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Abstract. In this paper, variable integral and smooth exponent Triebel-Lizorkin spaces associ-
ated with a non-negative self-adjoint operator are introduced. Then equivalent norms and atomic
decomposition of these new spaces are given.

1. Introduction

Recent years, function spaces associated operators, such as self-adjoint non-ne-
gative operators; divergence form elliptic operators; magnetic Schrédinger operators;
degenerate elliptic operators, have been introduced; see [3, 4, 5, 6, 13, 14, 19, 21,
22,23, 31, 42, 43, 44, 45, 46, 47, 48]. Indeed, G. Kerkyacharian and P. Petrushev
introduced Besov and Triebel-Lizorkin spaces associated with non-negative self-adjoint
operators and gave their Heat kernel characterization and frame decomposition in [28].
For classical Besov and Triebel-Lizorkin spaces, we refer to [36, 37, 38, 39]. In [19]
Hu gave their equivalent quasi-norms by Peetre type maximal functions and atomic
decompositions. In [13] and [14], Hardy spaces associated with non-negative self-
adjoint operators are introduced and their atomic decompositions are given.

Last decades, motivated by the applications in electrorheological fluids [34], im-
age restoration [7] and PDE, variable exponent function spaces have been studied ex-
tensively; see [1, 2, 10, 11, 12, 16, 17, 18, 20, 24, 25, 27, 30, 32, 33, 41]. We remark
here that the list is not exhausted. The study for variable exponent functions has a long
history; see [9, 11, 16, 20]. Stimulated by these literatures, we shall introduce variable
integral and smooth exponent Triebel-Lizorkin spaces associated with a non-negative
self-adjoint operator. To give their definition, we need to clarify the definition of the
underlying spaces.

Throughout the paper, we assume (2,p, ) is a metric measure space satisfy-
ing the conditions: (2, p) is a locally compact and arc-connected metric space with
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distance p(-,-) and u is a positive Radon measure which obeys the following volume
doubling condition

0 < u(B(x,2r)) < cop(B(x,r)) <eo forall xe 2" and r >0,

where B(x,r) is the open ball centered at x with radius r and ¢ is a constant. From
the doubling condition it follows that

U(B(x, A7) < coA?pu(B(x,r)) < oo forall xe 2 and r>0, and A > I,

where d =log, co > 0 is a constant playing the role of a dimension.

By supp f we denote the support of the function f, i.e. the closure of its non zero
set.

Let . be a self-adjoint non-negative operator on L?(.2",du) such that the as-
sociated semigroup P, = e consists of integral operators with heat kernel p, (x,y)
obeying the following conditions:

(a) Gaussian upper bound: for x,y € 2", t > 0,

Clexp{ CzP 2(x,y)/1}
Vu(B u(B(y, 1))

(b) Holder continuity: there exists a constant oo > 0 for x,y € 2", t > 0 and
p(r.y') < V7 such that

N\ ¢ xp{—c2p?(x,
| (x,y) = pi(x,)] < Cy (p(y’y)) \/: p{—cp”( ;zy/t\}[)).

We denote the domain of £ by dom(.Z). We also denote Ny = NU {0}, and
Vi (x) := u(B(x,r)), forany x € 2" and r > 0.

|pt 7y ‘ X

DEFINITION 1. (i) If u(2") < o, the test function class 2 is defined as the col-
lection of all functions ¢ € N,enydom(.Z") with the topology induced by the family of
seminorms

Zu(9) =270l 22 a)> 1 € No-

dp)

(ii) If u(2") = +oo, the class Z is defined as the collection of all functions ¢ €
Npendom(£") with the topology induced by the family of seminorms

Pni(9) = sup (1+p(x, x0))'[-2"9(x)| < oo, n,l € Ny,

xeZ
where xp € 2" is a fixed point.

In either case Z is a Fréchet space; see [28]. Moreover, in the case y(Z2") = oo,
the class Z is independent of the choice of xg, that means different choices of xg
in Definition 1 yield the same class & with equivalent topology. Therefore, we may
choose and fix a point xg € 2" in the sequel.
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The set of all continuous linear functionals on Z is denoted by 2’. The duality

between the spaces is denoted by the map (-,-) : 2’ x 9 — C.
For the reader’s conveniences, we shall use the same notation as in [28].

Dy olr) = VaVs 2 (1+2620) 7 xye 2

Lemma 2.1 in [28] says that for 6 >d and § >0

pxy)\~°
/ 1+ d(y) <CVs(x), xe 2. (1)
@ o
Formula (2.7) in [28] says that if 0 < p < e and ¢ >d(1/2+1/p) then
1D5.6(x: )l gy < CIVe () /77!, xe 2. 2)

A function f:[0,e0) — C is said to belong to the class .7 (]0,°)), if f € C((0,0))
NC([0,%0)), and for any k € Np, f® decays rapidly at infinity and lim, _q+ £ (1)
exists. Then Borel’s theorem (p.55 in [29]) concerning the existence of smooth func-
tions with arbitrary Maclaurin series implies that .7([0,0)) = .7 (R) g c0)-

DEFINITION 2. Let (¢p,¢) be a pair of functions in . ([0,0)) and M be an
integer. The pair (g, ) is said to be in the class o7 ([0,00)) if

[90(2)[ >0 on [0,4¢), 3)
and

[0(A)[ >0 on (g/4,4¢) 4)
for some € > 0, and if (-)"M¢(-) € .7(]0,)).

