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TRIEBEL–LIZORKIN SPACES ASSOCIATED WITH

A NON–NEGATIVE SELF–ADJOINT OPERATOR

JINGSHI XU AND XIAODI YANG

(Communicated by L. Pick)

Abstract. In this paper, variable integral and smooth exponent Triebel-Lizorkin spaces associ-
ated with a non-negative self-adjoint operator are introduced. Then equivalent norms and atomic
decomposition of these new spaces are given.

1. Introduction

Recent years, function spaces associated operators, such as self-adjoint non-ne-
gative operators; divergence form elliptic operators; magnetic Schrödinger operators;
degenerate elliptic operators, have been introduced; see [3, 4, 5, 6, 13, 14, 19, 21,
22, 23, 31, 42, 43, 44, 45, 46, 47, 48]. Indeed, G. Kerkyacharian and P. Petrushev
introduced Besov and Triebel-Lizorkin spaces associated with non-negative self-adjoint
operators and gave their Heat kernel characterization and frame decomposition in [28].
For classical Besov and Triebel-Lizorkin spaces, we refer to [36, 37, 38, 39]. In [19]
Hu gave their equivalent quasi-norms by Peetre type maximal functions and atomic
decompositions. In [13] and [14], Hardy spaces associated with non-negative self-
adjoint operators are introduced and their atomic decompositions are given.

Last decades, motivated by the applications in electrorheological fluids [34], im-
age restoration [7] and PDE, variable exponent function spaces have been studied ex-
tensively; see [1, 2, 10, 11, 12, 16, 17, 18, 20, 24, 25, 27, 30, 32, 33, 41]. We remark
here that the list is not exhausted. The study for variable exponent functions has a long
history; see [9, 11, 16, 20]. Stimulated by these literatures, we shall introduce variable
integral and smooth exponent Triebel-Lizorkin spaces associated with a non-negative
self-adjoint operator. To give their definition, we need to clarify the definition of the
underlying spaces.

Throughout the paper, we assume (X ,ρ ,μ) is a metric measure space satisfy-
ing the conditions: (X ,ρ) is a locally compact and arc-connected metric space with
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distance ρ(·, ·) and μ is a positive Radon measure which obeys the following volume
doubling condition

0 < μ(B(x,2r)) � c0μ(B(x,r)) < ∞ for all x ∈ X and r > 0,

where B(x,r) is the open ball centered at x with radius r and c0 is a constant. From
the doubling condition it follows that

μ(B(x,λ r)) � c0λ dμ(B(x,r)) < ∞ for all x ∈ X and r > 0, and λ > 1,

where d = log2 c0 > 0 is a constant playing the role of a dimension.
By supp f we denote the support of the function f , i.e. the closure of its non zero

set.
Let L be a self-adjoint non-negative operator on L2(X ,dμ) such that the as-

sociated semigroup Pt = e−tL consists of integral operators with heat kernel pt(x,y)
obeying the following conditions:

(a) Gaussian upper bound: for x,y ∈ X , t > 0,

|pt(x,y)| � C1exp{−c2ρ2(x,y)/t}√
μ(B(x,

√
t))μ(B(y,

√
t))

.

(b) Hölder continuity: there exists a constant α > 0 for x,y ∈ X , t > 0 and
ρ(y,y′) �

√
t such that

|pt(x,y)− pt(x,y′)| � C1

(
ρ(y,y′)√

t

)α exp{−c2ρ2(x,y)/t}√
μ(B(x,

√
t))μ(B(y,

√
t))

.

We denote the domain of L by dom(L ). We also denote N0 = N∪ {0}, and
Vr(x) := μ(B(x,r)), for any x ∈ X and r > 0.

DEFINITION 1. (i) If μ(X ) < ∞, the test function class D is defined as the col-
lection of all functions φ ∈ ∩n∈Ndom(L n) with the topology induced by the family of
seminorms

Pn(φ) := ‖L nφ‖L2(X ,dμ), n ∈ N0.

(ii) If μ(X ) = +∞, the class D is defined as the collection of all functions φ ∈
∩n∈Ndom(L n) with the topology induced by the family of seminorms

Pn,l(φ) := sup
x∈X

(1+ ρ(x,x0))l|L nφ(x)| < ∞, n, l ∈ N0,

where x0 ∈ X is a fixed point.

In either case D is a Fréchet space; see [28]. Moreover, in the case μ(X ) = ∞,
the class D is independent of the choice of x0, that means different choices of x0

in Definition 1 yield the same class D with equivalent topology. Therefore, we may
choose and fix a point x0 ∈ X in the sequel.
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The set of all continuous linear functionals on D is denoted by D ′. The duality
between the spaces is denoted by the map (·, ·) : D ′ ×D → C.

For the reader’s conveniences, we shall use the same notation as in [28].

Dδ ,σ (x,y) := [Vδ (x)Vδ (y)]−1/2
(

1+
ρ(x,y)

δ

)−σ
, x,y ∈ X .

Lemma 2.1 in [28] says that for σ > d and δ > 0∫
X

(
1+

ρ(x,y)
δ

)−σ
d(y) � CVδ (x), x ∈ X . (1)

Formula (2.7) in [28] says that if 0 < p < ∞ and σ > d(1/2+1/p) then

‖Dδ ,σ (x, ·)‖L2(X ,dμ(y)) � C[Vδ (x)]1/p−1, x ∈ X . (2)

A function f : [0,∞)→C is said to belong to the class S ([0,∞)), if f ∈C∞((0,∞))
∩C([0,∞)), and for any k ∈ N0, f (k) decays rapidly at infinity and limλ→0+ f (k)(λ )
exists. Then Borel’s theorem (p.55 in [29]) concerning the existence of smooth func-
tions with arbitrary Maclaurin series implies that S ([0,∞)) = S (R)[0,∞).

DEFINITION 2. Let (φ0,φ) be a pair of functions in S ([0,∞)) and M be an
integer. The pair (φ0,φ) is said to be in the class AM([0,∞)) if

|φ0(λ )| > 0 on [0,4ε), (3)

and

|φ(λ )| > 0 on (ε/4,4ε) (4)

for some ε > 0, and if (·)−Mφ(·) ∈ S ([0,∞)).

In the sequel, given any pair (φ0,φ) of functions in S ([0,∞)), we denote the
system {φ j} of functions in S ([0,∞)) by setting

φ j(λ ) := φ(2−2 jλ ) for j � 1 and λ ∈ [0,∞). (5)

Let p(·) be a measurable function on X , denote

p− := ess inf
x∈X

p(x), p+ := ess sup
x∈X

p(x).

Denote by P(X ) the set of measurable functions p(·) on X such that p− > 1 and
p+ < ∞, and P0(X ) the set of measurable functions p(·) on X such that p− > 0
and p+ < ∞. If p(·) is a measurable function on X such that p− > 0, denote by
Lp(·)(X ) the set of measurable functions f on X such that for some λ > 0,

∫
X

( | f (x)|
λ

)p(x)

dx < ∞
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with the norm

‖ f‖Lp(·) := inf

{
λ > 0 :

∫
X

( | f (x)|
λ

)p(x)

dx � 1

}
.

