . . . ,k , we obtain (2.15) for l = k + 1. Consequently, we obtain that
(2.12) is satisfied for all k = 2, . . . ,n .
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By (2.7) with k = n and taking into account (2.10)–(2.12), we obtain that (2.14)
holds. Then, for the necessity of (2.13), notice that

(−1)n+1
∫ x

a

∫ xn−1

a
. . .

∫ x1

a
F(t)dtdx1 . . .dxn−1 < 0

for some x ∈ (a,b) , yields an interval I around x on which this expression is still
negative. Choosing f such that f (n+1) = 0 outside I , the equality (2.14) leads to a
contradiction. Thus (2.13) is satisfied. The lemma is proved. �

REMARK 2.1. Let μ be the (signed) measure such that μ(du) = dF(u) . In [11]
can be found a characterization of measures μ such that (2.9) is satisfied for all gen-
eralized convex functions f . We note, that the characterization given in [11], in the
case of n -convex functions, which are a special case of generalized convex functions,
is different from that given in Lemma 2.2. Namely, in place of conditions (2.10)–(2.12)
(in Lemma 2.2), in [11] are given so-called moment conditions.

COROLLARY 2.1. Let μ1 , μ2 be two signed measures on B (R) , which are con-
centrated on (a,b) , and such that

∫ b
a |x|nμi(dx) < ∞ , i = 1,2 . Then in order that

∫ b

a
f (x)dμ1(x) �

∫ b

a
f (x)dμ2(x)

for all continuous n-convex functions f : [a,b] → R , it is necessary and sufficient that
μ1 , μ2 verify the following conditions:

μ1 ((a,b)) = μ2 ((a,b)) , (2.16)∫ b

a
xkμ1(dx) =

∫ b

a
xkμ2(dx) for k = 1, . . . ,n, (2.17)

∫ b

a

(
t− x

)n
+μ1(dt) =

∫ b

a

(
t− x

)n
+μ2(dt) for all x ∈ (a,b), (2.18)

where yn
+ =

{
max{y,0}

}n
, y ∈ R .

Proof. Let F1 , F2 be the distribution functions corresponding to μ1 , μ2 , respec-
tively. Then μi(dt) = dFi(t) , i = 1,2. Since μ1 and μ2 are concentrated on (a,b) , we
have F1(a) = F2(a) . That (2.1) and (2.16) are equivalent is obvious. Put F = F2−F1 .
By (2.5) with f (x) = x , and taking into account (2.1), it follows that the conditions (2.2)
and (2.17) for k = 1 are equivalent. The equivalence of (2.3) and (2.17) for k = 2, . . . ,n ,
can be proved, using (2.6) and (2.17), by induction on k . We omit the proof.
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Next, by reversing the order of integration in (2.4), we obtain

(−1)n+1
∫ x

a

∫ xn−1

a
. . .

∫ x1

a
(F2(t)−F1(t))dtdx1 . . .dxn−1

= (−1)n+1
∫ x

a

∫ xn−1

a
. . .

∫ x1

a
F(t)dtdx1 . . .dxn−1

= (−1)n+1
∫ x

a

(x− t)n

n!
dF(t) = (−1)n+1(−1)n

∫ x

a

(t − x)n

n!
dF(t)

= −
∫ x

a

(t− x)n

n!
dF(t) =

∫ b

a

(t− x)n

n!
dF(t)−

∫ x

a

(t− x)n

n!
dF(t)

=
∫ b

x

(t − x)n

n!
dF(t) =

∫ b

a

(t− x)n
+

n!
dF(t),

which implies the equivalence of (2.4) and (2.18). The corollary is proved. �
In [8] can be found the following necessary and sufficient conditions for the veri-

fication of the (s+1)-convex order.

PROPOSITION 2.1. ([8]) If X and Y are two real valued random variables such
that E |X |s < ∞ and E |Y |s < ∞ , then

E f (X) � E f (Y ) (2.19)

for all continuous s-convex functions f : R → R if, and only if,

EXk = EYk for k = 1,2, . . . ,s, (2.20)

E(X − t)s
+ � E(Y − t)s

+ for all t ∈ R. (2.21)

REMARK 2.2. The inequality (2.21) coincides with (2.19) for the spline function
f (x) = (x− t)s

+ . Moreover, it is well known that s-convex function has the integral
representation, such that the spline functions are the generating functions (see [19]).

REMARK 2.3. Note, that if the measures μX , μY , corresponding to the random
variables X , Y , respectively, occurring in Proposition 2.1, are concentrated on some
interval [a,b] , then this proposition is an easy consequence of Corollary 2.1.

Note that Theorem 2.1 can be rewritten in the following form.

THEOREM 2.2. Let F1,F2 : [a,b] → R be two functions with bounded variation
such that F1(a) = F2(a) . Let

H0(t0) = F2(t0)−F1(t0) for t0 ∈ [a,b],

Hk(tk) =
∫ tk−1

a
Hk−1(tk−1)dtk−1 for tk ∈ [a,b], k = 1,2, . . . ,n.

Then, in order that ∫ b

a
f (x)dF1(x) �

∫ b

a
f (x)dF2(x)
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for all continuous n-convex functions f : [a,b] → R , it is necessary and sufficient that
the following conditions are satisfied:

Hk(b) = 0 for k = 0,1,2, . . . ,n,

(−1)n+1Hn(x) � 0 for all x ∈ (a,b).

REMARK 2.4. The functions H1, . . . ,Hn , that appear in Theorem 2.2, can be ob-
tained from the following formulas

Hn(x) = (−1)n+1
∫ b

a

(t− x)n
+

n!
d(F2(t)−F1(t)), (2.22)

Hk−1(x) = H
′
k(x), k = 2,3, . . . ,n. (2.23)

Note that the function (−1)n+1Hn−1 that appears in Theorem 2.2 play a role simi-
lar to the role of the function F = F2−F1 in Lemma 1.2. Consequently, from Theorem
2.2, Lemma 1.2 and Remarks 1.2, 2.4 we obtain immediately the following useful cri-
terion for the verification of higher order convex ordering.

