
Mathematical
Inequalities

& Applications

Volume 20, Number 2 (2017), 427–439 doi:10.7153/mia-20-29

A NOTE ON THE SENSITIVITY ANALYSIS

FOR THE SYMPLECTIC QR FACTORIZATION
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(Communicated by S. Puntanen)

Abstract. In this note, the rigorous perturbation bounds for R factor of the implicit Bunch form
of the symplectic QR factorization under normwise perturbation are derived by using the block
matrix-vector equation approach, the technique of Lyapunov majorant function, and the Banach
fixed point principle. These bounds are tighter than the one in [Li et al. Linear Multilinear
Algebra, 63, (2015), 78–96] and can be regarded as the rigorous versions of the optimal first-
order perturbation bounds in [Li et al. J. Franklin Inst., 353, 5 (2016), 1186–1205].

1. Introduction

Let R
m×n be the set of m×n real matrices and R

m×n
r be the subset of R

m×n with
rank r . For a matrix Q ∈ R

2m×2m
2m , it is said to be symplectic if QT JQ = J , where QT

denotes the transpose of Q and

J = diag(J0,J0, · · · ,J0) ∈ R
2m×2m

with

J0 =
[

0 1
−1 0

]
.

Let A ∈ R
2m×2n with m � n . If ATJA is nonsingular, then A has the following factor-

ization

A = Q

[
R
0

]
PT = [Q1,Q2]

[
R
0

]
PT = Q1RPT , (1.1)
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where Q ∈ R
2m×2m
2m is symplectic, Q1 ∈ R

2m×2n
2n satisfies QT

1 JQ1 = J1 with J1 = J(1 :
2n,1 : 2n) , R = (ri j) ∈ R

2n×2n is upper triangular with 2×2 main diagonal blocks:

[
r2i−1,2i−1 0

0 r2i,2i

]
, r2i−1,2i−1 = r2i,2i > 0, i = 1,2, · · · ,n,

and P is a permutation matrix. The above factorization is unique and is called an
implicit Bunch form of the symplectic QR factorization [12]. Besides, some authors
also considered other forms of the symplectic QR factorization [4, 10, 13]. In this
paper, we mainly discuss the symplectic QR factorization in (1.1).

The symplectic QR factorization, combined with the Pietzsch algorithm, can be
used to accurately compute the eigenvalues of some classes of skew-symmetric or skew-
Hermitian matrices [13] and is also a useful tool in the computation of some optimal
control problems [2, 3, 8, 15]; see also [12] for a detailed introduction. Its algorithms,
stability of algorithms, and perturbation analysis have been considered in [1, 2, 3, 4,
8, 10, 12, 13]. Some first-order and rigorous perturbation bounds were presented [1,
4, 10, 13]. Recently, Li et al. [12] derived the optimal first-order perturbation bounds
of the symplectic QR factorization (1.1) under normwise perturbation and presented its
normwise condition numbers.

In this paper, we will combine the block matrix-vector equation approach (see
[11]) with the technique of Lyapunov majorant function (see [6, Definition 5.4]) and the
Banach fixed point principle (see [6, Appendix D]) to study the rigorous perturbation
bounds for R factor of the symplectic QR factorization (1.1) when the original matrix
has the normwise perturbation. The new bounds will correspond to the optimal first-
order perturbation bounds in [12] and are tighter than the one given in [10].

The rest of this paper is organized as follows. Section 2 presents some notation
and preliminaries. The new rigorous perturbation bounds are given in Section 3. In
Section 4, we give a numerical example to illustrate the results derived in Sections 3.
The last section provides the concluding remarks of the whole paper.

2. Notation and preliminaries

Most of the notation and preliminaries given in this section can also be found in
[11]. For the convenience of readers, we still exhibit them here.

Given a matrix A = (ai j) ∈ R
m×n , its spectral norm and Frobenius norm are de-

noted by ‖A‖2 and ‖A‖F , respectively. For these two matrix norms, the following
inequalities hold (see [14, pp.80]):

‖XYZ‖2 � ‖X‖2 ‖Y‖2 ‖Z‖2 , ‖XYZ‖F � ‖X‖2 ‖Y‖F ‖Z‖2 , (2.1)

whenever the matrix product XYZ is well-defined.

