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IMPROVED JENSEN’S INEQUALITY

MOHAMMAD SABABHEH

(Communicated by I. Perić)

Abstract. In this article we present refinements of Jensen’s inequality and its reversal for convex
functions, by adding as many refining terms as we wish. Then as a standard application, we
present several refinements and reverses of well known mean inequalities.

1. Introduction

In the sequel, I will denote an open interval of the real line. A function f : I → R

is said to be convex if, for all x1,x2 ∈ I and λ ∈ (0,1) , we have

f (λx1 +(1−λ )x2) � λ f (x1)+ (1−λ ) f (x2).

By induction, we obtain the celebrated Jensen’s inequality that if x = {x1, · · · ,xn} ⊂ I

and p = {p1, · · · , pn} ⊂ (0,1) satisfying ∑n
i=1 pi = 1, then

f

(
n

∑
i=1

pixi

)
�

n

∑
i=1

pi f (xi). (1)

This inequality for convex functions is of extreme significance in the theory of func-
tions.

Refining this inequality by finding intermediate terms or by adding some positive
quantities to the left side has taken the attention of numerous researchers. We refer
the reader to [1, 2, 5, 6, 7, 8, 13, 14, 17, 18] and their references for the motivation,
applications and different refinements of Jensen’s inequality.

The main goal of this paper is to refine Jensen’s inequality by finding as many

refining terms as we wish. More precisely, we prove that given x = {x(1)
1 , · · · ,x(1)

n } ⊂
I,p = {p(1)

1 , · · · , p(1)
n } ⊂ (0,1) satisfying ∑n

i=1 p(1)
i = 1, and N ∈ N , we have

f

(
n

∑
i=1

p(1)
i x(1)

i

)
+n

N

∑
k=1

p(k)
min

(
1
n

n

∑
i=1

f (x(k)
i )− f

(
1
n

n

∑
i=1

x(k)
i

))
�

n

∑
i=1

p(1)
i f (x(1)

i ),

for certain p(k)
i and x(k)

i . See Theorem 1, Section 2.1 below for the details.
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Once this refinement is proved, we use it to obtain a reversed version, where we
have (�) instead of (�) in the above inequality. See Theorem 3, Section 2.2 for the
details.

One motivation of this work is the following result, which was proved in [17] as a
refinement and a reverse of Jensen’s inequality, where one refining term has been found.

LEMMA 1. Let f : I −→ R be convex, {x1, · · · ,xn} ⊂ I and {p1, · · · , pn} ⊂ (0,1)
be such that ∑n

i=1 pi = 1. Then

f

(
n

∑
i=1

pixi

)
+npmin

(
1
n

n

∑
i=1

f (xi)− f

(
1
n

n

∑
i=1

xi

))
�

n

∑
i=1

pi f (xi). (2)

and

f

(
n

∑
i=1

pixi

)
+npmax

(
1
n

n

∑
i=1

f (xi)− f

(
1
n

n

∑
i=1

xi

))
�

n

∑
i=1

pi f (xi), (3)

where pmin = min{p1, · · · , pn} and pmax = max{p1, · · · , pn}.
Notice that when pi = 1

n for all i, then the above inequalities become sharp equal-
ities.

Another main motivation of this work is the extensive study of means inequalities
in the literature. As we shall see, almost all these refinements and reverses will be
immediate consequences of our general results for convex functions. See Section 2.3
below.

2. Main results

2.1. Refining Jensen’s inequality

Our first result is the following refinement of Jensen’s inequality. Before stating

this inequality, we justify the used notations. Let p(1) = {p(1)
1 , · · · , p(1)

n } ⊂ (0,1) be a

convex sequence, that is ∑n
i=1 p(1)

i = 1, and let p(1)
min = min{p(1)

i : 1 � i � n}. Consider

J1 = {i : p(1)
i = p(1)

min} and let |J1| be the cardinality of J1.

Now for k � 2, we define a new sequence p(k) inductively as follows

p(k)
i =

{
p(k−1)

i − p(k−1)
min , p(k−1)

i �= p(k−1)
min

1
|Jk−1|np(k−1)

min , p(k−1)
i = p(k−1)

min

where Jk−1 =
{

i : p(k−1)
i = p(k−1)

min

}
, (4)

and for k � 1, p(k)
min = min{p(k)

1 , · · · , p(k)
n }.