COROLLARY 2.2. Let F1,F2 : [a,b] → R be functions with bounded variation
such that F1(a) = F2(a) , F1(b) = F2(b) and Hk(b) = 0 (k = 1,2, . . . ,n) , where Hk(x)
(k = 1,2, . . . ,n) are given by (2.22) and (2.23). Let a < x1 < .. . < xm < b be the points
of sign changes of the function Hn−1 and let (−1)n+1Hn−1(x) � 0 for x ∈ (a,x1) .

• If m is even then the inequality

∫ b

a
f (x)dF1(x) �

∫ b

a
f (x)dF2(x), (2.24)

is not satisfied by all continuous n-convex functions f : [a,b] → R .

• If m is odd, then the inequality (2.24) is satisfied for all continuous n-convex
functions f : [a,b] → R if, and only if,

(−1)n+1Hn(x2) � 0, (−1)n+1Hn(x4) � 0, . . . , (−1)n+1Hn(xm−1) � 0. (2.25)

In the numerical analysis are studied some inequalities, which are connected with
quadrature operators. These inequalities, called extremalities, are a particular case of
the Hermite-Hadamard type inequalities. Many extremalities are known in the numeri-
cal analysis (cf. [1], [7], [6] and the references therein). The numerical analysts prove
them using the suitable differentiability assumptions. As proved Wa̧sowicz in the pa-
pers [24], [25], [27], for convex functions of higher order some extremalities can be
obtained without assumptions of this kind, using only the higher order convexity it-
self. The support-type properties play here the crucial role. As we show in [20, 21],
some extremalities can be proved using a probabilistic characterization.The extremali-
ties, which we study are known, however our method using the Ohlin lemma [16] and
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the Denuit-Lefèvre-Shaked theorem [8] on sufficient conditions for the convex stochas-
tic ordering seems to be quite easy. It is worth noting that, these theorems do not apply
to proving some extremalities (see [20, 21]). In these cases can be useful results given
in this paper.

For a function f : [−1,1]→ R we consider two operators

C( f ) := 1
3

(
f
(−√

2
2

)
+ f (0)+ f

(√
2

2

))
,

L4( f ) := 1
12

(
f (−1)+ f (1)

)
+ 5

12

(
f
(−√

5
5

)
+ f

(√
5

5

))
,

connected with Chebyshev and Lobatto quadratures, respectively. Wa̧sowicz [24], [26]
proved that

C( f ) � L4( f ), if f is 3-convex. (2.26)

The proof given in [24] is rather complicated. This was done using computer software.
In [26] can be found a new proof, without the use of any computer software, based on
the spline approximation of convex functions of higher order. Using Corollary 2.2, we
give a new proof of (2.26), which is simpler than that given in [26].

Since for the random variables X and Y with the distributions

μX = 1
3

(
δ−

√
2

2
+ δ0 + δ√

2
2

)
,

μY = 1
12

(
δ−1 + δ1

)
+ 5

12

(
δ−

√
5

5
+ δ√

5
5

)
,

respectively, we have

C( f ) = E[ f (X)], L4( f ) = E[ f (Y )],

it follows that the inequality (2.26) can be rewritten in terms of higher order convex
orderings

X �4−cx Y. (2.27)

It is worth noting, that Proposition 2.1 of Denuit, Lefèvre and Shaked does not apply
to proving (2.27), because the distribution functions FX and FY cross exactly 5-times.
We prove the inequality (2.27) by using Corollary 2.2.

We have F1 = FX , F2 = FY , H0 = F = FY −FX . By (2.22) and (2.23), we obtain

H3(x) = 1
72

{
(−1− x)3+ +(1− x)3+ +5

[(
−

√
5

5 − x
)3

+
+

(√
5

5 − x
)3

+

]

−4

[
(−1− x)3+ +

(
−

√
2

2 − x
)3

+
+(−x)3+ +

(√
2

2 − x
)3

+

]}
,

H2(x) = 1
24

{
−(−1− x)2+− (1− x)2+ −5

[(
−

√
5

5 − x
)2

+
+

(√
5

5 − x
)2

+

]

+4

[
(−1− x)2+ +

(
−

√
2

2 − x
)2

+
+(−x)2+ +

(√
2

2 − x
)2

+

]}
.
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Similarly, from the equality H1(x) = H
′
2(x) can be obtained H1(x) . We compute that

x1 = −1−√
5+ 2

√
2, x2 = 0, x3 = 1+

√
5− 2

√
2 are the points of sign changes of

the function H2(x) . It is not difficult to check that the assumptions of Corollary 2.2 are
satisfied. Since

(−1)3+1H3(x2) = (−1)3+1H3(0) = 1
72 +

√
5

360 −
√

2
72 > 0,

it follows that the inequalities (2.25) are satisfied. From Corollary 2.2 we conclude that
the relation (2.27) hold.
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[5] M. BESSENYEI AND Z. S. PÁLES, Characterization of higher-order monotonicity via integral in-
equalities, Proc. R. Soc. Edinburgh Sect. A, 140A, 1 (2010), 723–736.

[6] H. BRASS AND K. PETRAS, Quadrature theory. The theory of numerical integration on a compact
interval, Mathematical Surveys and Monographs 178. American Mathematical Society, Providence,
RI, 2011.

[7] H. BRASS AND G. SCHMEISSER, Error estimates for interpolatory quadrature formulae, Numer.
Math. 37, 3 (1981), 371–386.
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