(Lp(·)(X ),‖ · ‖Lp(·)) becomes a Banach function space when p− � 1. It is known that
if p(·) ∈ P0(X ) and 0 < p0 < p−, then for each f ∈ Lp(·)(X ),

‖ f‖Lp(·) = ‖| f |p0‖1/p0

Lp(·)/p0
.

Now we introduce variable integral and smooth exponent Trieble-Lizorkin spaces
associated to the operator L .

DEFINITION 3. Assume that p(·),q(·),α(·) ∈ P0(X ). Let φ0, φ be functions
in S ([0,∞)) and assume (3) and (4). The variable exponent Triebel-Lizorkin space

Fα(·),L
p(·),q(·)(X ) denotes the set of all f ∈ D ′ such that

‖ f‖
F

α(·),L
p(·),q(·)(X )

:=
∥∥∥∥{2 jα(·)φ j(L ) f

}∞

j=0

∥∥∥∥
Lp(·)(�q(·))

< ∞,

where Lp(·)(�q(·)) are the spaces of all sequences {g j} of measurable functions on X
with finite quasi-norms

‖{g j}∞
j=0‖Lp(·)(�q(·)) = ‖‖{g j}∞

j=0‖�q(·)‖Lp(·) =

∥∥∥∥∥∥
(

∞

∑
j=0

|g j|q(·)
) 1

q(·)
∥∥∥∥∥∥

Lp(·)

.

To assure that the space in Definition 3 is independent of the choice of pair (φ0,φ),
we shall put suitable conditions on p(·),q(·) and α(·). This is the main task in the next

section. In Section 3 we shall give atomic decomposition of Fα(·),L
p(·),q(·)(X ). Finally,

a � b means that there exists a positive constant C such that a � Cb. If a � b and
b � a, then we denote a ≈ b. Letter C will denote various positive constants which
may change from line to line.

2. Preliminaries

Let us start with recalling the structure of X .

LEMMA 1. (see [8]) There exists a collection {Qk
α : k ∈ Z,α ∈ Ik} of open sub-

sets of X , where Ik is some index set (possibly finite), and constants δ ∈ (0,1) and
A1,A2 > 0, such that (i) μ(X \⋃α∈Ik Qk

α) = 0 for each fixed k and Qk
α
⋂

Qk
β = /0 if

α 
= β ;
(ii) for any α,β ,k, l with l � k, either Qk

α ⊂ Ql
β or Qk

α
⋂

Ql
β = /0;

(iii) for each (k,α) and l < k, there exists a unique β such that Qk
α ⊂ Ql

β ;

(iv) diam(Qk
α) � A1δ k, where diam(Qk

α) := sup{ρ(x,y) : x,y ∈ Qk
α};

(v) each Qk
α contains some ball B(zk

α ,A2δ k), where zk
α ∈ X .
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The set Qk
α can be thought of as a dyadic cube on X with diameter roughly δ k

and centered at zk
α . We denote by D the family of all dyadic cubes on X . For k ∈ Z,

we set Dk = {Qk
α : α ∈ Ik}, so that D =

⋃
k∈Z Dk. For any dyadic cube Q = Qk

α , we
denote by zQ := zk

α the “center” of Q. From (iv) and (v), one has B(zQ,A2δ k) ⊂ Q ⊂
B(zQ,A1δ k). For convenience, for λ > 1, we denote λQ = B(zQ,λA1δ k). Then by the
doubling condition, we have μ(λQ) ≈ μ(Q) for fixed λ . In the sequel, we assume
without loss of generality that δ = 1

2 . If this is not the case, we need to replace 2 j in
Definition 3 by δ− j and make some other necessary changes.

Likewise to classical Besov and Triebel-Lizorkin spaces, our key tool is the bound-
edness of Hardy-Littlewoodmaximal operator on Lebesgue spaces. Let L1

loc(X ) be the
collection of all locally integrable functions on X . Given a function f ∈ L1

loc(X ), we
denote the mean-value of f , defined on a set A of finite, non-zero measure by

MA f := −
∫

A
f (x)dμ(x) =:

1
μ(A)

∫
A

f (x)dμ(x).

The Hardy-Littlewood maximal operator M is defined on L1
loc(X ) by

M f (x) := sup
r>0

−
∫

B(x,r)
| f (y)|dμ(y), ∀x ∈ X .

Denote by B(X ) the set of p(·) ∈ P(X ) such that M is bounded on Lp(·)(X ). In
[1], Adamowicz, Harjulehto and Hästö gave a sufficient condition for p(·) belonging
to B(X ). To state their result, we need to recall some notations.

DEFINITION 4. Let p(·)∈C(X ). p(·) is called locally log-Hölder’s continuous,
abbreviated p(·) ∈Clog

loc (X ), if there exists clog > 0 such that for all x,y ∈ X

|p(x)− p(y)| � clog

log(e+1/ρ(x,y))
.

The exponent p(·) is said to be globally log-Hölder’s continuous, abbreviated to p(·) ∈
Clog(X ), with base point x0 ∈ X if it is locally log-Hölder’s continuous and there
exists p∞ such that for all x ∈ X

|p(x)− p∞| � clog

log(e+ ρ(x,x0))
.

We define a class of exponent p(·) whose reciprocal is log-Hölder continuous:

P log
d (X ) := {p(·) : X → (0,∞] | 1/p(·) is log-Hölder continuous}.

By c(p) we denote the log-Hölder constant of 1/p(·).

DEFINITION 5. Let (X ,ρ ,ν) be a metric measure space. A function p(·) : X →
[1,∞] is said belonging to P log

ν (X ) if there exists C > 0 such that

ν(B)
1

p+
B
− 1

p−B � C
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for every ball B ⊂ X and there exists p∞ ∈ [1,∞] such that

1 ∈ Ls(·)(X ), where
1

s(x)
:=
∣∣∣∣ 1
p(x)

− 1
p∞

∣∣∣∣ f or any x ∈ X .

Since we assume μ is doubling, from Theorem 1.4 in [1] we have the following lemma.

LEMMA 2. If p(·) ∈ P log
d (X ) with p− � 1, then p(·) ∈ P log

μ (X ).

LEMMA 3. (Theorem 1.7 in [1]) Let X be a quasi-metric measure space, p(·)∈
P log

μ (X ) with 1 < p−. If M : Lp−(X ) → Lp−(X ) is bounded for the constant
exponent p−, then there is a positive constant C independent of f such that

‖M f‖Lp(·) � C‖ f‖Lp(·) , ∀ f ∈ Lp(·)(X ).