For the matrix A = (Ai j) ∈ R
2n×2n , where Ai j ∈ R

2×2, i, j = 1,2, · · · ,n , we define
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the following operators:

uvecb(A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(A11)
...

vec(A1n)
vec(A22)

...
vec(A2n)

...
vec

(
A(n−1)(n−1)

)
vec

(
A(n−1)n

)
vec(Ann)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
v1 , vecb(A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vec(A11)
...

vec(A1n)
...

vec(An1)
...

vec(Ann)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

4n2
,

upb(A) =

⎡
⎢⎢⎢⎣

1
2A11 A12 · · · A1n

0 1
2A22 · · · A2n

...
...

. . .
...

0 0 · · · 1
2Ann

⎤
⎥⎥⎥⎦ , utb(A) =

⎡
⎢⎢⎢⎣

A11 A12 · · · A1n

0 A22 · · · A2n
...

...
. . .

...
0 0 · · · Ann

⎤
⎥⎥⎥⎦ ,

where v1 = 2n(n+1) and the operator ‘vec’ stacks the columns of a matrix one under-
neath the other.

Let D2n ∈ R
2n×2n denote the set of diagonal positive definite matrices with 2×2

main diagonal blocks siI2 , where si > 0, i = 1,2, · · · ,n . Hereafter, Ir is the identity
matrix of order r . Then, for any D ∈ D2n ,

upb(AD) = upb(A)D, Dupb(A) = Dupb(A). (2.2)

Making use of the structures of the operators defined above, we have

uvecb(A) = Muvecbvecb(A), vecb(utb(A)) = Mutbvecb(A),

vecb(upb(A)) = Mupbvecb(A), (2.3)

where

Muvecb = diag(S1,S2, · · · ,Sn) ∈ R
v1×4n2

,

Si =
[
04(n−i+1)×4(i−1), I4(n−i+1)

] ∈ R
4(n−i+1)×4n,

Mutb = diag
(
Ŝ1, Ŝ2, · · · , Ŝn

) ∈ R
4n2×4n2

,

Ŝi = diag
(
04(i−1)×4(i−1), I4(n−i+1)

) ∈ R
4n×4n,

Mupb = diag
(
S̃1, S̃2, · · · , S̃n

) ∈ R
4n2×4n2

,

S̃i = diag
(
04(i−1)×4(i−1),1/2I4, I4(n−i)

) ∈ R
4n×4n.
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Moreover,

MuvecbM
T
uvecb = Iv1 , MT

uvecbMuvecb = Mutb. (2.4)

Thus, letting uvecb† : R
v1 → R

2n×2n be the right inverse of the operator ‘uvecb’ such
that uvecb ·uvecb† = 1v1×v1 and uvecb† ·uvecb = utb. Then the matrix of the operator
‘uvecb’ is MT

uvecb . That is, uvecb†(A) = MT
uvecbvecb(A) .

Let A = (Ai j) ∈ R
2m×2n with Ai j ∈ R

2×2, i = 1,2, · · · ,m, j = 1,2, · · · ,n . Like the
result for the regular operator ‘vec’, the following result holds for ‘vecb’:

Π̂m,nvecb(A) = vecb(AT ), (2.5)

where Π̂m,n = (Πm,n⊗Π2,2) ∈ R
4mn×4mn with Πm,n =

m
∑
i=1

n
∑
j=1

(Ei j ⊗ET
i j) . In these ex-

pressions, ⊗ denotes the Kronecker product [5, Chapter 4] and the matrix Ei j ∈ R
m×n

has entry 1 in the (i, j)-th position and zeros elsewhere. Given another matrix B , the
block Kronecker product between B and A is defined by

B�A =

⎡
⎢⎢⎢⎣

B⊗A11 B⊗A12 · · · B⊗A1n

B⊗A21 B⊗A22 · · · B⊗A2n
...