In the sequel, given any pair (¢o,¢) of functions in .([0,)), we denote the
system {¢;} of functions in .’([0,0)) by setting

¢;(A):=¢(27%1) for j>1 and A € [0,c0). (5)

Let p(-) be a measurable function on 2", denote

p~ i=ess inf p(x), pti=esssup p(x).
xeZ xeZ
Denote by Z(Z") the set of measurable functions p(-) on 2" such that p~ > 1 and
pT < oo, and P°(2°) the set of measurable functions p(-) on 2" such that p~ >0
and p* < oo. If p(-) is a measurable function on 2~ such that p~ > 0, denote by
LPU)(Z) the set of measurable functions f on 2 such that for some A > 0,

/y (@)P@) dx < e
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with the norm

p(x)
[Rale :=inf{/l>0: /} (@) dxgl}.

VRICANE ;) becomes a Banach function space when p~ > 1. It is known that
if p(-) e 2°(2) and 0 < py < p~, then for each f € LP)(Z),
1
1£p0 = AP 008, e

Now we introduce variable integral and smooth exponent Trieble-Lizorkin spaces
associated to the operator .Z.

DEFINITION 3. Assume that p(-),q(-),a(-) € 2°(Z). Let ¢y, ¢ be functions
in .7 (]0,o0)) and assume (3) and (4). The variable exponent Triebel-Lizorkin space

F;‘(())qﬁ(% ) denotes the set of all f € 2’ such that

< oo,
LP0)(pa())

Ul 1= {22000}

p().4()

Jj=0

where LP()(¢40)) are the spaces of all sequences {g j} of measurable functions on 2
with finite quasi-norms

1
oo q()
{87} 5=o0ll o a1y = 187370l o) L,y = (Z |gj|q(')>
j=0 r()

To assure that the space in Definition 3 is independent of the choice of pair (o, ¢),
we shall put suitable conditions on p(-),g(-) and co(+). This is the main task in the next
section. In Section 3 we shall give atomic decomposition of Fpoé())q”(g)(% ). Finally,
a < b means that there exists a positive constant C such that a < Ch. If a < b and
b < a, then we denote a ~ b. Letter C will denote various positive constants which
may change from line to line.

2. Preliminaries
Let us start with recalling the structure of 2.

LEMMA 1. (see [8]) There exists a collection {QF : k € Z,0 € It} of open sub-
sets of X", where I is some index set (possibly finite), and constants § € (0,1) and
A1,A2 >0, such that (1) (2 \Ugey, Q%) = 0 for each fixed k and Q’&ﬂQ]B =0if
o # B

(i) for any o, Bk, with | > k, either QF, C Qlﬁ or ngQlﬁ =0;

(iii) for each (k,c) and | < k, there exists a unique B such that Q%, C Q%;

(iv) diam(Q%) < A 8%, where diam(QF) := sup{p(x,y) : x,y € QX };
(v) each QF, contains some ball B(zX,,A>8%), where 72, ¢ 2.
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The set Q% can be thought of as a dyadic cube on 2 with diameter roughly &
and centered at z¥,. We denote by 2 the family of all dyadic cubes on 2". For k € Z,
we set 7 = {0F : a € I}, so that Z = Uy, Z. For any dyadic cube Q = Q,, we
denote by zg 1= X, the “center” of Q. From (iv) and (v), one has B(ZQ,A25k) cQocC
B(zp,A18%). For convenience, for A > 1, we denote AQ = B(zg,AA;5%). Then by the
doubling condition, we have pu(AQ) ~ u(Q) for fixed A. In the sequel, we assume
without loss of generality that 6 = % If this is not the case, we need to replace 2/ in
Definition 3 by 6/ and make some other necessary changes.

Likewise to classical Besov and Triebel-Lizorkin spaces, our key tool is the bound-
edness of Hardy-Littlewood maximal operator on Lebesgue spaces. Let LIOC(,%” ) be the
collection of all locally integrable functions on 2. Given a function f € L} (), we
denote the mean-value of f, defined on a set A of finite, non-zero measure by

Maf = f @) = o [ auts
The Hardy-Littlewood maximal operator ./ is defined on L\, .(2") by
A f(x) := sup fW)ldu(y), Vxe 2.

r>0 JB(x,r)

Denote by #(2") the set of p(-) € 22(2") such that .# is bounded on L) (2"). In
[1], Adamowicz, Harjulehto and Histo gave a sufficient condition for p(-) belonging
to B(Z"). To state their result, we need to recall some notations.