Moreover, given x(1) = {x(1)
1 , · · · ,x(1)

n } ⊂ I , we construct a new sequence x(k) as
follows

x(k)
i =

{
x(k−1)
i , p(k−1)

i �= p(k−1)
min

1
n ∑n

i=1 x(k−1)
i , p(k−1)

i = p(k−1)
min

, 1 � i � n. (5)
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We emphasize that the order of the {x(1)
i } follows the order they are associated with

the {p(1)
i }. That is, x(1)

1 is the value multiplied with p(1)
1 , and so on. Keeping these

notations in mind, we state our first main result, which refines (2).

THEOREM 1. Let f : I−→R be convex, {x(1)
1 , · · · ,x(1)

n }⊂ I and {p(1)
1 , · · · , p(1)

n }⊂
(0,1) be such that ∑n

i=1 p(1)
i = 1. Then for every N ∈ N , we have

f

(
n

∑
i=1

p(1)
i x(1)

i

)
+n

N

∑
k=1

p(k)
min

(
1
n

n

∑
i=1

f (x(k)
i )− f

(
1
n

n

∑
i=1

x(k)
i

))
�

n

∑
i=1

p(1)
i f (x(1)

i ), (6)

where p(k)
i and x(k)

i are as in (4) and (5).

Proof. We prove this by induction on N . For N = 1, the result follows from
Lemma 1. Now assume that (6) holds for some N ∈ N . We emphasize here that this

means, given any convex sequence {q(1)
i : 1 � i � n} and any elements {y(1)

i : 1 � i �
n} ⊂ I , we have the inductive step

f

(
n

∑
i=1

q(1)
i y(1)

i

)
+n

N

∑
k=1

q(k)
min

(
1
n

n

∑
i=1

f (y(k)
i )− f

(
1
n

n

∑
i=1

y(k)
i

))
�

n

∑
i=1

q(1)
i f (y(1)

i ). (7)

Then

I :=
n

∑
i=1

p(1)
i f

(
x(1)
i

)
−n p(1)

min

(
1
n

n

∑
i=1

f
(
x(1)
i

)
− f

(
1
n

n

∑
i=1

x(1)
i

))

=
n

∑
i=1

p(1)
i f

(
x(1)
i

)
− p(1)

min

n

∑
i=1

f
(
x(1)
i

)
+n p(1)

min f

(
1
n

n

∑
i=1

x(1)
i

)

=
n

∑
i=1

p
(1)
i �=p

(1)
min

(
p(1)

i − p(1)
min

)
f
(
x(1)
i

)
+ ∑

p
(1)
i =p

(1)
min

(
1
|J1|n p(1)

min f

(
1
n

n

∑
i=1

x(1)
i

))

=
n

∑
i=1

p(2)
i f

(
x(2)
i

)
, (8)

where the last line is obtained from the definitions of (p(k)
i ) and (x(k)

i ) in (4) and (5).

Now, for convenience denote p(2)
i by q(1)

i and x(2)
i by y(1)

i .
Notice that

n

∑
i=1

q(1)
i =

n

∑
i=1

p(2)
i

= ∑
i�∈J1

(
p(1)

i − p(1)
min

)
+ ∑

i∈|J1|

np(1)
min

|J1|
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=
n

∑
i=1

p(1)
i − ∑

i∈J1

p(1)
i − ∑

i�∈J1

p(1)
min +n p(1)

min

= 1−|J1| p(1)
min− (n−|J1|)p(1)

min +n p(1)
min

= 1.

Consequently, we may apply the inductive step (7) on (8) to get

I =
n

∑
i=1

q(1)
i f

(
y(1)
i

)

� f

(
n

∑
i=1

q(1)
i y(1)

i

)
+n

N

∑
k=1

q(k)
min

(
1
n

n

∑
i=1

f (y(k)
i )− f

(
1
n

n

∑
i=1

y(k)
i

))
. (9)

Now,

n

∑
i=1

q(1)
i y(1)

i =
n

∑
i=1

p(2)
i x(2)

i

=
n

∑
i=1
i �∈J1

(
p(1)

i − p(1)
min

)
x(1)
i + ∑

j∈J1

(
n p(1)

min

|J1|
n

∑
i=1

x(1)
i

n

)

=
n

∑
i=1
i �∈J1

p(1)
i x(1)

i −
n

∑
i=1
i �∈J1

p(1)
minx

(1)
i +

n

∑
i=1

p(1)
minx

(1)
i

=
n

∑
i=1
i �∈J1

p(1)
i x(1)

i +
n

∑
i=1
i∈J1

p(1)
minx

(1)
i

=
n

∑
i=1

p(1)
i x(1)

i . (10)