...
. . .

...
B⊗Am1 B⊗Am2 · · · B⊗Amn

⎤
⎥⎥⎥⎦ .

For the block Kronecker product, the following results hold [7]

vecb(ACB) = (BT �A)vecb(C) , (2.6)

‖B�A‖2 = ‖B‖2‖A‖2, (2.7)

(B�A)(C�G) = (BC�AG), (2.8)

(B�A)−1 = B−1 �A−1, if B and A are nonsingular. (2.9)

Here, the matrices C and G are of suitable orders and are partitioned appropriately.

In addition, the following inequality from [10, Lemma 2.1] is also necessary.

LEMMA 2.1. For any matrix A = (Ai j) ∈ R
2n×2n with Ai j ∈ R

2×2 and D ∈ D2n ,
we have ∥∥upb(A)−D−1upb

(
AT )D∥∥F �

√
1+ ς2

D‖A‖F , (2.10)

where ςD = max
1�i< j�n

{s j/si} .
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3. Perturbation bounds for the symplectic QR factorization

Assume that the matrices A , Q1 and R in (1.1) are perturbed as

A → A+ ΔA, Q1 → Q1 + ΔQ1, R → R+ ΔR,

where ΔA ∈ R
2m×2n , ΔQ1 ∈ R

2m×2n is such that (Q1 + ΔQ1)
T J (Q1 + ΔQ1) = J1 , and

ΔR ∈ R
2n×2n is upper triangular such that R+ ΔR has the same structure as that of R .

Thus, the perturbed symplectic QR factorization of A in (1.1) is

A+ ΔA = (Q1 + ΔQ1) (R+ ΔR)PT . (3.1)

Then
(A+ ΔA)T J (A+ ΔA) = P(R+ ΔR)T J1 (R+ ΔR)PT . (3.2)

In the following, we regard ΔR as the unknown matrix of the matrix equation (3.2), and
obtain the condition under which Eq. (3.2) has the unique solution.

As done in [11] and [12], from (3.2), we have

J1ΔRR−1 = upb
(
QT

1 JΔAPR−1− (QT
1 JΔAPR−1)T)+upb

(
R−TPT ΔAT JΔAPR−1)

−upb
(
R−T ΔRT J1ΔRR−1) . (3.3)

Applying the operator ‘vecb’ to (3.3) and using (2.3), (2.6) and (2.5) gives(
R−T � J1

)
vecb(ΔR) = Mupb

[(
R−T �QT

1 J
)− (QT

1 J �R−T)Π̂m,n
]
vecb(ΔAP)

+Mupb
(
R−T �R−T)vecb

(
PT ΔATJΔAP−ΔRTJ1ΔR

)
.

As done in [11] and noting J−1
1 = JT

1 and (2.9), we can obtain

vecb(ΔR) =
(
RT � JT

1

)
Mupb

[(
R−T �QT

1 J
)− (QT

1 J �R−T) Π̂m,n
]
vecb(ΔAP)

+
(
RT � JT

1

)
Mupb

(
R−T �R−T)vecb

(
PT ΔAT JΔAP−ΔRTJ1ΔR

)
(3.4)

and show that Eq. (3.4) is equivalent to

uvecb(ΔR)

= Muvecb
(
RT � JT

1

)
Mupb

[(
R−T �QT

1 J
)− (QT

1 J �R−T)Π̂m,n
]
vecb(ΔAP)

+Muvecb
(
RT � JT

1

)
Mupb

(
R−T �R−T)vecb

(
PT ΔATJΔAP−ΔRTJ1ΔR

)
. (3.5)

As a matter of convenience, let

GR = Muvecb
(
RT � JT

1

)
Mupb

[(
R−T �QT

1 J
)− (QT

1 J �R−T) Π̂m,n
]
,

HR = Muvecb
(
RT � JT

1

)
Mupb

(
R−T �R−T) .