Since we suppose μ is doubling, M is bounded on Lp(X ) for constant p ∈
(1,∞). Hence by Lemmas 2 and 3, P log

d (X ) ⊂ B(X ).
To our purpose, we need further results of the class P log

μ (X ). Indeed, we shall
use the method in [17].

LEMMA 4. (Lemma A.3 in [1]) Let p(·) ∈ P log
μ (X ). Define q ∈ P log

d (X ×
X ) by

1
q(x,y)

:= max

{
0,

1
p(x)

− 1
p(y)

}
∀x,y ∈ X .

Then for any γ > 0 there exists β ∈ (0,1) depending on clog such that(
β −
∫

B
| f (y)|dμ(y)

)p(x)

� −
∫

B
| f (y)|p(y)dμ(y)+ −

∫
B

γq(x,y)χ{0< f (y)�1}dμ(y),

for all f ∈ Lp(·)(X ) + L∞(X ) with ‖ f‖Lp(·)(X )+L∞(X ) � 1 and every ball B ⊂ X

and all x ∈ B.

By Lemma 4 we have the following Lemma.

LEMMA 5. Let p(·) ∈ P log
μ (X ) with 1 � p− � p+ < ∞. Then for any k � 0

there exists β ∈ (0,1) such that(
β −
∫

B
| f (y)|dμ(y)

)p(x)

� −
∫

B
| f (y)|p(y)dμ(y)+hB(x),

for every ball B⊂X , and all x∈B and f ∈Lp(·)(X )+L∞(X ) with ‖ f‖Lp(·)(X )+L∞(X )
� 1, where

hB(x) := min{μ(B)k,1}
(

(e+ρ(x,x0))−k+−
∫

B
(e+ρ(y,x0))−kdy

)
:= min{μ(B)k,1}h(x).

Here, h(·) ∈ weak-L1(X )∩L∞(X ), β depends on p(·) only via the constant of log-
Hölder continuity of 1/p(·).
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Proof. We shall use the same idea as in the proof of Lemma 3.3 in [15].
Let γ := exp(−K) for some K > 0 and let q as in Lemma 4. We define

ρq(x,y)(t) :=

{
tq(x,y), for 0 < q(x,y) < ∞
0, for q(x,y) = ∞, t ∈ (0,1]

.

We have ρq(x,y)(γ) = ρq(x,y)/2(γ) · ρq(x,y)/2(γ). We shall show that ρq(x,y)/2(γ) �
min{μ(B)k,1} and ρq(x,y)/2(γ) � (e + ρ(x,x0))−k + (e + ρ(y,x0))−k for a suitable k.
Then the claim follows from Lemma 4.

If q(x,y) = ∞, then ρq(x,y)(γ) = ρ∞(γ) = 0 and there is nothing to prove. So we
can assume that ρq(x,y)(γ) < ∞.

The local log-Hölder continuity of 1/p(·) implies that for each x,y ∈ X∣∣∣∣ 1
q(x,y)

∣∣∣∣� ∣∣∣∣ 1
p(x)

− 1
p(y)

∣∣∣∣� clog

log(e+1/ρ(x,y))
.

Hence we get

γ
q(x,y)

2 � exp

(
K logμ(B)

2clog

)
= μ(B)

K
2clog � μ(B)k

for K � 2kclog and μ(B) � 1. If μ(B) > 1, then we use ρq(x,y)/2(t) � 1 which follows
from t < 1. Hence, we get ρq(x,y)/2(γ) � min{μ(B)k,1} for K � 2kclog.

Define s(·) by 1
s(x) = | 1

p(x) − 1
p∞
|. Then 1

q(x,y) � 1
s(x) + 1

s(y) � 2max{ 1
s(x) ,

1
s(y)}. So

q(x,y) � 1
2 min{s(x),s(y)} and

γ
q(x,y)

2 � γ
1
4 min{s(x),s(y)} � γ

s(x)
4 + γ

s(y)
4 .

Due to the decay condition on 1
p(·) at infinity, 1

s(x) � c′log
log(e+ρ(x,x0))

and 1
s(y) � c′log

log(e+ρ(y,x0))
.

This implies that

γ
s(x)
4 � exp

(
−K log(e+ ρ(x,x0))

4c′log

)
= (e+ ρ(x,x0))

K
4c′log � (e+ ρ(x,x0))−k

and similar γ
s(y)
4 � (e+ ρ(y,x0))−k for K � 4kc′log. Thus

γ
q(x,y)

2 � γ
s(x)
4 + γ

s(y)
4 � (e+ ρ(x,x0))−k +(e+ ρ(y,x0))−k. �

For t ∈ N0, m ∈ Z, denote

θt,m(x,z) := [V2−t(z)(1+2tρ(x,z))m]−1,

let g ∈ L1
loc, denote

gt ∗θt,m(x) :=
∫

X

|gt(z)|
V2−t(z)(1+2tρ(x,z))m dμ(z).

The doubling condition yields

θt,m(x,z) = [V2−t(z)(1+2tρ(x,z))m]−1 ≈ 2td(1+2tρ(x,z))−m.
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LEMMA 6. For every m > d there exists c = c(m,d) > 0 such that

gt ∗θt,m(x) � c ∑
j�0

2− j(m−d) ∑
Q∈Dt− j

χ3Q(x)MQgt

for all t ∈ N0,gt ∈ L1
loc,x ∈ X .

Proof. Fix t ∈N0 , g∈L1
loc and x,y∈X . If ρ(x,y)� 2−t , then we choose Q∈Dt

containing y. If ρ(x,y) > 2−t , then we choose j ∈N0 such that 2 j−t � ρ(x,y) � 2 j−t+1

and let Q ∈ Dt− j be the cube containing y. Note that, in either case, x ∈ 3Q. Thus we
conclude that

2td(1+2tρ(x,z))−m � c2− j(m−d)χ3Q(x)
χQ(y)
μ(Q)

.

Next we multiply this inequality by |gt(y)| and integrate with respect to y over X .
This gives |gt ∗θt,m(x)|� 2− j(m−d)|MQgt |χ3Q(x), which clearly implies the claim. �

The following lemma is the estimate for vector-valued setting in variable Lebesgue
spaces on homogeneous type. Its proof is similar to that of Corollary 2.1 in [10], be-
cause the method for variable Lebesgue spaces on Euclidean spaces also holds for vari-
able Lebesgue spaces on homogeneous type. So we omit the detail here.

LEMMA 7. If p(·) ∈B(X ), and 1 < q � ∞, then there is a constant C such that

‖{M f j}∞
j=0‖Lp(·)(�q) � C‖{ f j}∞

j=0‖Lp(·)(�q)

holds for all locally integrable functions { f j}∞
j=0 on X .

LEMMA 8. Let p(·) , q(·) ∈ P log
d (X ), 1 < p− � p+ < ∞, 1 < q− � q+ < ∞,

and (p/q)− ·q− > 1. If m > d, then there is a positive constant C such that

‖‖{gt ∗θt,m}∞
t=0‖�q(·)‖Lp(·) � C‖‖{gt}∞

t=0‖�q(·)‖Lp(·)

for every sequence {gt}t∈N0 of L1
loc -functions.