Moreover, since q(1)
i = p(2)

i and y(1)
i = x(2)

i , we have q(k)
i = p(k+1)

i and y(k)
i = x(k+1)

i
for k � 1. Therefore, invoking (10) in (9), we get

I =
n

∑
i=1

p(1)
i f

(
x(1)
i

)
−n p(1)

min

(
1
n

n

∑
i=1

f
(
x(1)
i

)
− f

(
1
n

n

∑
i=1

x(1)
i

))

� f

(
n

∑
i=1

p(1)
i x(1)

i

)
+n

N

∑
k=1

p(k+1)
min

(
1
n

n

∑
i=1

f (x(k+1)
i )− f

(
1
n

n

∑
i=1

x(k+1)
i

))

= f

(
n

∑
i=1

p(1)
i x(1)

i

)
+n

N+1

∑
k=2

p(k)
min

(
1
n

n

∑
i=1

f (x(k)
i )− f

(
1
n

n

∑
i=1

x(k)
i

))
.

That is,

f

(
n

∑
i=1

p(1)
i x(1)

i

)
+n

N+1

∑
k=1

p(k)
min

(
1
n

n

∑
i=1

f (x(k)
i )− f

(
1
n

n

∑
i=1

x(k)
i

))
�

n

∑
i=1

p(1)
i f

(
x(1)
i

)
,
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completing the proof. �
This enables us to write the following inequality for log-convex functions, refining

the corresponding result from [17].

COROLLARY 1. Let f : I→R
+ be log-convex, {x(1)

1 , · · · ,x(1)
n }⊂ I and {p(1)

1 , · · · ,
p(1)

n } ⊂ (0,1) be such that ∑n
i=1 p(1)

i = 1. Then for every N ∈ N

N

∏
k=1

⎛
⎝ ∏n

i=1 f
1
n (x(k)

i )

f
(

1
n ∑n

i=1 x(k)
i

)
⎞
⎠

n p(k)
min

� ∏n
i=1 f p

(1)
i (x(1)

i )

f
(

∑n
i=1 p(1)

i x(1)
i

) . (11)

Proof. Since f is log-convex, g(x) = log f (x) is convex. Applying Theorem 1 on
g implies the required inequality. �

We discuss the equality possibility in (6).

THEOREM 2. Let f : I→R be convex, {p(1)
i } be a convex sequence and {x(1)

i }⊂
I. For k � 2, let {p(k)

i } be as in (4). If for some M ∈ N , {p(M)
i } is the constant

sequence, that is p(M)
i = 1

n∀i, then

f

(
n

∑
i=1

p(1)
i x(1)

i

)
+n

M

∑
k=1

p(k)
min

(
1
n

n

∑
i=1

f (x(k)
i )− f

(
1
n

n

∑
i=1

x(k)
i

))
=

n

∑
i=1

p(1)
i f (x(1)

i ).

Proof. Observe that the result follows immediately when M = 1, hence we may
assume that M � 2. We prove first that, for N ∈ N,

n

∑
i=1

p(1)
i f (x(1)

i )−n
N

∑
k=1

p(k)
min

(
1
n

n

∑
i=1

f (x(k)
i )− f

(
1
n

n

∑
i=1

x(k)
i

))
=

n

∑
i=1

p(N+1)
i f (x(N+1)

i ),

by induction on N. When N = 1, this has been proved in (8). Assuming the truth of
our claim for a certain N , we have

n

∑
i=1

p(1)
i f (x(1)

i )−n
N+1

∑
k=1

p(k)
min

(
1
n

n

∑
i=1

f (x(k)
i )− f

(
1
n

n

∑
i=1

x(k)
i

))

=
n

∑
i=1

p(1)
i f (x(1)

i )−n
N

∑
k=1

p(k)
min

(
1
n

n

∑
i=1

f (x(k)
i )− f

(
1
n

n

∑
i=1

x(k)
i

))

−np(N+1)
min

(
1
n

n

∑
i=1

f (x(N+1)
i )− f

(
1
n

n

∑
i=1

x(N+1)
i

))

=
n

∑
i=1

p(N+1)
i f (x(N+1)

i )−np(N+1)
min

(
1
n

n

∑
i=1

f (x(N+1)
i )− f

(
1
n

n

∑
i=1

x(N+1)
i

))

=
n

∑
i=1

p(N+2)
i f (x(N+2)

i ),
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where in the last two lines, we have applied the inductive step first, then the fact that
our claim is true when N = 1.

