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Abstract. In this paper, we study the exact values of the generalized von Neumann-Jordan con-

stant C(p)
NJ (X) for X being the regular octagon space. We give that C(p)

NJ (X) = 1+(
√

2−1)p is

valid for p � 2 , and C(p)
NJ (X) = 22−p[1+(

√
2−1)

p
p−1 ]p−1 for 1 < p � 2 .

1. Introduction

In order to study the geometric structure of a Banach space, geometric constants
play an important role. In many geometric constants, the von Neuman-Jordan constant
CNJ(X) is widely treated. In [1], as a generalization of the von Neuman-Jordan con-
stant, a new geometric constant called the generalized von Neumann-Jordan constant

C(p)
NJ (X) was introduced. The authors proved that the C(p)

NJ (X) was strongly connected
with geometric structure, such as uniformly non-square, uniformly normal structure.

Hence it’s necessary to compute the C(p)
NJ (X) for some concrete spaces.

Throughout this paper, let X = (X ,‖ ·‖) be a real Banach spaces. We will use BX ,
SX and ex(BX) to denote unit ball, unit sphere of X and the set of extreme points of
BX , respectively.

Recall that the von Neumann-Jordan constant CNJ(X) of a Banach space X was
introduced by Clarkson [2], as the smallest constant C for which,

1
C

� ‖x+ y‖2 +‖x− y‖2

2(‖x‖2 +‖y‖2)
� C,

holds for all x,y ∈ X .
The properties of CNJ(X) have been investigated in many papers (see for instances

[3]–[11]).
Recently, a generalized form of this constant was introduced as following
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DEFINITION 1.1. The generalized von Neumann-Jordan constant C(p)
NJ (X) is de-

fined by [1]

C(p)
NJ (X) := sup

{‖x+ y‖p +‖x− y‖p

2p−1(‖x‖p +‖y‖p)
: x,y ∈ X ,(x,y) �= (0,0)

}
,

where 1 � p < ∞.

It’s equivalent to

C(p)
NJ (X) = sup{‖x+ ty‖p +‖x− ty‖p

2p−1(1+ t p)
: x,y ∈ SX ,0 � t � 1},

where 1 � p < ∞.
Now let us collect some properties of this constant (see [1]):

(i) 1 � C(p)
NJ (X) � 2;

(ii) X is uniformly non-square if and only if C(p)
NJ (X) < 2;

(iii) Let r ∈ (1,2] and 1
r + 1

r′ = 1. Then for X = Lr[0,1] ,

(1) if 1 < p � r then C(p)
NJ (X) = 22−p and if r < p � r′ then C(p)

NJ (X) = 2
p
r −p+1 ,

(2) if r′ < p < ∞ then C(p)
NJ (X) = 1.

In this paper, for any p > 1, we obtain the exact values of the generalized von

Neumann-Jordan constant C(p)
NJ (X) for X being the regular octagon space.

2. Main results

Firstly, in order to get our main result, we need following lemmas.

LEMMA 2.1. Let p � 2.11 . Then

(
√

2+1)p−1 +1 � (2
√

2)p−1[1+(
√

2−1)p]. (2.1)

Proof. Obviously, (2.1) is equivalent to

(
√

2+1)p +1√
2+1

+
√

2√
2+1

� (2
√

2)p−1 (
√

2+1)p +1

(
√

2+1)p
=

(4−2
√

2)p−1
√

2+1
[(
√

2+1)p +1].