Proof. By homogeneity, it suffices to consider the case

‖‖{gt}∞
t=0‖�q(·)‖Lp(·) � 1.

Then particular, for every t ∈ N0,∫
X

|gt(x)|p(x)dμ(x) � 1. (6)
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Using Lemma 6 and Hölder’s inequality we estimate

∫
X

(
∑
t�0

|gt ∗θt,m(x)|q(x)

) p(x)
q(x)

dμ(x)

�
∫

X

⎛⎝∑
t�0

(
∑
j�0

2− j(m−d) ∑
Q∈Dt− j

χ3Q(x)MQgt

)q(x)
⎞⎠

p(x)
q(x)

dμ(x)

� C
∫

X

⎛⎝∑
t�0

∑
j�0

2− j(m−d)

(
∑

Q∈Dt− j

χ3Q(x)MQgt

)q(x)
⎞⎠

p(x)
q(x)

dμ(x)

� C
∫

X

(
∑
t�0

∑
j�0

2− j(m−d) ∑
Q∈Dt− j

χ3Q(x)(MQgt)q(x)

) p(x)
q(x)

dμ(x).

For the last inequality we used the fact that the innermost sum contains only a finite,
uniformly bounded number of non-zero terms.

It follows from (6) and p(x) � q(x)
q− that ‖gt‖

L
q(·)
q−

� C. Thus, by Lemma 5

(MQgt)
q(·)
q− � CMQ(|gt |

q(·)
q− )+Cmin{μ(Q),1}h(x)

for all Q ∈ Dt− j and x ∈ Q. Combining this with the estimate above, we have

∫
X

(
∑
t�0

|gt ∗θt,m(x)|q(x)

) p(x)
q(x)

dμ(x)

� C
∫

X

(
∑
t�0

∑
j�0

2− j(m−d) ∑
Q∈Dt− j

χ3Q(x)[MQ(|gt |
q(x)
q− )]q

−
) p(x)

q(x)

dμ(x)

+C
∫

X

(
∑
t�0

∑
j�0

2− j(m−d) ∑
Q∈Dt− j

χ3Q(x)(min{μ(Q),1}h(x))q−
) p(x)

q(x)

dμ(x)

:= I + II.

Now we easily estimate that

I � C
∫

X

(
∑
t�0

[M (|gt |
q(x)
q− )(x)]q

− ∑
j�0

2− j(m−d) ∑
Q∈Dt− j

χ3Q(x)

) p(x)
q(x)

dμ(x)

� C
∫

X

(
∑
t�0

[M (|gt |
q(x)
q− )(x)]q

−
) p(x)

q(x)

dμ(x).
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In Lemmas 3 and 7 with (p/q)− ·q− > 1 and q− > 1, implies that the last expression
is bounded since

∫
X

(
∑
t�0

(|gt(x)|
q(x)
q− )q−

) p(x)
q(x)

dμ(x) =
∫

X

(
∑
t�0

|gt(x)|q(x)

) p(x)
q(x)

dμ(x) � 1.

To estimate II, by the condition m > d we note the inequality

∑
t�0

∑
j�0

2− j(m−d) ∑
Q∈Dt− j

χ3Q(x)min{μ(Q),1}q−

� ∑
t�0

∑
j�0

2− j(m−d) min{2d( j−t)q− ,1}

� ∑
j�0

2− j(m−d)( j + ∑
t� j

2d( j−t)q−)

� ∑
j�0

2− j(m−d)( j +1)

� C.

Therefore, we estimate II as follows:

II = C
∫

X

(
∑
t�0

∑
j�0

2− j(m−d) ∑
Q∈Dt− j

χ3Q(x)(min{μ(Q),1}h(x))q−
) p(x)

q(x)

dμ(x)

�
∫

X

(
h(x)q− ∑

t�0
∑
j�0

2− j(m−d) ∑
Q∈Dt− j

χ3Q(x)min{μ(Q),1}
) p(x)

q(x)

dμ(x)

�
∫

X
h(x)

p(x)
q(x) q−

dμ(x).

Since (p/q)− ·q− > 1 and h ∈ weak-L1∩L∞, the last expression is bounded. �

THEOREM 1. Let p(·) , q(·) ∈ P log
d (X ) with 1 < p− � p+ < ∞ and 1 < q− �

q+ < ∞. If m > d, then there exits a positive constant C such that

‖‖{gt ∗θt,m}∞
t=0‖�q(·)‖Lp(·) � C‖‖{gt}∞

t=0‖�q(·)‖Lp(·)

holds for every sequence {gt}t∈N0 of L1
loc -functions.

Proof. We shall use the idea in the proof of Theorem 3.2 in [17]. Because of
(X ,ρ) is a locally compact metric space, we can choose a finite cover {Ωi}k

i=1 of X
with the following properties:

(i) each Ωi ⊂ X ,1 � i � k, is open;
(ii) the sets {Ωi}k

i=1 cover X , i.e.,
⋃k

i=1 Ωi = X ;
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(iii) non-continuous sets are separated in the sense that ρ(Ωi,Ω j) > 0 if |i− j|> 1;
and

(iv) we have (p/q)−Ai
q−Ai

> 1 for 1 � i � k, where Ai =
⋃i+1

j=i−1 Ω j (with the con-
vention that Ω0 = Ωk+1 = /0).

Let us choose an integer l so that 2l � min|i− j|>1 3ρ(Ωi,Ω j) < 2l+1. Since there
are only finitely many indexes, the third condition guarantees that such an l exists.

Next we split the problem and work with the domains Ωi. In each of these we
argue as in Lemma 6 to conclude that

∫
X

(
∑
t�0

|gt ∗θt,m(x)|q(x)

) p(x)
q(x)

dμ(x) �
k

∑
i=1

∫
Ωi

(
∑
t�0

|gt ∗θt,m(x)|q(x)

) p(x)
q(x)

dμ(x)

�
k

∑
i=1

∫
Ωi

(
∑
t�0

∑
j�0

2− j(m−d) ∑
Q∈Dt− j

χ3Q(x)(MQgt)q(x)

) p(x)
q(x)

dμ(x)

�
k

∑
i=1

∫
Ωi

(
∑
t�0

t+l

∑
j=0

2− j(m−d) ∑
Q∈Dt− j

χ3Q(x)(MQgt)q(x)

) p(x)
q(x)

dμ(x)

+
k

∑
i=1

∫
Ωi

(
∑
t�0

∑
j�t+l

2− j(m−d)M gt(x)q(x)

) p(x)
q(x)

dμ(x).