In particular, when N = M−1, we have

n

∑
i=1

p(1)
i f (x(1)

i )−n
M−1

∑
k=1

p(k)
min

(
1
n

n

∑
i=1

f (x(k)
i )− f

(
1
n

n

∑
i=1

x(k)
i

))
=

n

∑
i=1

p(M)
i f (x(M)

i ), (12)

Now, if p(M)
i = 1

n ,∀i , we have

f

(
n

∑
i=1

p(M)
i x(M)

i

)
+np(M)

min

(
1
n

n

∑
i=1

f (x(M)
i )− f

(
1
n

n

∑
i=1

x(M)
i

))

=
n

∑
i=1

p(M)
i f (x(M)

i ) (now use (12))

=
n

∑
i=1

p(1)
i f (x(1)

i )−n
M−1

∑
k=1

p(k)
min

(
1
n

n

∑
i=1

f (x(k)
i )− f

(
1
n

n

∑
i=1

x(k)
i

))
, (13)

which implies

f

(
n

∑
i=1

p(M)
i x(M)

i

)
+n

M

∑
k=1

p(k)
min

(
1
n

n

∑
i=1

f (x(k)
i )− f

(
1
n

n

∑
i=1

x(k)
i

))
=

n

∑
i=1

p(1)
i f (x(1)

i ).

(14)
By induction, it is easy to show that (see for example (10)),

n

∑
i=1

p(M)
i x(M)

i =
n

∑
i=1

p(1)
i x(1)

i , M � 2,

so that (14) becomes

f

(
n

∑
i=1

p(1)
i x(1)

i

)
+n

M

∑
k=1

p(k)
min

(
1
n

n

∑
i=1

f (x(k)
i )− f

(
1
n

n

∑
i=1

x(k)
i

))
=

n

∑
i=1

p(1)
i f (x(1)

i ).

This completes the proof. �

2.2. Refining the reversed version

Now we use Theorem 1 to obtain the following refined version of (3). Before

proceeding, we need to deal with some notations. Let p(1)
1 � · · · � p(1)

n be a convex

sequence. That is, ∑n
i=1 p(1)

i = 1. We will refer to p(1) = {p(1)
i } as a monotone convex

sequence. Assume also that p(1)
max is attained � times, meaning p(1)

n−�+1 = · · · = p(1)
n =

p(1)
max. Since ∑n

i=1 p(1)
i = 1, it follows that

p(1)
n =

1−∑n−�
j=1 p(1)

j

�
. (15)
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These notations will be used throughout this section.

It should be noted that if p(1)
i = 1

n ,∀i , then (3) is sharp. Thus, our concern is when
the sequence p(1) is not the constant sequence, so that � �= n.

LEMMA 2. Let f : I → R be convex, p(1) be a nonconstant monotone convex

sequence and x(1) = {x(1)
i } ⊂ I. Define the new sequences

q(1)
i =

⎧⎨
⎩

1−∑n−�
j=1 p(1)

j −�p(1)
i

n−� = �
p(1)
n −p(1)

i
n−� , 1 � i � n− �

1
�

n
n−� ∑n−�

j=1 p(1)
j , n− �+1 � i � n

(16)

and

y(1)
i =

{
x(1)
i , 1 � i � n− �

1
n ∑n

i=1 x(1)
i , n− �+1 � i � n

. (17)

Then, for N ∈ N ,

n−�

∑
i=1

1−∑n−�
j=1 p(1)

j − �p(1)
i

n− �
f (x(1)

i )+

(
n

n− �

n−�

∑
j=1

p(1)
j

)
f

(
1
n

n

∑
i=1

x(1)
i

)

� f

(
n

∑
i=1

q(1)
i y(1)

i

)
+MN( f ;x,p), (18)

where

MN( f ;x,p) = n
N

∑
k=1

q(k)
min

(
1
n

n

∑
i=1

f (y(k)
i )− f

(
1
n

n

∑
i=1

y(k)
i

))
,

{q(k)
i } and {y(k)

i } are generated from {q(1)
i } and {y(1)

i } , defined in (16) and (17), via
(4) and (5).

Proof. Notice that

n

∑
i=1

q(1)
i =

n−�

∑
i=1

1−∑n−�
j=1 p(1)

j − �p(1)
i

n− �
+

n

∑
i=n−�+1

(
1
�

n
n− �

n−�

∑
j=1

p(1)
j

)

=
1

n− �

[
(n− �)− (n− �)

n−�

∑
j=1

p(1)
j − �

n−�

∑
j=1

p(1)
j +n

n−�

∑
j=1

p(1)
j

]

= 1.