Thus, applying the operator ‘uvecb† ’ to (3.5) leads to

ΔR = uvecb† [GRvecb(ΔAP)+HRvecb
(
PT ΔAT JΔAP−ΔRTJ1ΔR

)]
.
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The above equation can be written as an operator equation for ΔR :

ΔR = Φ(ΔR,ΔA)

= uvecb† [GRvecb(ΔAP)+HRvecb
(
PT ΔATJΔAP−ΔRTJ1ΔR

)]
. (3.6)

As done in [11] and [9], in the following, we will apply the technique of Lyapunov
majorant function and the Banach fixed point principle to investigate the rigorous per-
turbation bounds for ΔR based on the operator equation (3.6). For completeness of the
method and convenience of readers, we include the detailed process here though some
steps are the same as the ones in [11].

Assume that Z ∈ R
2n×2n is upper triangular with the same structure as that of ΔR ,

‖Z‖F � ρ for some ρ � 0, and ‖ΔA‖F = δ . Then it follows from the definition of the
operator ‘uvecb† ’ and (2.1) that

‖Φ(Z,ΔA)‖F � ‖GR‖2δ +‖HR‖2δ 2 +‖HR‖2ρ2. (3.7)

From (3.7), we have the Lyapunov majorant function of the operator equation (3.6)

h(ρ ,δ) = ‖GR‖2δ +‖HR‖2δ 2 +‖HR‖2ρ2

and the Lyapunov majorant equation

h(ρ ,δ ) = ρ , i.e., ‖GR‖2δ +‖HR‖2δ 2 +‖HR‖2ρ2 = ρ . (3.8)

Assume that δ ∈ Ω =
{

δ � 0 : 1−4‖HR‖2

(‖GR‖2δ +‖HR‖2δ 2
)

� 0
}

. Then, the
Lyapunov majorant equation (3.8) has two nonnegative roots: ρ1 (δ ) � ρ2 (δ ) with

ρ1 (δ ) = f (δ ) =
2
(‖GR‖2δ +‖HR‖2δ 2

)
1+

√
1−4‖HR‖2 (‖GR‖2δ +‖HR‖2δ 2)

.

Let the set B(δ ) be

B(δ ) = {Z ∈ R
2n×2n : Having the same strure as that of ΔR and ‖Z‖F � f (ρ)},

which is closed and convex. We can check that the operator Φ(·,ΔA) maps the set
B(δ ) into itself and for Z, Z̃ ∈ B(δ ) ,∥∥Φ(Z,ΔA)−Φ

(
Z̃,ΔA

)∥∥
F � h′ρ ( f (δ ) ,δ )

∥∥Z− Z̃
∥∥

F .

Since the derivative of the function h(ρ ,δ ) relative to ρ at f (δ ) satisfies

h′ρ ( f (δ ) ,δ ) = 1−
√

1−4‖HR‖2 (‖GR‖2δ +‖HR‖2δ 2) < 1

when δ ∈ Ω1 =
{

δ � 0 : 1−4‖HR‖2

(‖GR‖2δ +‖HR‖2δ 2
)

> 0
}

. Then the operator
Φ(·,ΔA) is contractive on the set B(δ ) for δ ∈ Ω1 . Thus, from the Banach fixed
point principle, we have that the operator equation (3.6), i.e., the matrix equation (3.2),
has a unique solution in the set B(δ ) . As a result, ‖ΔR‖F � f (δ ) for δ ∈ Ω1 . In this
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case, the unknown matrix ΔQ1 in (3.1) is also determined uniquely. This fact can be
justified by noting that ΔR is determined uniquely and R+ ΔR is nonsingular, where
the latter can be derived from∥∥ΔRR−1

∥∥
2 � 2‖HR‖2 ‖ΔR‖F � 2‖HR‖2 f (δ )

=
4‖HR‖2

(‖GR‖2δ +‖HR‖2δ 2
)

1+
√

1−4‖HR‖2 (‖GR‖2δ +‖HR‖2δ 2)
< 1.

To obtain the above inequality, we have used the following inequality

‖HR‖2 � 1
2

∥∥R−1
∥∥

2 ,

which can be verified by noting the structures of the matrices Muvecb , Mupb , and HR .
In summary, we have the following main theorem.