The first integral on the right-hand side is treated as in the proof of Lemma 8. This
is possible, since the cubes in this integral are always in Ai and (p/q)−Ai

q−Ai
> 1. So it

remains only to bound

∫
Ωi

(
∑
t�0

∑
j�t+l

2− j(m−d)M gt(x)q(x)

) p(x)
q(x)

dμ(x)�
∫

Ωi

(
∑
t�0

2−t(m−d)M gt(x)q(x)

) p(x)
q(x)

dμ(x).

For a non-negative sequence (ai) we have(
∑
i�0

2−i(m−d)ai

)r

�
{

C(r)∑i�0 2−i(m−d)ar
i , r � 1

∑i�0 2−i(m−d)rar
i , r � 1.

We apply this estimate for r = p(x)
q(x) and conclude that

∫
Ωi

(
∑
t�0

2−t(m−d)M gt(x)q(x)

) p(x)
q(x)

dμ(x) � C ∑
t�0

2−(m−d)t min{1,( p
q )−}

∫
Ωi

M gt(x)p(x)dμ(x)

� C ∑
t�0

2−(m−d)t min{1,( p
q )−}

� C,
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where in the second inequality we used the boundedness of the maximal operator and
since

∫ |gt(x)|p(x)dμ(x) � 1. This complete the proof. �

The following lemma is a variant of Lemma 6.1 in [17].

LEMMA 9. Let α(·) be in Clog
loc (X ) and have a limit at infinity. There exist s ∈

(d,∞) such that if m > s, then

2να(x)θν,2m(x,y) � C2να(y)θν,m(x,y)

for all x,y ∈ X .

Proof. Choose k ∈ N0 as small as possible subject to the condition that ρ(x,y) �
2−ν+k. Then 1+2νρ(x,y) ≈ 2k. Firstly, we have

θν,2m(x,y)
θν,m(x,y)

� C(1+2k)−m � c2−km.

On the other hand, the log-Hölder’s continuity of α(·) implies that

2ν(α(x)−α(y)) � 2−νclog/ log(e+1/ρ(x,y)) � 2−kclogρ(x,y)−clog/ log(e+1/ρ(x,y)) � c2−kclog .

Hence, the claim follows from these estimates provided we choose m � clog. �

LEMMA 10. (Lemma 3.7 in [19]) Suppose ϕ0,ϕ are functions in S ([0,∞) such
that (·)−Mϕ(·) ∈ S ([0,∞) for some integer M � 1 and that

∞

∑
j=0

ϕ j(λ ) = 1, λ ∈ [0,∞)

where ϕ j(·) := ϕ(2−2 j·) for j � 1. Then for any f ∈ D ′

f =
∞

∑
j=0

ϕ j(L ) f in D ′.

LEMMA 11. (Lemma 3.6 in [19]) Let (φ0,φ) be a pair of functions in S ([0,∞))
satisfying (3) and (4). Then there exists another pair (ψ0,ψ) of functions in S ([0,∞))
satisfying (3) and (4) such that

suppψ0 ⊂ [0,4ε], suppψ ⊂ [ε/4,4ε],

and for any λ ∈ [0,∞)

φ0(λ )ψ0(λ )+
∞

∑
j=1

φ(2−2 jλ )ψ(2−2 jλ ) = 1.
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LEMMA 12. (Lemma 9 in [26]) Let p(·),q(·) are positive functions on X such
that 0 < q− � q+ < ∞. For any sequence {g j}∞

j=0 of nonnegative measurable functions
on X denote

Gj(x) :=
∞

∑
k=0

2−|k− j|δ gk(x), x ∈ X .

Then there is a positive constant C = C(q(·),δ ) such that

‖{Gj}∞
j=0‖Lp(·)(�q(·)) � C‖{gk}∞

k=0‖Lp(·)(�q(·)). (7)

Given a couple of (ϕ0,ϕ) of function in S ([0,∞)), a distribution f ∈ D ′, and a
positive number a > 0, we define the system of the Peetre type maximal functions by

(ϕ∗
j f )a(x) := sup

z∈X

|ϕ j(L ) f (z)|
(1+2 jρ(x,z))a , x ∈ X , j ∈ N0.

THEOREM 2. Let p(·) , q(·) ∈ P log
d (X ) with 0 < p−,q− and p+,q+ < ∞. Let

α(·) be in Clog
loc (X ) and have a limit at infinity. Assume ϕ0,ϕ ∈ S ([0,∞)) satisfying

conditions (3) and (4).
If a > 2d

min{1,p−,q−} , then there exists a constant C > 0 such that for all f ∈ D ′

‖{2 jα(·)(ϕ∗
j f )a}∞

j=0‖Lp(·)(lq(·)) � C‖{2 jα(·)ϕ j(L ) f}∞
j=0‖Lp(·)(lq(·)).

Proof. By the proof of Theorem 3.3 in [19] for l ∈ N0 and r ∈ (0,1) such that
ar > 2d we can get

{(ϕ∗
l f )a(x)}r �

∞

∑
j=0

2−2 jSr2 jd
∫ |ϕ j+l(L ) f (z)|r

V2−l(z)(1+2lρ(x,z))ar dμ(z).

Since for j,k ∈ N0,

1
V2−l(z)(1+2lρ(x,z))ar � 2 j2− jar

V2−(l+ j)(z)(1+2(l+ j)ρ(x,z))ar
,

it follows that

{(ϕ∗
l f )a(x)}r �

∞

∑
j=0

2−2 jSr2 jar
∫ |ϕ j+l(L ) f (z)|r

V2−(l+ j)(z)(1+2(l+ j)ρ(x,z))ar
dμ(z)

=
∞

∑
j=0

2−2 jSr2 jarθ(l+ j),ar ∗ [|ϕ j+l(L ) f |]r(x).

Then by Lemma 9 we obtain

{2−lα(x)(ϕ∗
j f )a(x)}r �

∞

∑
j=0

2− j(2Sr−α(x)r−ar)2−( j+l)rα(x)θl,ar ∗ [|ϕ j+l(L ) f |]r(x)

�
∞

∑
j=0

2− j(2Sr−α(x)r−ar)θl,ar/2 ∗
[∣∣∣2−( j+l)α(·)ϕ j+l(L ) f

∣∣∣]r (x)
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=
∞

∑
j=l

2−( j−l)(2Sr−α(x)r−ar)θl,ar/2 ∗
[∣∣∣2− jα(·)ϕ j(L ) f

∣∣∣]r (x)
�

∞

∑
j=0

2−| j−l|(2Sr−α(x)r−ar)θl,ar/2 ∗
[∣∣∣2− jα(·)ϕ j(L ) f

∣∣∣]r (x).
We now choose and fix the integer S such that 2S > ‖α‖L∞ −a. Then applying Lemma
12 in spaces Lp(·)/r(lq(·)/r) with r < min{p−,q−} and Theorem 1 gives

‖{2lα(·)(ϕ∗
l f )a}∞

l=0‖lq(·)(Lp(·)) � C‖{2 jα(·)θl,ar ∗ [ϕ j(L ) f ]}∞
j=0‖Lp(·)(lq(·))

� C‖{2 jα(·)ϕ j(L ) f}∞
j=0‖Lp(·)(lq(·)). �

THEOREM 3. Assume that p(·),q(·) are positive functions on X such that 0 <

q− � q+ < ∞. Let α(·) be in Clog
loc (X ) and have a limit at infinity. If a > 0, M > α+/2

and (ϕ0,ϕ),(ϕ̃0, ϕ̃) ∈ AM([0,∞)), then there exists a constant C > 0 such that for all
f ∈ D ′

‖{2 jα(·)(ϕ∗
j f )a}∞

j=0‖Lp(·)(lq(·)) � C‖{2 jα(·)(ϕ̃ j
∗ f )a}∞

j=0‖Lp(·)(lq(·)).