That is, (q(1)
i ) is a convex sequence. Now, direct computations show that

n

∑
i=1

q(1)
i f (y(1)

i ) =
n−�

∑
i=1

1−∑n−�
j=1 p(1)

j − �p(1)
i

n− �
f (x(1)

i )+

(
n

n− �

n−�

∑
j=1

p(1)
j

)
f

(
1
n

n

∑
i=1

x(1)
i

)
.

(19)
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Hence, if f : I → R is convex and {x(1)
i : 1 � i � n} ⊂ I , then Theorem 1 implies, for

N ∈ N ,

f

(
n

∑
i=1

q(1)
i y(1)

i

)
+n

N

∑
k=1

q(k)
min

(
1
n

n

∑
i=1

f (y(k)
i )− f

(
1
n

n

∑
i=1

y(k)
i

))
�

n

∑
i=1

q(1)
i f (y(1)

i ), (20)

where {q(k)
i } and {y(k)

i } are obtained from {q(1)
i } and {y(1)

i } as in (4) and (5). Thus,
this together with (19) imply

n−�

∑
i=1

1−∑n−�
j=1 p(1)

j − �p(1)
i

n− �
f (x(1)

i )+

(
n

n− �

n−�

∑
j=1

p(1)
j

)
f

(
1
n

n

∑
i=1

x(1)
i

)

� f

(
n

∑
i=1

q(1)
i y(1)

i

)
+n

N

∑
k=1

q(k)
min

(
1
n

n

∑
i=1

f (y(k)
i )− f

(
1
n

n

∑
i=1

y(k)
i

))

= f

(
n

∑
i=1

q(1)
i y(1)

i

)
+MN( f ;x,p). � (21)

Moreover, letting

r(1)
1 =

�

n
, r(1)

2 =
n− �

n
, z(1)

1 =
n

∑
i=1

p(1)
i x(1)

i and z(1)
2 =

n

∑
i=1

1− �p(1)
i

n− �
x(1)
i ,

then r(1)
1 + r(1)

2 = 1 and Theorem 1 imply

�

n
f

(
n

∑
i=1

p(1)
i x(1)

i

)
+

n− �

n
f

(
n

∑
i=1

1− �p(1)
i

n− �
x(1)
i

)

= r(1)
1 f (z(1)

1 )+ r(1)
2 f (z(1)

2 )

� f
(
r(1)
1 z(1)

1 + r(1)
2 z(1)

2

)
+2

N

∑
k=1

r(k)
min

(
f (z(k)1 )+ f (z(k)2 )

2
− f

(
z(k)1 + z(k)2

2

))

= f

(
�

n

n

∑
i=1

p(1)
i x(1)

i +
n− �

n

n

∑
i=1

1− �p(1)
i

n− �
x(1)
i

)
+SN( f ;x,p), (22)

where

SN( f ;x,p) = 2
N

∑
k=1

r(k)
min

(
f (z(k)1 )+ f (z(k)2 )

2
− f

(
z(k)1 + z(k)2

2

))
,

{r(k)
i } and {z(k)i } are generated from {r(1)

i } and {z(1)
i } , via (4) and (5).

THEOREM 3. Let f : I −→ R be convex, x = {x(1)
1 , · · · ,x(1)

n } ⊂ I and

p = {p(1)
1 , · · · , p(1)

n } ⊂ (0,1) be a nonconstant monotone convex sequence. Then for
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every N ∈ N , we have

f

(
n

∑
i=1

p(1)
i x(1)

i

)
+np(1)

max

(
1
n

n

∑
i=1

f (x(1)
i )− f

(
1
n

n

∑
i=1

x(1)
i

))

�
n

∑
i=1

p(1)
i f (x(1)

i )+
n
�
SN( f ;x,p)+

n− �

�
MN( f ;x,p),

where �,SN and MN are as discussed above.

Proof. For the given parameters, we have

I := np(1)
max

(
1
n

n

∑
i=1

f (x(1)
i )− f

(
1
n

n

∑
i=1

x(1)
i

))
−

n

∑
i=1

p(1)
i f (x(1)

i )

= np(1)
n

(
1
n

n

∑
i=1

f (x(1)
i )− f

(
1
n

n

∑
i=1

x(1)
i

))
−

n

∑
i=1

p(1)
i f (x(1)

i )

=
n

∑
i=1

(p(1)
n − p(1)

i ) f (xi)−np(1)
n f

(
1
n

n

∑
i=1

x(1)
i

)

=
n−�

∑
i=1

(p(1)
n − p(1)

i ) f (xi)−np(1)
n f

(
1
n

n

∑
i=1

x(1)
i

)
(now use (15))