DEFINITION 4. Let p(-) € C(Z"). p(-) iscalled locally log-Holder’s continuous,
abbreviated p(-) € C°8(2), if there exists cjog > 0 such that for all x,y € 2

loc
Clog
Ip(x) —p()] <
log(e+1/p(x,y))
The exponent p(-) is said to be globally log-Holder’s continuous, abbreviated to p(-) €
C'°2(27), with base point xo € 2 if it is locally log-Holder’s continuous and there
exists pe such that for all x € 2~

Clog

P =Pl S e T p o))

We define a class of exponent p(-) whose reciprocal is log-Holder continuous:
P )= {p(-): 2 — (0,09] | 1/p(-) is log-Hlder continuous}.
By ¢(p) we denote the log-Holder constant of 1/p(+).

DEFINITION 5. Let (Z7,p, V) be a metric measure space. A function p(-): 2" —
[1,09] is said belonging to Z\¢(2") if there exists C > 0 such that
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for every ball B C 2" and there exists p.. € [1,e0] such that
1e (2, where — = | —— — —
sx) - lp(x)  p

Since we assume U is doubling, from Theorem 1.4 in [1] we have the following lemma.

foranyxe 2.

LEMMA 2. If p(-) € ZY(X) with p~ > 1, then p(-) € 2 5(2).

LEMMA 3. (Theorem 1.7 in [1]) Let 2" be a quasi-metric measure space, p(-) €
@}fg(%) with 1 < p~. If M : LP (2') — LP (Z) is bounded for the constant
exponent p—, then there is a positive constant C independent of f such that

”//fHLP(-) < C”fHLP(‘)? vf GLP(.)(%)

Since we suppose U is doubling, ./ is bounded on LP(Z") for constant p €
(1,e0). Hence by Lemmas 2 and 3, 2 8(27) C B(Z).

To our purpose, we need further results of the class @;fg(,%” ). Indeed, we shall
use the method in [17].

LEMMA 4. (Lemma A.3in[1]) Let p(-) € ,@,Ifg(%). Define q € z@(lj()g(ﬁt” X
27) by

1 1 1
—q(x,y) = max{O7 m — m} Vx,y e Z.

Then for any y > 0 there exists 3 € (0,1) depending on ciog such that

px)
(BLI0NH0)) < 1701000+ f 75 200211000

for all fe LP(2)+L(2) with 11120002y 1(2) < 1 and every ball B C 2
and all x € B.

By Lemma 4 we have the following Lemma.

LEMMA 5. Let p(-) € P5(2) with 1 < p~ < p* < oo. Then for any k >0
there exists B € (0,1) such that

pl)
(BLLrOI0)) < £ 17010800 + oo

foreveryball BC 2, andall x€ B and f € LPV)(2)+L"(Z") with ||fHLp(,)(Q%)+Lm(%)
< 1, where

h(x) := min{ut (B, 1} (<e+p<x,xo>>-"+ Flerp <y,xo>>-kdy) = min{u (B, 1}h(x).

Here, h(-) € weak-L' (2 )NL>(Z'), B depends on p(-) only via the constant of log-
Hélder continuity of 1/p(-).
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Proof. We shall use the same idea as in the proof of Lemma 3.3 in [15].
Let y:=exp(—K) for some K > 0 and let ¢ as in Lemma 4. We define

' t‘{(xvy), for 0 < q(x;Y) <o
Py(xy) (1) = = .
0, for g(x,y) =eo, t € (0,1]

We have pq(x,y)(Y) = pq(x,y)/Z(Y) 'pq(x,y)/2(7/)' We shall show that pq(x,y)/2(7/) <
min{g(B)¥, 1} and py(.y)2(7) < (e+p(x,x0)) * 4 (e + p(y,x0)) * for a suitable k.
Then the claim follows from Lemma 4.

If g(x,y) = oo, then py(,y)(¥) = p=(y) = 0 and there is nothing to prove. So we
can assume that py(,.,)(y) < °.

The local log-Hélder continuity of 1/p(-) implies that for each x,y € 2~

'q(xl,y) ' s ‘p(IX) - p(ly)' < Togle +C107p(x7y))'

7 <exp <K1L”(B)> = u(B)™ e < p(B)
2Clog

Hence we get

for K > 2kciog and p(B) < 1. If p(B) > 1, then we use py(yy)/2(t) < 1 which follows
from 7 < 1. Hence, we get Py(xy)2(¥) <min{u(B)*, 1} for K > 2kcioq.

1 1 1 1 1 11
Deﬁnes()by oy = \m—p—m\.Thenm<m+s(—y)<2max{s(—x>,m}.80

q(x,y) = ymin{s(x),s(y)} and
s(x)

P A min{sa00} < 5

Due to the decay condition on () at infinity, ﬁ < m and ﬁ < log(ef%'
This implies that ) »
s(x) Klog(e+p(x,x P
e (‘ e 0”) (e +pl0) "o < (e+p(x,50)
log

and similar yi(i!v‘) < (e+p(yx0))* for K > 4kcj,,. Thus

(x,y) s(x) s(y)
YLyt 4yt <(e+pnx) T (etplur) K O

For t € Nyg, m € Z, denote
Orm(%,2) := [Var(o) (1+2'p (x,2))"] 1,

let g€ L] ., denote

._ 18 (2)]
Be* 0t7m(x) T /% Vz—r(z)(l + th (.X,Z))m d”(Z)

The doubling condition yields
Orm(,2) = Va1 () (1 +2'p (x,2))"] ! = 29(1+2p (x,2)) "
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LEMMA 6. For every m > d there exists ¢ = c¢(m,d) > 0 such that

g x B n(x) < Y 27D N gan(x) Mg
Jj=0 0€PD,—j

forall t € Ny, g € Llloc,x ceZ.

