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EXPLICIT TRACES OF FUNCTIONS FROM SOBOLEV

SPACES AND QUASI–OPTIMAL LINEAR INTERPOLATORS

DANIEL ESTÉVEZ

Abstract. Let Λ⊂R be a strictly increasing sequence. For r = 1,2 , we give a simple explicit ex-
pression for an equivalent norm on the trace spaces Wr

p(R)|Λ , Lr
p(R)|Λ of the non-homogeneous

and homogeneous Sobolev spaces with r derivatives Wr
p(R) , Lr

p(R) . As Fefferman, Israel and

Luli show, such simple result is impossible for Sobolev spaces of R
d for d � 2 .

We also construct an interpolating spline of low degree having optimal norm up to a con-
stant factor. This spline and the equivalent trace norm are very easy to compute. We also con-
jecture, what is the expression for the equivalent trace norm for any r � 1 and give some partial
results, which, in particular, confirm this conjecture.
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