=
n−�

∑
i=1

⎛
⎝1−∑n−�

j=1 p(1)
j

�
− p(1)

i

⎞
⎠ f (x(1)

i )−n
1−∑n−�

j=1 p(1)
j

�
f

(
1
n

n

∑
i=1

x(1)
i

)

=
1
�

n−�

∑
i=1

(
1−

n−�

∑
j=1

p(1)
j − �p(1)

i

)
f (x(1)

i )+

(
n
�

n−�

∑
j=1

p(1)
j

)
f

(
1
n

n

∑
i=1

x(1)
i

)

− n
�

f

(
1
n

n

∑
i=1

x(1)
i

)

=
n− �

�

⎡
⎣n−�

∑
i=1

1−∑n−�
j=1 p(1)

j − �p(1)
i

n− �
f (x(1)

i )+

(
n

n− �

n−�

∑
j=1

p(1)
j

)
f

(
1
n

n

∑
i=1

x(1)
i

)⎤
⎦

− n
�

f

(
1
n

n

∑
i=1

x(1)
i

)

� n− �

�
f

⎛
⎝n−�

∑
i=1

1−∑n−�
j=1 p(1)

j − �p(1)
i

n− �
x(1)
i +

(
n

n− �

n−�

∑
j=1

p(1)
j

)
1
n

n

∑
i=1

x(1)
i

⎞
⎠

+
n− �

�
MN( f ;x,p)− n

�
f

(
1
n

n

∑
i=1

x(1)
i

)
(by (21))
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=
n− �

�
f

(
n−�

∑
i=1

1− �p(1)
i

n− �
x(1)
i +

1− �p(1)
n

n− �

n

∑
i=n−�+1

x(1)
i

)
− n

�
f

(
1
n

n

∑
i=1

x(1)
i

)

+
n− �

�
MN( f ;x,p)

=
n− �

�
f

(
n

∑
i=1

1− �p(1)
i

n− �
x(1)
i

)
− n

�
f

(
1
n

n

∑
i=1

x(1)
i

)
+

n− �

�
MN( f ;x,p). (23)

Now, using (23), we have

I′ := f

(
n

∑
i=1

p(1)
i x(1)

i

)
+np(1)

max

(
1
n

n

∑
i=1

f (x(1)
i )− f

(
1
n

n

∑
i=1

x(1)
i

))

−
n

∑
i=1

p(1)
i f (x(1)

i )

= f

(
n

∑
i=1

p(1)
i x(1)

i

)
+

n− �

�
f

(
n

∑
i=1

1− �p(1)
i

n− �
x(1)
i

)
− n

�
f

(
1
n

n

∑
i=1

x(1)
i

)

+
n− �

�
MN( f ;x,p)

=
n
�

[
�

n
f

(
n

∑
i=1

p(1)
i x(1)

i

)
+

n− �

n
f

(
n

∑
i=1

1− �p(1)
i

n− �
x(1)
i

)]

− n
�

f

(
1
n

n

∑
i=1

x(1)
i

)
+

n− �

�
MN( f ;x,p)

� n
�

f

(
�

n

n

∑
i=1

p(1)
i x(1)

i +
n− �

n

n

∑
i=1

1− �p(1)
i

n− �
x(1)
i

)
+

n
�
SN( f ;x,p)

− n
�

f

(
1
n

n

∑
i=1

x(1)
i

)
+

n− �

�
MN( f ;x,p) (by (22))

=
n
�

f

(
1
n

n

∑
i=1

x(1)
i

)
+

n
�
SN( f ;x,p)− n

�
f

(
1
n

n

∑
i=1

x(1)
i

)
+

n− �

�
MN( f ;x,p)

=
n
�
SN( f ;x,p)+

n− �

�
MN( f ;x,p).

Thus, we have shown that

f

(
n

∑
i=1

p(1)
i x(1)

i

)
+np(1)

max

(
1
n

n

∑
i=1

f (x(1)
i )− f

(
1
n

n

∑
i=1

x(1)
i

))
−

n

∑
i=1

p(1)
i f (x(1)

i )

� n
�
SN( f ;x,p)+

n− �

�
MN( f ;x,p),

which completes the proof. �
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Now if f is log-convex, then log f is convex. Applying Theorem 3 on log f
implies the following result for log-convex functions, refining the corresponding result
in [17].