Proof. Fixt €Ny, g€ L}, and x,y€ 2. If p(x,y) <277, then we choose Q € Z,
containing y. If p(x,y) > 27, then we choose j € Ny such that 2/~" < p(x,y) <2/~ +!
and let Q € 7, ; be the cube containing y. Note that, in either case, x € 30. Thus we

conclude that

24(14+2'p(x,2)) ™™ < 271D 3 (x)

Next we multiply this inequality by |g;(v)| and integrate with respect to y over 2.
This gives |g; * 6, (x)] <2779 |Mpg,|x30(x), which clearly implies the claim. [

The following lemma is the estimate for vector-valued setting in variable Lebesgue
spaces on homogeneous type. Its proof is similar to that of Corollary 2.1 in [10], be-
cause the method for variable Lebesgue spaces on Euclidean spaces also holds for vari-
able Lebesgue spaces on homogeneous type. So we omit the detail here.

LEMMA 7. If p(-) € B(Z"), and 1 < q < oo, then there is a constant C such that
H{%fj};;OHLP(*)(M) < C“{ff}7=0“LP(‘)(£q)

holds for all locally integrable functions {f;}7_, on 2.

LEMMA 8. Let p(-), q(-) € PYEHZ), 1 <p <p' <eo, 1 <q~ <qt < oo,
and (p/q)” -q~ > 1. If m > d, then there is a positive constant C such that

18 * Orm bl o 11200 < ClHI{ge 0l gt o
for every sequence {g;}ien, of Ll -functions.
Proof. By homogeneity, it suffices to consider the case
{8 oll o 1000 < 1.

Then particular, for every ¢ € Np,

[ Jatrtan < 1. ©)
A
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Using Lemma 6 and Holder’s inequality we estimate

plx

/J (26|gr * Gr,m(x)|q(x)> q du(x)

q(x)
< /3 Y (Z 2 im=d) 5 %3Q(x)Mng> du(x)

=

>0 \j=0 0€D,_;
(x)
4\
</, |Z ZT”’"‘”( > st<x>MQgt) du(x)
1>0 >0 0€P,_;

p(x)

q(x)
<c/, ( PIDIELD) xag<x><Mng>q<x>> dp(x).

>0 j>0 €D,

For the last inequality we used the fact that the innermost sum contains only a finite,
uniformly bounded number of non-zero terms.
It follows from (6) and p(x) > ( that ||g|| L < C. Thus, by Lemma 5

(Mog) ™ < CMo (| T )+ Cmin{u(Q), 1}h(x)

forall O € ,_; and x € Q. Combining this with the estimate above, we have

o0)

p)

q(x)
[ Zle0m@e ) au)
2 >0
plx

i g\ 9k
<C / T Y20 Y Ml T ) du)
I>O/>O

[oS7

q(x)
wef (zzwd s X3Q(X>(min{u(Q)7l}h(x>>q) )

>0 ;>0 0€P,—
=1+1I.
Now we easily estimate that

)

a0
1<c/ ( > |g,T Y o)y ng(x)> du(x)

Jj=0 [oS7

Q

p(x)

g Y\ W)
<cf (% ( L 0 ) e
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In Lemmas 3 and 7 with (p/q)”-g~ > 1 and ¢~ > 1, implies that the last expression
is bounded since

o N\ %
/ﬁ(%(lg:()l)”) /(20g ) dux) < 1.

To estimate II, by the condition m > d we note the inequality

> Y2 i) N s (x)min{u(Q), 114

120 j=0 0€D,;

< 2 2 2—i(m—d) min{zd(./’fr)q*’ 1}
120 j>0

< 2 9 —J(m—d) (j+ sz(j—f)q
Jj=0 12

S Y27+
j=0

<C.

Therefore, we estimate II as follows:

px)
q(x)
H_C/ (Z Y27 DN () (minfu(Q), 13h(x)T | du(x)
120 j>0 Qe@lij
px)
i q(x)
5/‘? (h(x)’i 2227./(m7d) 2 x3Q(x)min{u(Q),1}> du(x)
’ 12020 0D,

SRS YT dpt(x).