THEOREM 3.1. Let the unique symplectic QR factorization of A ∈ R
2m×2n be as

in (1.1), ΔA ∈ R
2m×2n , and

GR = Muvecb
(
RT � JT

1

)
Mupb

[(
R−T �QT

1 J
)− (QT

1 J �R−T) Π̂m,n
]
,

HR = Muvecb
(
RT � JT

1

)
Mupb

(
R−T �R−T) .

If

‖HR‖2

(
‖GR‖2‖ΔA‖F +‖HR‖2 ‖ΔA‖2

F

)
<

1
4
, (3.9)

then A+ ΔA has the unique symplectic QR factorization (3.1). Moreover,

‖ΔR‖F �
2
(
‖GR‖2‖ΔA‖F +‖HR‖2 ‖ΔA‖2

F

)

1+
√

1−4‖HR‖2

(
‖GR‖2‖ΔA‖F +‖HR‖2 ‖ΔA‖2

F

) (3.10)

� 2
(
‖GR‖2‖ΔA‖F +‖HR‖2 ‖ΔA‖2

F

)
(3.11)

< (1+2‖GR‖2)‖ΔA‖F . (3.12)

Proof. It is easy to see that the condition (3.9) is the same as the one in Ω1 . Thus,
from the discussions before Theorem 3.1, it suffices to obtain the bound (3.12). This
can be done by noting (3.11) and the fact

2‖HR‖2‖ΔA‖F �
√

1+‖GR‖2
2 −‖GR‖2 < 1.

which can be derived from (3.9). �

REMARK 3.1. From (3.10), by omitting the higher-order terms, we can get the
first-order perturbation bound of R factor in (1.1):

‖ΔR‖F � ‖GR‖2‖ΔA‖F +O
(
‖ΔA‖2

F

)
, (3.13)
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under the condition which ensures that the unique symplectic QR factorization of A+
ΔA exists. This condition like (3.2) in [12] or (3.1) in [10] will be weaker than (3.9). In
[12, Theorem 3.2], the authors presented the following optimal first-order bound for R
factor in (1.1):

‖ΔR‖F �
∥∥(RT ⊗ JT

1

)
DKQR

∥∥
2‖ΔA‖F +O

(
‖ΔA‖2

F

)
, (3.14)

where

D = diag(D1,D1,D2,D2, · · · ,Dn,Dn) ∈ R
4n2×4n2

with

Dk = diag

⎛
⎜⎝1, · · · ,1︸ ︷︷ ︸

2k−2

,
1
2
,
1
2
,0, · · · ,0︸ ︷︷ ︸

2n−2k

⎞
⎟⎠ ∈ R

2n×2n, k = 1,2, · · · ,n,

and

KQR =
(
R−TPT ⊗QT

1 J
)− (QT

1 J⊗R−TPT )Π2m,2n.

Now we show that the bound (3.14) is the same as (3.13). In fact, according to the
above definition and the definition of the operator ‘upb’, we can check that for any
matrix X ∈ R

2n×2n ,

Dvec(X) = vec(upb(X)) .

Thus, for any matrix Y ∈ R
2m×2n , using the fact that ‖vec(Y )‖2 = ‖vecb(Y )‖2 , (2.6),

and (2.3), we have

∥∥(RT ⊗ JT
1

)
DKQRvec(Y )

∥∥
2

=
∥∥(RT ⊗ JT

1

)
Dvec

(
QT

1 JYPR−1−R−TPTYT JT Q1
)∥∥

2

=
∥∥(RT ⊗ JT

1

)
vec

[
upb

(
QT

1 JYPR−1−R−TPTYT JT Q1
)]∥∥

2

=
∥∥vec

[
JT
1 upb

(
QT

1 JYPR−1−R−TPTYT JT Q1
)
R
]∥∥

2

=
∥∥vecb

[
JT
1 upb

(
QT

1 JYPR−1−R−TPTYT JT Q1
)
R
]∥∥

2

=
∥∥(RT � JT

1

)
Mupb

[
vecb

(
QT

1 JYPR−1−R−TPTYT JTQ1
)]∥∥

2

=
∥∥(RT � JT

1

)
Mupb

[(
R−T �QT

1 J
)− (QT

1 J �R−T) Π̂m,n
]
vecb(YP)

∥∥
2. (3.15)