THEOREM 4. Let f : I −→ R be log-convex, x = {x(1)
1 , · · · ,x(1)

n } ⊂ I and p =
{p(1)

1 , · · · , p(1)
n } ⊂ (0,1) be a nonconstant increasing convex sequence. Then for every

N ∈ N , we have

∏n
i=1 f p(1)

i (x(1)
i )

f
(

∑n
i=1 p(1)

i x(1)
i

)

� ∏n
i=1 f p(1)

i (x(1)
i )

f
(

∑n
i=1 p(1)

i x(1)
i

) N

∏
k=1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎝
√

f (z(k)1 ) f (z(k)2 )

f

(
z
(k)
1 +z

(k)
2

2

)
⎞
⎟⎟⎠

2n
� r(k)min ⎛

⎝ ∏n
i=1 f

1
n (y(k)

i )

f
(

1
n ∑n

i=1 y(k)
i

)
⎞
⎠

n(n−�)
� q(k)

min

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

�

⎛
⎝ ∏n

i=1 f
1
n (x(1)

i )

f
(

1
n ∑n

i=1 x(1)
i

)
⎞
⎠

n p
(1)
max

.

2.3. Some applications

Among the most important applications of Jensen’s inequality and its refinements
is the comparison between different means. In this section, we adopt the same notations
from before.

2.3.1. The arithmetic-geometric mean (AM-GM) inequality

Let {x(1)
i : 1 � i � n} be a given set of positive real numbers and let {p(1)

i : 1 �
i � n} be a convex sequence. The generalized AM-GM inequality states that

n

∏
i=1

(
x(1)
i

)p(1)
i �

n

∑
i=1

p(1)
i x(1)

i . (24)

A simple proof of this inequality follows from applying Jensen’s inequality using the
convex function f (x) = − logx. The following is a multiplicative refinement of this
inequality. The proof follows from Theorem 1, using the function f (x) = − logx.

THEOREM 5. Let {x(1)
i : 1 � i � n} be a given set of positive real numbers and

let {p(1)
i : 1 � i � n} be a convex sequence. Then for N ∈ N,

N

∏
k=1

⎛
⎜⎝ ∑n

i=1 x(k)
i /n(

∏n
i=1 x(k)

i

)1/n

⎞
⎟⎠

np
(k)
min

n

∏
i=1

(
x(1)
i

)p
(1)
i �

n

∑
i=1

p(1)
i x(1)

i . (25)
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On the other hand, applying Theorem 3 implies the following reverse of the AM-
GM inequality. The notations used down are the same of Theorem 3.

THEOREM 6. Let {x(1)
i : 1 � i � n} be a given set of positive real numbers and

let {p(1)
1 � p(1)

2 � · · · � p(1)
n } be a convex sequence. Then for N ∈ N,

⎛
⎜⎜⎜⎝
(

n
∏
i=1

x(1)
i

)1/n

n
∑
i=1

x
(1)
i
n

⎞
⎟⎟⎟⎠

np(1)
max

·
n

∑
i=1

p(1)
i x(1)

i

�
N

∏
k=1

⎛
⎝2

√
z(k)1 z(k)2

z(k)1 + z(k)2

⎞
⎠

2 n
� r

(k)
min

N

∏
k=1

⎛
⎜⎜⎜⎝
(

n
∏
i=1

y(k)
i

)1/n

n
∑
i=1

y(k)
i
n

⎞
⎟⎟⎟⎠

n(n−�)
� q(k)

min

·
n

∏
i=1

(
x(1)
i

)p
(1)
i

.

2.3.2. The Wiener number

In this section, we follow the notations of [4]. Let G be a simple connected graph,
with set of vertices V (G) = {v1, · · · ,vn} and set of edges E(G)⊂{{vi,v j} : vi,v j ∈G},
with cardinality m . The distance dG(vi,v j) between two vertices vi,v j is defined as the
length of the shortest path from vi to v j . The Wiener index of a graph G is defined by

W (G) = ∑
{vi,v j}⊂G

dG(vi,v j).

This index has its applications in chemical graph theory as a topological index of a
molecule. In [9, 10], a multiplicative version of the Wiener index was proposed as

π(G) = ∏
{vi,v j}⊂G

dG(vi,v j).

Notice that if we let d(G,k) =
∣∣{{vi,v j} : dG(vi,v j) = k

}∣∣ , we have

W (G) = ∑
k�1

kd(G,k) and π(G) = ∏
k�1

kd(G,k).

In [4], the following relations between the two indices have been shown

W (G)−m+1− 1
2
d(d +1) � Aπ(G)

1
A − (d−1)(d!)

1
d−1 ,

and

W (G)− 1
2
n(n−1)π(G)

2
n(n−1) � 1

2
d(d +1)−d(d!)