Since (p/q)”-q~ > 1 and h € weak-L! N L™, the last expression is bounded. [

THEOREM 1. Let p(-), ¢q(-) € @Cllog(,%”) with 1 <p~ < pT <eoand 1 < g~ <
q" < oo. If m > d, then there exits a positive constant C such that

I1{87 * O r—oll jae | ooy < ClIIH{8 b0l gac) | o)

holds for every sequence {g }en, of Ll -functions.

loc

Proof. We shall use the idea in the proof of Theorem 3.2 in [17]. Because of
(2,p) is alocally compact metric space, we can choose a finite cover {Q;}%_ | of 2
with the following properties:

(i) each Q; C 27,1 <i <k, is open;

(ii) the sets {Q} ", cover 2, i.e., U, Q=2
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(iii) non-continuous sets are separated in the sense that p(€;,Q;) >0 if |[i—j| > I;
and

(iv) we have (p/q), g, > 1 for 1 <i<k, where A; = U’;llf 1 Q; (with the con-
vention that Qo = Q1 =0).

Let us choose an integer / so that 2/ < <minj_ 51 3p(€24,Q;) < 2'+1 Since there
are only finitely many indexes, the third condition guarantees that such an [ exists.

Next we split the problem and work with the domains €;. In each of these we
argue as in Lemma 6 to conclude that

p(x) px)

a0 k a()
/ (2 |gt * et m ) d.u ()C) < 2/ (2 |gt * 9t7m (x)|q(x)> d[,L (x)
2 \s>0 i=17% \;/>0

i q(x)
<21 / ( PIDWRLELEDY X3Q(x)(MQgt)q(x)> du (%)

12030 0€9,
i " o)
SEL(ZE270 5 palons) ™ ) auty

i=17%% \1>0j=0 0€P,_;

p(x)

+2 . ( DY 2‘f'<'"—d>///gt<x>q<x>> " 4

>0 j>t+1

The first integral on the right-hand side is treated as in the proof of Lemma 8. This
is possible, since the cubes in this integral are always in A; and (p/q),.q,, > 1. Soit
remains only to bound

px)

p)
) q(x) q(x)
/Q (2 )y 2f<md>¢///gt<x>q<x>) du(x) < /Ql<22’<’”">///gt<x>q<x>> du(x).

i \t=0 j>1+1 >0

For a non-negative sequence (a;) we have

s o) ¢ (OO T2 e,
1
>0 Tiz2 0" d)’ ap, r< L

px)

We apply this estimate for r = ey and conclude that

P

q(x ;
/ <22—t(m—d)j/gt(x)q(x)> d‘u(x)gczz—(m—d)tmm{l £ }/ Mg (x du(x)
Q; >0 =0

<C22 (m—d)rmin{1,(2)"}
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where in the second inequality we used the boundedness of the maximal operator and
since [ |g;(x)[?™du(x) < 1. This complete the proof. [J

The following lemma is a variant of Lemma 6.1 in [17].

LEMMA 9. Let of-) be in Cllgcg(,%”) and have a limit at infinity. There exist s €
(d,e0) such that if m > s, then

29919, 2,0 (x,3) < €270y (x,)

forall x,ye Z .

Proof. Choose k € Ny as small as possible subject to the condition that p (x,y) <
27V*tk Then 1+42Yp(x,y) =~ 2*. Firstly, we have

9V,2m (X7Y)

<C(14287m < 27 Fm,
ev,m(xa}’) ( )

On the other hand, the log-Hélder’s continuity of ¢(-) implies that
2V(OC(X)—OC(y)) 2 2—vcl(,g/log(e+l/p(x,y)) 2 2_kclogp (x,y)_clog/lOg(e+l/p(X:Y)) 2 C2_kclog .
Hence, the claim follows from these estimates provided we choose m 2 cjog. [

LEMMA 10. (Lemma 3.7 in [19]) Suppose @o, @ are functions in .7 ([0,0) such
that (-)™Me(-) € Z([0,50) for some integer M > 1 and that

J=0
where @;(+) := @(27%.) for j > 1. Then forany f € 9’
=02 f in7.
=

LEMMA 11. (Lemma 3.6 in [19]) Let (¢o,9) be a pair of functions in 7 (|0,0))
satisfying (3) and (4). Then there exists another pair (W, W) of functions in #(|0,0))
satisfying (3) and (4) such that

supp o C [0,4¢€], suppy C [e/4,4¢],

and for any A € [0,0)

=

9o wo(A)+ 3 627 2)y(272) = 1.

j=1
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LEMMA 12. (Lemma 9 in [26]) Let p(-),q(-) are positive functions on X~ such
that 0 < g~ < q" <eo. For any sequence {g; =0 of nonnegative measurable functions
on 2 denote

Gi(x):= Y 27" Bg(x),  xea.
=0
Then there is a positive constant C = C(q(+),0) such that

H{Gj} O”LI’ )(¢a() <C||{gk}k 0||LI’ )(ea())- @)

Given a couple of (¢, @) of function in .#(]0,)), a distribution f € Z’, and a
positive number a > 0, we define the system of the Peetre type maximal functions by

(0 ()= sup AL

= xe 2, jeN,.
ceo (14+27p(x,2)@" 0

THEOREM 2. Let p(-), q(-) € gzéog(%) with 0 < p~,q~ and p*,q" < eo. Let
o) bein Cllgf(,%”) and have a limit at infinity. Assume @o, @ € . (|0,00)) satisfying
conditions (3) and (4).