Proof. By the proof of Theorem 3.4 in [19] we obtain

2lα(x)(ϕ̃l
∗ f )a(x) �

∞

∑
j=0

2−2| j−l|δ [2 jα(x)(ϕ∗
j f )a(x)]

Applying Lemma 12, we get

‖{2 jα(·)(ϕ∗
j f )a}∞

j=0‖Lp(·)(lq(·)) � C‖{2 jα(·)(ϕ̃ j
∗ f )a}∞

j=0‖Lp(·)(lq(·)). �

From Theorems 2 and 3, we obtain the following Peetre maximal function charac-
terization of Triebel-Lizorkin spaces.

COROLLARY 1. Let p(·) , q(·) ∈ P log
d (X ) with 0 < p−,q− and p+,q+ < ∞.

Let α(·) be in Clog
loc (X ) and have a limit at infinity. Let M > α+/2 and let (φ0,φ) ,

(ψ0,ψ) ∈ AM([0,∞)).
If a > 2d

min{1,p−,q−} , then

‖{2α(·) jφ∗
j,a(L ) f}∞

j=0‖Lp(·)(�q(·)), ‖{2 jα(·)ψ∗
j,a(L ) f}∞

j=0‖Lp(·)(�q(·)),

‖{2α(·) jφ j(L ) f}∞
j=0‖Lp(·)(�q(·)),

and
‖{2 jα(·)ψ j(L )}∞

j=0‖Lp(·)(�q(·))

are equivalent quasi-norms on Fα(·),L
p(·),q(·)(X ).
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3. Atomic decomposition

In this section, we shall give the atomic decomposition of Fα(·),L
p(·),q(·)(X ). To do so,

we need some notation firstly.

DEFINITION 6. Assume that p(·),q(·) are positive functions and α(·) is a non-

negative function on X . The sequence space f α(·)
p(·),q(·) consists all sequence w =

{wQ}Q∈∪k�0Dk such that

‖w‖
f α(·)
p(·),q(·)

:= ‖‖2kα(x) ∑
Q∈Dk

(|wQ|[μ(Q)−1/2]χQ)‖
lq(·)
k

‖Lp(·) .

Here χQ is the characteristic function of Q.

DEFINITION 7. Let K,S ∈ N0, and let Q be a dyadic cube in Dk with k ∈ N0.
In the case k � 1, a function aQ ∈ L2(X ,dμ) is said to be a (K,S)-atom for Q if aQ

satisfies the following conditions for m = K and also for m = −S.
(i) aQ ∈ D(L m);
(ii) supp(L maQ) ⊂ B(zQ,(A1 +1)2−k);
(iii) supx∈X |L maQ(x)| � 22km[μ(Q)−1/2].
In the case k = 0, a function aQ is said to be a (K,S)-atom for Q if it satisfies

above (i)–(iii) only for m = K.

LEMMA 13. (Lemma 4.7 in [19]) Let M ∈ N (resp. M = 0 ). There exists a func-
tion ψ ∈ S ([0,∞) such that the following conditions holds.

(i) λ mψ(λ ) ∈ S ([0,∞)).
(ii) There exists ε > 0 such that |ψ(λ )|> 0 on {ε/4 < λ < 4ε} (resp. |ψ(λ )|> 0

on {0 < λ < 4ε} ).
(iii) For all integer k � −M and for all j ∈ N0,

suppK(2−2 jL )kψ(2−2 jL ) ⊂ {(x,y) ∈ X ×X : ρ(x,y) < 2− j},

where K(2−2 jL )kψ(2−2 jL) is the integral kernel of the operator (2−2 jL )kψ(2−2 jL ).
(iv) For all integer k � −M, there exists a constant c = c(k) (depending on k)

such that for all j ∈ N0

|K(2−2 jL )kψ(2−2 jL )(x,y)| � c[V2− j(x)]−1.

LEMMA 14. (Lemma 4.6 in [19]) Suppose K,S ∈ N0, Q is a dyadic cube in Dk

with k ∈N0, and aQ is an (K,S)-atoms for Q. Suppose further that φ0,φ ∈S ([0,∞)),
such that λ−max(K,S)ϕ(λ ) ∈ S ([0,∞)). Then the following estimate holds.

∣∣ϕ j(L )aQ(x)
∣∣�{22( j−k)S[μ(Q)]1/2D2− j ,N(x,zQ), j � k

22(k− j)S[μ(Q)]1/2D2−k,N(x,zQ), j > k,

where N > 0 can be taken arbitrarily large.
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Now, it is the position to state the decomposition.

THEOREM 4. Assume p(·) , q(·)∈P log
d (X ) such that 0 < p−,q− and p+,q+ <

∞. Let α(·) be in Clog
loc (X ) and have a limit at infinity. Let K,S ∈ N0 such that K >

1
2α+ and S > d

2min(1,p−,q−) − 1
2 α−. Then there is a constant C > 0 such that for every

sequence (K,S)-atoms {aQ}Q∈∪k�0Dk∥∥∥∥∥ ∞

∑
k=0

∑
Q∈Dk

wQaQ

∥∥∥∥∥
Fα(·),L

p(·),q(·)(X )

� C‖w‖
f

α(·)
p(·),q(·)

.