1
d . (26)

where d = maxdG(vi,v j) is the diameter of G and A =
(n
2

)−m. Our main application
here is to give a double sided inequality that describes the relation between W (G) and
π(G).
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THEOREM 7. Let G be a connected graph of order |V (G)|= n. Then, for N ∈N ,

N

∏
k=1

⎛
⎜⎝ ∑d

i=1 x(k)
i /d(

∏d
i=1 x(k)

i

)1/d

⎞
⎟⎠

dp(k)
min

π(G)
2

n(n−1) � 2
n(n−1)

W (G),

and

(
2(d!)1/d

d +1

)dp
(1)
max

2
n(n−1)

W (G)

�
N

∏
k=1

⎛
⎝2

√
z(k)1 z(k)2

z(k)1 + z(k)2

⎞
⎠

2 d
� r

(k)
min

N

∏
k=1

⎛
⎜⎜⎜⎝
(

d
∏
i=1

y(k)
i

)1/d

d
∑
i=1

y(k)
i
d

⎞
⎟⎟⎟⎠

d(d−�)
� q

(k)
min

·π(G)
2

n(n−1) .

for the parameters found as in Theorems 1 and 3, using the initial values x(1)
i = i and

p(1)
i = d(G,i)

(n
2)

, 1 � i � d.

Proof. For 1 � i � d, let

p(1)
i =

d(G, i)(n
2

) .

Then clearly ∑d
i=1 p(1)

i = 1. Applying Theorem 5 implies the first inequality. On the

other hand, noting that x(1)
i = i and

(
d
∏
i=1

x(1)
i

)1/d

d
∑
i=1

x
(1)
i
d

=
2(d!)1/d

d +1
,

then applying Theorem 6 imply the second inequality. �

2.3.3. The special case n = 2

When n = 2 many interesting results about means of two positive numbers, and
hence of matrices, can be obtained. This is achieved using certain mean functions.

In the following discussion we quickly mention how our results generalize almost
all known results treating means refinements.

In particular, given two positive numbers a and b , the functions f (x) = a#tb and
g(t) = a!tb are convex on [0,1] , where

a#tb = a1−tbt and a!tb =
(
(1− t)a−1 + tb−1)−1

.
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The celebrated Young’s inequality state that

a#tb � a∇t b, 0 � t � 1,

where a∇t b = (1−t)a+tb. This inequality, though very simple, is of great significance
in the theory of inequalities. This inequality has been studied in the literature in various
ways. For example, in [12], this inequality was refined as follows

a#tb+min{t,1− t}(√a−
√

b)2 � a∇tb, 0 � t � 1.

Direct computations show that this refinement follows from Theorem 1 using n = 2,

x(1)
1 = 0, x(1)

2 = 1, p(1)
1 = 1− t , p(1)

2 = t , N = 1 and the convex function f (t) = a#tb.
On the other hand, using the same parameters with N = 2 implies the results in [23].
Then it can be shown that using arbitrary N , we obtain the complete refinement recently
proved in [20].

On the other hand, using the same parameters, with N = 1, and applying Corollary
11, we obtain the multiplicative refinement

K(h,2)ra#tb � a∇tb, r = min{t,1− t}, h =
a
b

where K(h,2) = (h+1)2
4h is the Kantorovich constant. This result has been proved in

[24].
Furthermore, applying Theorem 3 and Corollary 4 using the same parameters as

before, we obtain reversed versions of Young’s inequality proved in [12, 16, 23, 24].
Moreover, applying our results to the function f (t) = a!tb, we obtain refinements

and reverses in [15] of the well known arithmetic-harmonic and geometric-harmonic
mean inequalities

a!tb � a#tb � a∇t b.

Notice that taking larger N implies further refinements.
Further, one can see that many refinements appearing in [3, 11, 21, 22] follow from

our results.
We remark that these inequalities have their significance in operator theory, where

matrix inequalities can be obtained from the corresponding numerical results. We refer
the reader to [11, 12, 15, 16, 19, 20, 21, 22, 23, 24] as a sample of some work treating
matrix inequalities, in view of the corresponding scalar ones.

We leave the details of this idea to the interested reader, as it is just an application
of our main results.
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[13] M. KRNIĆ, N. LOVRIČEVIĆ, J. PEČARIĆ, Jensen’s functional, its properties and applications, An.

Stiint. Univ. “vidius” Constanta Ser. Mat. 20, 1 (2012), 225–247.
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