If a> W, then there exists a constant C > 0 such that for all f € 2’

H{zja(( )}j OHLP zq <C||{2,a (Pj( )f};'o=OHLP(‘)(zq(-))~

Proof. By the proof of Theorem 3.3 in [19] for [ € Ny and r € (0,1) such that
ar > 2d we can get

{( }r< 22 2er21d/V2 |(P/+ll+2)lj;‘§x)|zr)) d[,L(Z)

Since for j,k € Np,
1 < 2/p~Jar
V2*l(z)(1 + le (x7z))ar ~ V2 (1+)) ( )(1 + 2(1+1)p ()C, Z))ur

it follows that

r r ar |(p )f(z)|r
{(@ N} = 22 28] /V e jﬁl+2(1+1)p(x,z))ard#(z)

=3

Z 275200 ) @11 (L) FI) ().

Then by Lemma 9 we obtain

(2710 (g ), ()} S 32Ty g, gy (2) ] ()
j=0

5 i ij(2Sr7a(x)r7ur) el,ar/2 % [
j=0

2*(./+Z)0¢(~)%H(D§/ﬂ)f

|
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5~ (i~D)(2Sr—o(x)r—ar) 2770 (2 f

I
M

0, ar/2 ¥ { y (x)

~.
Il
-

2—/'06(')%.(3)]0

N
M

~.
Il
=}

2-li-llesr—a(vr—ar)g a2 % {

]r(x).

We now choose and fix the integer S such that 28 > |||z~ — a. Then applying Lemma
12 in spaces LP0)/7(190)/7) with r < min{p~, ¢~} and Theorem 1 gives

297 f)aYiollar wrry < CIHZT*OO1ar # [95(L) 1Y ool ot a0y
< C”{21'&(')(/)1'(3)](}?:0||LP(-)(lq(-))~ 0
THEOREM 3. Assume that p(-),q(-) are positive functions on 2" such that 0 <
q~ <q" <eo. Let a(-) bein Cllgf(%) and have a limit at infinity. If a >0, M > o™ /2

and (@o, @), (G0, 9) € A ([0,0)), then there exists a constant C > 0 such that for all
fea

4270 (0] £)a¥7-oll o sy < XG5 ol

Proof. By the proof of Theorem 3.4 in [19] we obtain
240 (g () § 3, 27212 7 ), ()]
Jj=0

Applying Lemma 12, we get
{2 (@] f)a} Fooll o gaory < CIHZ (@7 Fad ol oy
)

From Theorems 2 and 3, we obtain the following Peetre maximal function charac-
terization of Triebel-Lizorkin spaces.

COROLLARY 1. Let p(-), g(-) € 2 8(2°) with 0 < p~,g~ and p*,q* < .
Let o(-) be in CI°¢(2") and have a limit at infinity. Let M > ot /2 and let (¢, ),

loc

(w0, ¥) € S ([0,°0)).

If a > then

min{l,p=.q"}’
1290707 (L) Yool oty gaorys {27 OW5(2) 1Y Tl ot a0
127 0,(L2) 1350l ot gato

and .
27y ()50l ot gaty

are equivalent quasi-norms on FIZ());(?;(% ).
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3. Atomic decomposition

In this section, we shall give the atomic decomposition of F;E())q“((f)(% ). To do so,
we need some notation firstly.

DEFINITION 6. Assume that p(-),q(-) are positive functions and o(-) is a non-
negative function on 2°. The sequence space fz?((-'))qt) consists all sequence w =
{WQ}QGUk>O-@k such that

1wl oy 2= 1125493 (Iwol (@) *120) 0 | -
Tp()al) Qe k

Here ) is the characteristic function of Q.

DEFINITION 7. Let K,S € Ny, and let Q be a dyadic cube in &, with k € Nj.
In the case k > 1, a function ap € L*(:2",du) is said to be a (K, S)-atom for Q if ap
satisfies the following conditions for m = K and also for m = —S§.

() ag € D(L™);

(i) supp(-L™ag) C B(zg, (A1 +1)27F5);

(iii) Supye 5 [-L"ap(x)| < 2% (Q) /2.

In the case k =0, a function ay is said to be a (K,S)-atom for Q if it satisfies
above (i)—(iii) only for m = K.

LEMMA 13. (Lemma4.7in [19]) Let M € N (resp. M = 0). There exists a func-
tion y € .7 ([0,%0) such that the following conditions holds.

(i) A"y (A) € Z([0,20)).

(ii) There exists € > 0 such that |y(1)| >0 on {e/4 <A <4e} (resp. |y(A)| >0
on {0 <A <d4e})

(iii) For all integer k > —M and for all j € Ny,

SUppK(y-2j gyy(2-2i2) C{(6y) € 2 X 2 1 p(x,y) <277},

where K5-2j gy (2-2ip) is the integral kernel of the operator 272y (272 ).
(iv) For all integer k > —M, there exists a constant ¢ = c(k) (depending on k)
such that for all j € Ny

K -2 22212y (6 9)| < c[Voi(0)] .