Conversely, there is a constant C′ such that given any distribution f ∈ Fα(·),L
p(·),q(·)(X ),

there exists a sequence of (K,S)-atoms {aQ}Q∈∪k�0Dk and a sequence of complex
scalars w = {wQ}Q∈∪k�0Dk such that

f =
∞

∑
k=0

∑
Q∈Dk

wQaQ,

where the sum converges in D ′, and moreover,

‖w‖
f

α(·)
p(·),q(·)

� C′‖ f‖
F

α(·),L
p(·),q(·)(X )

. (8)

Proof. We shall use the method in [19], which goes back to [40] and [35]. Let
K,S ∈ N0 such that K > 1

2α+ and S > d
2min(1,p−) − 1

2 α−. Let (ϕ ,ϕ0) ∈ AM([0,∞))
with M � max{K,S}. Then by Lemma 14 we have

2 jα(x)

∣∣∣∣∣ϕ(2−2 jL )

(
∞

∑
k=0

∑
Q∈Dk

wQaQ

)
(x)

∣∣∣∣∣
� 2 jα(x)

∞

∑
k=0

∑
Q∈Dk

|wQ||ϕ(2−2 jL)aQ|

� 2 jα(x)
j

∑
k=0

∑
Q∈Dk

22( j−k)S|wQ|[μ(Q)]1/2D2− j ,N(x,zQ)

+2 jα(x)
∞

∑
k= j+1

∑
Q∈Dk

22(k− j)K|wQ|[μ(Q)]1/2D2−k,N(x,zQ)

�
j

∑
k=0

22( j−k)S+( j−k)α(x) ∑
Q∈Dk

2kα(x)|wQ|[μ(Q)]1/2D2− j ,N(x,zQ)

+
∞

∑
k= j+1

22(k− j)K+( j−k)α(x) ∑
Q∈Dk

2kα(x)|wQ|[μ(Q)]1/2D2−k,N(x,zQ)

where N > 0 can be taken arbitrarily large.
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Now let us set

S0 :=
{

Q ∈ Dk : ρ(zQ,x) < A12
−( j∧k)

}
,

Sm :=
{

Q ∈ Dk : A12
m−12−( j∧k) � ρ(zQ,x) < A12

m2−( j∧k)
}

, m ∈ N,

Bm :=
{

z ∈ X : ρ(z,x) < A12
m+12−( j∧k)

}
, m ∈ N,

where the notation j∧ k denotes min{ j,k}, and A1 is a constant as in Definition 7.
Choose and fix 0 < r < min{1, p−,q−} such that 2S+ α−−d/r > 0. This is possible
since S > d

2min(1,p−,q−) − 1
2α−. Then take N > 2d/r. By Lemma 9

∑
Q∈Dk

2kα(x)|wQ|[μ(Q)]1/2(1+2 j∧kρ(zQ,x))−N

�
∞

∑
m=0

∑
Q∈Sm

2kα(x)|wQ|[μ(Q)]1/2(1+A12
m−1)−N

�
(

∞

∑
m=0

∑
Q∈Sm

2krα(x)|wQ|r[μ(Q)]−r/2(1+A12
m−1)−Nr

)1/r

=

(
∞

∑
m=0

∫
X

∑
Q∈Sm

2krα(x)|wQ|r[μ(Q)]−r/2(1+A12
m−1)−Nr[μ(Q)]−1χQ(z)dμ(z)

)1/r

� 2kd/r

(
∞

∑
m=0

∫
Bm

∑
Q∈Sm

2krα(z)|wQ|r[μ(Q)]−r/2(1+2 j∧kρ(z,x))−Nr/2χQ(z)dμ(z)

)1/r

� 2kd/r

(∫
X

∞

∑
m=0

∑
Q∈Sm

2krα(z)|wQ|r[μ(Q)]−r/2(1+2 j∧kρ(z,x))−Nr/2χQ(z)dμ(z)

)1/r

� 2kd/r

(∫
X

∑
Q∈Dk

2krα(z)|wQ|r[μ(Q)]−r/2(1+2 j∧kρ(z,x))−Nr/2χQ(z)dμ(z)

)1/r

= 2kd/r2− j∧kd/r

(
θ j∧k,Nr/2 ∗

(
∑

Q∈Dk

(
2krα(·)|wQ|r[μ(Q)]−r/2χQ

)
(x)

))1/r

.

Then we have

2 jα(x)

∣∣∣∣∣ϕ(2−2 jL )

(
∞

∑
k=0

∑
Q∈Dk

wQaQ

)
(x)

∣∣∣∣∣
�

j

∑
k=0

2( j−k)(2S+α(x)−d/r)

(
θ j,Nr/2 ∗

(
∑

Q∈Dk

2krα(·)[μ(Q)]−r/2|wQ|rχQ

)
(x)

)1/r

+
∞

∑
k= j+1

2(k− j)(2K−α(x))

(
θk,Nr/2 ∗

(
∑

Q∈Dk

2krα(·)[μ(Q)]−r/2|wQ|rχQ

)
(x)

)1/r
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�
∞

∑
k=0

γ( j− k)

(
θ j∧k,Nr/2 ∗

(
∑

Q∈Dk

2krα(·)[μ(Q)]−r/2|wQ|rχQ

)
(x)

)1/r

,

where the map γ : Z → R is defined by

γ( j) =

{
2 j(2S+α−−d/r), j � 0,

2− j(2K−α+), j > 0.

Rise the inequality to the power q(x) and sum over j ∈ N0; then raise to the power
1/q(x) and take ‖ · ‖Lp(·)(X ,dμ) norm in X . We obtain∥∥∥∥∥ ∞

∑
k=0

∑
Q∈Dk

wQaQ

∥∥∥∥∥
Fα(·),L

p(·),q(·)(X )

�

∥∥∥∥∥∥∥
∥∥∥∥∥∥
⎧⎨⎩ ∞

∑
k=0

γ( j−k)

{
θ j∧k,Nr/2 ∗

(
∑

Q∈Dk

(2kα(·)|wQ|[μ(Q)−1/2]χQ)r

)}1/r
⎫⎬⎭

∞

j=0

∥∥∥∥∥∥
�q(·)

∥∥∥∥∥∥∥
Lp(·)(X )

.

By the proof of Lemma 12 we arrived at∥∥∥∥∥∥
⎧⎨⎩ ∞

∑
k=0

γ( j− k)

{
θ j∧k,Nr/2 ∗

(
∑

Q∈Dk

(2kα(·)|wQ|[μ(Q)−1/2]χQ)r

)}1/r
⎫⎬⎭

∞

j=0

∥∥∥∥∥∥
�q(·)

�
{

∞

∑
j=0

γ( j)1∧q(·)
} 1

1∧q(·)
∥∥∥∥∥
{

θ j∧k,Nr/2 ∗
(

∑
Q∈Dk

(2kα(·)|wQ|[μ(Q)−1/2]χQ)r

)}∞

k=0

∥∥∥∥∥
1
r

�q(·)/r

And we note that the first term is a finite quantity since 2K−α+ > 0 and 2S+ α−−
d/r > 0. By Theorem 1 we conclude that∥∥∥∥∥ ∞

∑
k=0

∑
Q∈Dk

wQaQ

∥∥∥∥∥
Fα(·),L

p(·),q(·)(X )

�

∥∥∥∥∥∥
∥∥∥∥∥
{

θ j∧k,Nr/2 ∗
(

∑
Q∈Dk

(2kα(·)|wQ|[μ(Q)−1/2]χQ)r

)}∞

k=0

∥∥∥∥∥
1
r

�q(·)/r

∥∥∥∥∥∥
Lp(·)(X )

�
∥∥∥∥∥
∥∥∥∥∥
{

θ j∧k,Nr/2 ∗
(

∑
Q∈Dk

(2kα(·)|wQ|[μ(Q)−1/2]χQ)r

)}∞

k=0

∥∥∥∥∥
�q(·)/r

∥∥∥∥∥
1/r

Lp(·)/r(X )

�
∥∥∥∥∥
∥∥∥∥∥
{

∑
Q∈Dk

(2kα(·)|wQ|[μ(Q)−1/2]χQ)r

}∞

k=0

∥∥∥∥∥
�q(·)/r

∥∥∥∥∥
1/r

Lp(·)/r(X )
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=

∥∥∥∥∥
∥∥∥∥∥
{

∑
Q∈Dk

(2kα(·)|wQ|[μ(Q)−1/2]χQ)

}∞

k=0

∥∥∥∥∥
�q(·)

∥∥∥∥∥
Lp(·)(X )

= ‖w‖
f α(·)
p(·),q(·)

.