From the definitions of the matrices Mutb and Mupb , we can verify that

Mutb
(
RT � JT

1

)
Mupb =

(
RT � JT

1

)
Mupb,

which together with (3.15) and (2.4) gives

∥∥(RT ⊗ JT
1

)
DKQRvec(Y )

∥∥
2 =

∥∥MT
uvecbGRvecb(YP)

∥∥
2 = ‖GRvecb(YP)‖2.
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Thus, from the definition of spectral norm and the fact that ‖vec(Y )‖2 = ‖Y‖F =
‖vecb(YP)‖2 , we get∥∥(RT ⊗ JT

1

)
DKQR

∥∥
2 = max

‖vec(Y )‖2=1

∥∥(RT ⊗ JT
1

)
DKQRvec(Y )

∥∥
2

= max
‖vec(Y )‖2=1

‖GRvecb(YP)‖2

= max
‖vecb(YP)‖2=1

‖GRvecb(YP)‖2 = ‖GR‖2 .

So the bounds (3.14) and (3.13) are the same. Therefore, the rigorous bounds in Theo-
rem 3.1 can be regarded as the rigorous versions of the optimal first-order perturbation
bound given in [12].

REMARK 3.2. For another form of the symplectic QR factorization, the following
rigorous perturbation bound were derived in [10, Theorem 5.1],

‖ΔR‖F �
(√

6+
√

3
)(

inf
D∈D2n

√
1+ ς2

Dκ
(
D−1R

))‖Q1‖2‖ΔA‖F , (3.16)

under the condition ‖Q‖2

∥∥R−1
∥∥

2‖ΔA‖F <
√

3/2− 1. Here, for a nonsingular matrix
X , κ(X) denotes its condition number and is defined by κ(X) = ‖X‖2

∥∥X−1
∥∥

2 . As
pointed out in [12], the bound still holds for the factorization (1.1). In the following,
we will show that the bound (3.12) is tighter than (3.16).

In fact, similar to the proof of Corollary 3.4 in [12], for any D ∈ D2n and X ∈
R

2m×2n , using (2.9), (2.8) , (2.7) and (2.1), we have

‖GR‖2

=
∥∥∥Muvecb

(
RT �JT

1

)(
D−1 � I2n

)
(D� I2n)Mupb

[(
R−T �QT

1 J
)
−
(
QT

1 J �R−T
)

Π̂m,n

]∥∥∥
2

=
∥∥∥Muvecb

(
RT D−1 �JT

1

)
Mupb

[(
DR−T �QT

1 J
)
−
(
DQT

1 J �R−T
)

Π̂m,n

]∥∥∥
2

�
∥∥∥RTD−1

∥∥∥
2

∥∥∥Mupb

[(
DR−T �QT

1 J
)
−
(
DQT

1 J �R−T
)

Π̂m,n

]∥∥∥
2

=
∥∥∥RTD−1

∥∥∥
2

max
‖vecb(X)‖2=1

∥∥∥Mupb

[(
DR−T �QT

1 J
)
−
(
DQT

1 J �R−T
)

Π̂m,n

]
vecb (X)

∥∥∥
2
.