LEMMA 14. (Lemma 4.6 in [19]) Suppose K,S € Ny, Q is a dyadic cube in Dy
with k € Ny, and ag is an (K,S)-atoms for Q. Suppose further that ¢, ¢ € .7([0,00)),
such that .~ "*KS) (1) € #([0,0)). Then the following estimate holds.

PUNS[(0)]' 2Dy y(xrz0), T <k

|9;(L)ag(x)] < {22(kf)S[u(Q)PﬂDzk,N(WQ)’ J>k,

where N > 0 can be taken arbitrarily large.
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Now, it is the position to state the decomposition.

THEOREM 4. Assume p(-), q(-) € @éog(,%”) suchthat 0 < p~,q~ and p*,q" <
oo. Let a(-) be in C°5(Z) and have a limit at infinity. Let K,S € Ny such that K >

loc

1o+ —d 1= ;
0" and S > () 2% - Then there is a constant C > 0 such that for every

sequence (K,S)-atoms {ag} ey,

=

2 2 wodg

k=00€P

< C||WHfa<)
Fotrat)

of-
Fp(-
Conversely, there is a constant C' such that given any distribution f € F;E())q“((i)(% ),

there exists a sequence of (K,S)-atoms {ag}ocu,.,2, and a sequence of complex
scalars w = {wg}geu,.o2, such that

=2 woap,

k=00€P;

where the sum converges in 9', and moreover,

Wl a) < CNfllpa

(3

Fothat) Ey a2

Proof. We shall use the method in [19], which goes back to [40] and [35]. Let

K,S € Ny such that K > o™ and S > W — o Let (@, ¢0) € y([0,0))
with M > max{K,S}. Then by Lemma 14 we have

nja(x)

02 %.2) (i > wQaQ> )

k=00c 2,

=

<2%N S fwolle(2 ¥ L)ag|

k=00€c9;
o
<200 N N 22078 0| [ (0)] 2D,y (x,20)
k=0Q€e Py /
+2000 NN 22K | [(Q)]' 2Dy« (x,20)
k=j+10cP; ’
i )
<Y 220RSHIRe) N kel 1(0)]12 D,y (x,20)
k=0 Q€D /
+ Y, 2k DKEGRel) N ke [1(0)] 2D,k y(x,20)
k=j+1 0Py ’

where N > 0 can be taken arbitrarily large.
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Now let us set
Sy = {Q € D : p(20,%) <A127(‘Mk)}’
i = {Q € T 412" 127 0N < p(zp,) < A12’”2*(~’”‘)} ,meN,
By = {z €2 :p(zx) <A12m+12_(Mk)}7 me N,

where the notation j Ak denotes min{j,k}, and A; is a constant as in Definition 7.
Choose and fix 0 < r < min{1l,p~,q" } such that 2S+ o~ —d/r > 0. This is possible

since S > 2mm(ldﬁ — o~ . Then take N > 2d/r. By Lemma 9

> 250w |[u(Q)]2(1+ 27 p (zg,x)) Y

Q€Y
S35 2 haglla@)) A1+ a2
m=0Q¢€e.%,
- 1/r
i~ (2 Y, 27w u (Q)}r/2(1+A12ml)Nr>
m=0Q¢ec.%,

- 1r
= (Z/ )Y 2k’°‘(’“>WQI’[u(Q>]’/2(1+A12’“)N’[u(Q)}1xQ(z)du(z>>
m=0"2 e,
- 1r
kd/r kro(z) r —r/2 JNk —Nr/2
S2 (Z/ 2 27 wol [u(Q)] (142 p (z,x)) m(z)du(z))
m=0"Bm Q€I
- 1r
s ( [ 3 3 2Ol u(@) (1427 (z,x>>N’/2xQ<z>du(z>>
‘%m:OQE.Ym

1/r
S </f > 27wl (1 (Q)] ’”(1+Wp(z,x>>—Nf/2xQ<z>d“(Z)>

0€Py

1/r
= pkd/rp=inkd/r (01/\k,Nr/2*<2 <2km wol (@) )(X)>> .

Q€Y

Then we have

2ja()

21)( £ 3 woro)

k=0 Q€D

. 1/r
j .
< Y alimh@stat)=d/r )< /Nr/2*< Y, 270 (0)] " |wol” XQ)( ))

k=0 (S8

- 1/r
+ Y, 2t )GK-at) <9k,Nr/z* ( Y, 270 (@) |wol” XQ)( ))

k=j+1 0€ Ty
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oo 1/r
<Y v(ji—k) ( inkNr/2 * ( D 2kre() r/2|WQ\ %Q) (x )) ;
k=0 0<%
where the map y:Z — R is defined by

L JYEsre i <o,
Y(]) = 2*/(21(706*) .
k , j>0.