We now turn to the converse of the statement. Let K,S∈N0. We choose ψ ∈S ([0,∞))
(resp. ψ0 ∈ S ([0,∞)) such that ψ (resp. ψ0 ) satisfies (i)–(iv) in Lemma 13 with
M � S (resp. M = 0). In particular, the couple (ψ0,ψ) satisfied (3) and (4). Hence, by
Lemma 11 it is possible to find ψ0 ∈ S ([0,∞)) such that suppϕ0 ⊂ [0,4ε],suppϕ ⊂
[ε/4,4ε], |ϕ0(λ )| > 0 on {0 � λ < 4ε}, |ϕ0(λ )| > 0 {ε/4 � λ < 4ε}, and

∞

∑
j=0

ψ j(λ )ϕ j(λ ) = 1 for all λ ∈ [0,∞), (9)

where we used the convention (5). Clearly (ϕ0,ϕ) ∈ AM([0,∞)) for all M ∈ Z. Spe-
cially, (ϕ0,ϕ) can be used to define Lp(·)(X ,dμ). From (9) and Lemma 10, it follows
that for all f ∈ D ′

f =
∞

∑
j=0

ψ j(L )ϕ j(L ) f , f ∈ D ′. (10)

If Q ∈ D0, we set

w̃Q := [μ(Q)]1/2(sup
y∈Q

|ϕ0(L ) f (y)|)
(

sup
x∈X

∫
Q
|K(2−2 jL)kψ0(L )(x,y)|dμ(y)

)
,

ãQ :=
1

w̃Q

∫
Q

Kψ0(L )(x,y)ϕ0(L ) f (y)dμ(y).

while if Q ∈ D j with j � 1, we set

w̃Q := [μ(Q)]1/2(sup
y∈Q

|ϕ j(L ) f (y)|)
(

max
m∈{K,−S}

sup
x∈X

∫
Q
|K(2−2 jL)mψ j(L )(x,y)|dy

)
,

ãQ :=
1

w̃Q

∫
Q

Kψ j(L )(·,y)ϕ j(L ) f (y)dμ(y).

Then it follows from (10) that

f =
∞

∑
j=0

∫
X

Kψ j(L )(·,y)ϕ j(L ) f (y)dμ(y)

=
∞

∑
j=0

∑
Q∈D j

∫
Q

Kψ j(L )(·,y)ϕ j(L ) f (y)dμ(y)

=
∞

∑
j=0

∑
Q∈D j

w̃QãQ,

where the sum converges in D ′.
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Since ãQ can be express as ãQ = 1
w̃Q

ψ j(L )[(ϕ j(L ) f )χQ], and since ψ (resp.

ψ0 ) satisfies the condition (i) in Lemma 13 with M � S (resp. M = 0), we have ãQ ∈
D(L K)∩D(L −S) (resp. ãQ ∈ D(L K)) whenever Q ∈ D j with j � 1 (resp. j = 0).
Moreover, if Q ∈ D j with j � 1 (resp. j = 0), then

LmãQ =
1

w̃Q
Lmψ j(L )[(ϕ j(L ) f )χQ] =

22 jm

w̃Q

∫
Q

K(2−2 jL)mψ j(L )(·,y)ϕ j(L ) f (y)dμ(y)

holds for m ∈ {K,−S} (resp. M = K ). Therefore, by using the conditions (i)–(iv) in
Lemma 13 it deduces that for any Q ∈ ∪ j�0D j, ãQ is a (K,S)-atom multiplied by a
constant independent of Q.

Now, for any Q ∈ ∪ j�0D j, we set wQ := cw̃Q and aQ := cãQ, where c > 0 is a
sufficiently large constant independent of Q. Then ãQ is a (K,S)-atom, and moreover,

f =
∞

∑
j=0

∑
Q∈D j

wQaQ,

where the sum converges in D ′.
It remains to prove (8). Indeed, by our choice of ψ0,ψ and by the conditions (iii)

and (iv) in Lemma 13, we have

suppK(2−2 jL)mψ j(L ) ∈ {(x,y) ∈ X ×X : ρ(x,y) < 2− j},
|K(2−2 jL)mψ j(L )(x,y)| � C[V2− j(x)]−1,

both of which holds for m ∈ {K,−S} (resp. M = K ) if j � 1 (resp. j = 0). In the last
inequality C is a positive constant independent of j. Hence, for all Q ∈ ∪ j�0D j, we
have

|wQ| � [μ(Q)]1/2(sup
y∈Q

|ϕ j(L ) f (y)|) sup
ρ(x,zQ)�(A1+1)2− j

∫
Q
[V2− j(x)]−1dμ(y)

� [μ(Q)]1/2(sup
y∈Q

|ϕ j(L ) f (y)|).

Now, we choose a > 2d
min(1,p−,q−) , and note that

∑
Q∈Dk

2kα(x)|wQ|[μ(Q)−1/2]χQ(x) � ∑
Q∈Dk

sup
y∈Q

2 jα(x)|ϕ j(L ) f (y)|χQ(x)

� sup
y∈B(x,2A12− j)

2 jα(x)|ϕ j(L ) f (y)|

� sup
y∈X

2 jα(x)|ϕ j(L ) f (y)|
(1+2 jρ(x,y))a

= 2 jα(x)(ϕ∗
j f )a(x),

which along with Theorems 3 and 2 and the fact (ϕ0,ϕ) ∈ AM([0,∞)) for all M ∈ Z

yields
‖w‖

f α(·)
p(·),q(·)

� C′‖ f‖
Fα(·),L

p(·),q(·)(X )
.

Hence, we finish the proof of Theorem 4. �
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[12] D. CRUZ-URIBE AND L. A. WANG, Variable Hardy spaces, Indiana Univ. Math. J. 63 (2) (2014),

447–493.
[13] S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS AND P. PETRUSHEV, Hardy spaces associated with

non-negative self-adjoint operators, arXiv:1409.0424.
[14] S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS AND P. PETRUSHEV, A new proof of the atomic

decomposition of Hardy spaces, arXiv:1409.0419.
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