(3.17)

Whereas, combining (2.5), (2.6), (2.3), (2.2), (2.10) and (2.1) gives

max
‖vecb(X)‖2=1

∥∥Mupb
[(

DR−T �QT
1 J
)− (DQT

1 J �R−T)Π̂m,n
]
vecb(X)

∥∥
2

= max
‖vecb(X)‖2=1

∥∥Mupbvecb
(
QT

1 JXR−1D−R−TXTJT Q1D
)∥∥

2

= max
‖vecb(X)‖2=1

∥∥∥vecb
(
upb

(
QT

1 JXR−1D−D−1(QT
1 JXR−1D

)T
D
))∥∥∥

2

= max
‖X‖F=1

∥∥∥upb
(
QT

1 JXR−1D
)−D−1upb

((
QT

1 JXR−1D
)T)

D
∥∥∥

F

� max
‖X‖F=1

√
1+ ς2

D

∥∥QT
1 JXR−1D

∥∥
F �

√
1+ ς2

D

∥∥R−1D
∥∥

2 ‖Q1‖2 . (3.18)
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Thus, substituting (3.18) into (3.17) yields

‖GR‖2 �
(

inf
D∈D2n

√
1+ ς2

Dκ
(
D−1R

))‖Q1‖2.

Meanwhile, from the fact QT
1 JQ1 = J1 , it is easy to obtain that(

inf
D∈D2n

√
1+ ς2

Dκ
(
D−1R

))‖Q1‖2 � 1.

Thus, we have the claimed result that the bound (3.12) is indeed tighter than (3.16).
Naturally, the bound (3.10) is also always tighter than (3.16). However, in general, the
bound (3.10) is not attainable. This is because, to obtain the bound (3.10), we have used
the triangle inequality and the submultiplicative inequality several times. Only when all
the inequalities in those inequalities are equalities can the equality in the bound (3.10)
be achieved. In general, this case is infrequent. Whereas, numerical results given in
Section 4 show that the bound (3.12) and hence (3.10) can be much tighter than (3.16).

REMARK 3.3. As done in [12], from

ΔQ1 = ΔAPR−1−Q1ΔRR−1−ΔQ1ΔRR−1, (3.19)

which is derived from (3.1) and (1.1), by omitting the higher-order terms and using
(2.6), (3.4), (2.8), we obtain

vecb(ΔQ1) ≈ GQ1vecb(ΔAP) , (3.20)

where

GQ1 =
(
R−T � I2m

)− (I2n �Q1J
T
1

)
Mupb

[(
R−T �QT

1 J
)− (QT

1 J �R−T)Π̂m,n
]
.

Then

‖ΔQ1‖F � ‖GQ1‖2‖ΔA‖F +O
(
‖ΔA‖2

F

)
. (3.21)

Similar to the discussions in Remark 3.1, we can verify that∥∥(R−TPT ⊗ I2m
)
+(I2n⊗Q1J1)DKQR

∥∥
2 = ‖GQ1‖2.

So the bound (3.21) is same as the optimal one in [12, Theorem 3.6].
Furthermore, using (3.19) and the results on R factor given in Theorem 3.1, we

can obtain the rigorous perturbation bounds for Q1 factor:

‖ΔQ1‖F �
(
2+

√
2
)∥∥(I2n �Q1J

T
1

)
Mupb

(
R−T �R−T)∥∥

2

(
‖ΔA‖2

F +‖ΔR‖2
F

)
+
(
2+

√
2
)
‖GQ1‖2‖ΔA‖F

�
(
2+

√
2
)[‖GQ1‖2 +

∥∥(R−T �Q1
)∥∥

2 (1+‖GR‖2)
]‖ΔA‖F ,

which correspond to the optimal first-order perturbation bound (3.21). However, these
two bounds are larger than the one given in [10, Theorem 5.1]. So we omit their detailed
derivation.
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4. Numerical experiments

In this section, a numerical example from [12] is used to compare the bounds
derived in this paper with the corresponding ones given in [10] and [12].

EXAMPLE 4.1. This example is the same as Example 5.1 of [12]. Specifically, let
ε > 0 be small enough, and

A =

⎡
⎢⎢⎣

1 0 0 0
0 0 ε2 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ .

From the explanations in [12, Example 5.1], we have that A has the unique symplectic
QR factorization (1.1), and Q = Q1 = diag(ε−1,ε,1,1) ,R = diag(ε,ε,1,1) and P =
[e1,e3,e2,e4] . Using the expressions of GR and GQ1 , we can verify that

GR =

⎡
⎣G11 0 0 0

0 G22 G23 0
0 0 0 G34

⎤
⎦ ∈ R

12×16, GQ1 =

⎡
⎢⎢⎣

H11 0 0 0
0 0 H23 0
0 0 H33 0
0 0 0 H44

⎤
⎥⎥⎦ ∈ R

16×16,

where

G11 =

⎡
⎢⎢⎣

ε
2 0 0 1

2ε
0 0 0 0
0 0 0 0
ε
2 0 0 1

2ε

⎤
⎥⎥⎦ ,G22 =

⎡
⎢⎢⎣

ε 0 0 0
0 1

ε 0 0
0 0 ε 0
0 0 0 1

ε

⎤
⎥⎥⎦ ,G23 =

⎡
⎢⎢⎣

0 0 0 1
ε

0 − 1
ε 0 0

0 0 − 1
ε 0

1
ε 0 0 0

⎤
⎥⎥⎦ ,G34 =

⎡
⎢⎢⎣

1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2

⎤
⎥⎥⎦ ,

H11 =

⎡
⎢⎢⎣

1
2ε 0 0 − 1

2ε3

0 1
ε 0 0

0 0 1
ε 0

− ε
2 0 0 1

2ε

⎤
⎥⎥⎦ ,H23 =

⎡
⎢⎢⎣

0 0 0 − 1
ε2

0 1 0 0
0 0 1

ε2 0
−1 0 0 0

⎤
⎥⎥⎦ ,H33 =

1
ε
I4,H44 =

⎡
⎢⎢⎣

1
2 0 0 − 1

2
0 1 0 0
0 0 1 0
− 1

2 0 0 1
2

⎤
⎥⎥⎦ .

Thus, upon computation, we have

b(3.13) = ‖GR‖2 =
√

2
ε

, b(3.14) =
∥∥(RT ⊗ JT

1

)
DKQR

∥∥
2 =

√
2

ε
,

b(3.21) = ‖GQ1‖2 =
1+ ε4

2ε3 =
∥∥(R−TPT ⊗ I2m

)
+(I2n⊗Q1J1)DKQR

∥∥
2,

and

b(3.12) = 1+2‖GR‖2 = 1+
2
√

2
ε

,

b(3.16) =
(√

6+
√

3
)(

inf
D∈D2n

√
1+ ς2

Dκ
(
D−1R

))‖Q1‖2 = (
√

6+
√

3)

√
1+ ε2

ε2 .

Here, the results from [12, Example 5.1] are used to obtain b(3.16) . It is easy to see
that, for this example, the first-order perturbation bounds (3.13) and (3.21) are the same
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as the corresponding optimal ones given in [12], and the rigorous perturbation bound
(3.12) is tighter than the one from [10], i.e., the bound (3.16). These results confirm
the analysis given in Remarks 3.1, 3.2, and 3.3. To illustrate the differences between
the bounds (3.12) and (3.16) clearly, a figure on the values of ε and the corresponding
bounds (3.12) and (3.16) is given below. More specifically, we set ε = 10−2 , 10−3 ,
10−4 , 10−5 , 10−6 , 10−7 , and 10−8 and then compute the corresponding bounds (3.12)
and (3.16). This figure shows that the bound (3.12) can be much tighter than (3.16).
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Figure 1: Comparison of the bounds (3.12) and (3.16)

5. Concluding remarks

In this note, we consider the rigorous perturbation bounds for R factor of the
implicit Bunch form of the symplectic QR factorization when the original matrix has
the normwise perturbation. Using the approach in this paper, we can also obtain the
rigorous perturbation bounds for R factor with componentwise perturbation, i.e., the
perturbation ΔA ∈ R

2m×2n of A satisfies:

|ΔA| � εC |A| ,
where C = (ci j) ∈ R

2m×2m with 0 � ci j � 1, ε � 0 is a small constant, and for any
matrix X = (xi j) , |X | is define by (|xi j|) . However, we cannot show that the obtained
bounds are always tighter than the corresponding one in [10] in theory though the for-
mer behave better in numerical experiments. So these results are not presented in this
note.
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