Rise the inequality to the power g(x) and sum over j € Ny; then raise to the power
1/q(x) and take || - l20)(2 ) MOrm in 2”. We obtain

oo

2 2 wodg

k=00€ P

o), %
Foyat)

- 1/r
{ > v(j—k) { Oz x| X (250wl [#(Q)_l/z]XQ)’>} }
k=0 S

By the proof of Lemma 12 we arrived at

1/r
H{ZYJ k j/\kNr/2*< D (20 |wg |[.U(Q)_1/2]%Q)r>} }
J=01lyq()

€Yy
o )
Aq(-
{27’ 1Aq(- } {OjAk,Nr/z* ( > 2*Owollu(0)” m]%QY)}
€Yy k=0

And we note that the first term is a finite quantity since 2K — o > 0 and 25+ o~ —
d/r > 0. By Theorem 1 we conclude that

(£)

=3

J=00eaO | o) (20

=3

r

(a)fr

oo

2 2 wodg

k=00€P;

o), %
Foyat)

S { j/\kNr/2*<z 2ka lwollu(Q)~ Uz]%QV)}
0€D; k=01lga(-)/r

(£)

~I—

LPO(2)
oo 1/r
S {ejAk,Nr/z* ( Y, (2"Owg [#(Q)_l/z]XQ)r>}
0Dy k=0ll¢aC)/r 1l LpC)/r( 2y
oo 1/r
S {Z (2" wol[u(Q)~ 1/2}7(9)’}
ey k=01lgaO)/r 1l LpC)/r( 20y
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oo

:HH{ > (2 *Uwol[(Q)” Vz}m)}
€7, k=0

We now turn to the converse of the statement. Let K, S € Ny. We choose y € .7([0,00))
(resp. o € .(]0,)) such that y (resp. yp) satisfies (i)—(iv) in Lemma 13 with
M > S (resp. M =0). In particular, the couple (yp, ) satisfied (3) and (4). Hence, by
Lemma 11 it is possible to find yy € #(]0,0)) such that supp@y C [0,4€],suppp C
[e/4,4€], |@o(A)| >0 on {0< A <4e}, |@o(A)| >0 {e/4< A <4e}, and

= [l e

04() L”(')(Q/’) p(-).a()

i Vi(A)j(A) =1forall A € [0,00), )
Jj=0

where we used the convention (5). Clearly (¢o,¢) € (]0,0)) for all M € Z. Spe-
cially, (@o, @) can be used to define L”()(.2",du). From (9) and Lemma 10, it follows
that for all f € &'

=S v Lo (L)f, fe?. (10)
j=0
If Q € 9, we set

7o = (@) (supla( L)) ( 309 [ 1K s (w0 )

ye0

dg = %Q | Ko s:9) (20 014,

while if Q € Z; with j > 1, we set

WQ::[u<Q>]1/2<sup|<p,,»<.$>f<y>|>( max  sup [ K g o (0l

yeQ me{K,~S}ye 2

WQ / K‘V/ ()@ (L) f(y)du(y).

Then it follows from (10) that

8

where the sum convergesin 2'.
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Since agp can be express as ap = %y/j(g)[((pj (L) f)xol, and since y (resp.
yp ) satisfies the condition (i) in Lemma 13 with M > S (resp. M =0), we have ag €
D(LKYND(L5) (resp. ag € D(LX)) whenever Q € Z; with j > 1 (resp. j=0).
Moreover, if Q € &; with j > 1 (resp. j=0), then

22 jm

LmﬁQZWl—QLml//j(f)[(fpj(f)f)%Q} o QK<2 2ipyny;(2) (V)@ (L) f (V) du(y)

holds for m € {K,—S} (resp. M = K). Therefore, by using the conditions (i)—(iv) in
Lemma 13 it deduces that for any Q € U;>0%;, dp is a (K,S)-atom multiplied by a
constant independent of Q.

Now, for any Q € U;>0%;, we set wg := cwp and ag := cdg, where ¢ >0 is a
sufficiently large constant independent of Q. Then ag is a (K, S)-atom, and moreover,

=Y 3 woap,
J=00€9;

where the sum convergesin 2'.
It remains to prove (8). Indeed, by our choice of vy, ¥ and by the conditions (iii)
and (iv) in Lemma 13, we have

SUPPK y-2ipyny 2y € {(6¥) € 27X 2 p(x,y) <2773,
|K(2*2jL)m1,/»(( )| <CVa-i(x)] 7,

both of which holds for m € {K,—S} (resp. M =K)if j > 1 (resp. j=0). In the last
inequality C is a positive constant independent of j. Hence, for all Q € U;>0%;, we
have

wol S W@ (suplo () fW)  sup [ Vo () au()
12-iJQ

veQ plrzg)<(Ar+1)2-
S [1(Q)]Y*(sup |9 (L) f)])-

yeQ
Now, we choose a > W, and note that
> 25w [u(Q) Vo) S Y, sup2/W; (L) f(v)|xo ()
Q< 02 ¥
< sup 2770 2)f(y)]
yeB(x,24,27/)
pjalx
< sup 2010
vez (1+2/p(x,y))e
=270 (@7 ) (),

which along with Theorems 3 and 2 and the fact (¢g, @) € 4 (]0,0)) for all M € Z
yields
Wl oty < CNfll otz
Fotraty Faa(#)
Hence, we finish the proof of Theorem 4. [J
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