So, we only need to prove the following (2.2)

[(4−2
√

2)p−1−1][1+(
√

2+1)p] �
√

2. (2.2)

Now by p � 2.11, we have

[(4−2
√

2)p−1−1][1+(
√

2+1)p] � [(4−2
√

2)1.11 −1][1+(
√

2+1)2.11]

= 1.426 · · ·�
√

2,

as desired. �
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LEMMA 2.2. Let 2 � p � 2.11 and x ∈ [
√

2,1.735] . Then

(x+1)p−1− (
√

2−1)[x− (
√

2−1)]p−1 < 2p−1[1+(
√

2−1)p]. (2.3)

Proof. Letting h(x) = ( x+1
2 )p−1− (

√
2−1)( x−(

√
2−1)

2 )p−1 , we can easily find the
function h(x) is increasing on [

√
2,1.735] . So by

h(1.735) �
(2.735

2

)1.11− (
√

2−1)
(2.735−√

2
2

)1.11

= 1.154 · · ·< 1.155 · · ·= 1+(
√

2−1)2.11

� 1+(
√

2−1)p,

we know that (2.3) is valid. �
LEMMA 2.3. Let p � 2 and t ∈ [0,1.735−1] . Then

(1+ t)p−1 +(1− (
√

2−1)t)p−1

2p−1 � 1+(
√

2−1)p. (2.4)

Proof. Clearly,

(1+t)p−1+(1−(
√

2−1)t)p−1

2p−1 �
(1+1.735−1

2

)p−1
+
(1−(

√
2−1)×1.735−1

2

)p−1

� 0.79p−1 +0.381p−1.

On the other hand, by p � 2, we have

(
√

2+1)p−1(1−0.79p−1)− ((
√

2+1)×0.381)p−1+
√

2−1
� (

√
2+1)×0.21− (

√
2+1)×0.381+

√
2−1

= 0.0013 · · ·� 0.

Then,
1−0.79p−1−0.381p−1+(

√
2−1)p � 0,

which implies (2.4). �

LEMMA 2.4. Let p � 2 and τ ∈ [0,
√

2
2 ] . Then

2p−1(1+ τ p)(1+(
√

2−1)p) � (1+ τ)p +(1− (
√

2−1)τ)p. (2.5)

Proof. Letting f (τ)= 2p−1(1+τ p)(1+(
√

2−1)p)−(1+τ)p−(1−(
√

2−1)τ)p ,
we have f (0) = 2p−1(1+(

√
2−1)p)−2 � 0 and

f
(√2

2

)
=
( 1√

2

)p{2p−1(1+(
√

2)p)(1+(
√

2−1)p)−1− (
√

2+1)p}

�
( 1√

2

)p{(1+
√

2)p(1+(
√

2−1)p))−1− (
√

2+1)p} = 0.
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Hence, to complete the proof of (2.5), it is enough to show that f (t0) � 0 for any

possible stationary point t0 ∈ (0,
√

2
2 ) . Now suppose that f (τ) have a stationary point

t0 ∈ (0,
√

2
2 ) , then we have

(1+ t0)p−1 = 2p−1t p−1
0 (1+(

√
2−1)p)+ (

√
2−1)(1− (

√
2−1)t0)p−1, (2.6)

that is,

(1+ t0)p−1 +(1− (
√

2−1)t0)p−1

= 2p−1t p−1
0 (1+(

√
2−1)p)+

√
2(1− (

√
2−1)t0)p−1. (2.7)

Case I. p � 2.11. Applying Lemma 2.1 and through (2.6), (2.7), we have

f (t0) = 2p−1(1+ t p
0 )[1+(

√
2−1)p]− (1+ t0)p− [1− (

√
2−1)t0]p

= 2p−1(1+ t p
0 )[1+(

√
2−1)p]− (1+ t0){2p−1t p−1

0 [1+(
√

2−1)p]
+(

√
2−1)[1− (

√
2−1)t0]p−1}− [1− (

√
2−1)t0]p

= 2p−1[1+(
√

2−1)p]−2p−1t p−1
0 (1+(

√
2−1)p)−√

2[1− (
√

2−1)t0]p−1

= 2p−1[1+(
√

2−1)p]− (1+ t0)p−1− [1− (
√

2−1)t0]p−1

� 2p−1[1+(
√

2−1)p]− (1+ 1√
2
)p−1− [1− (

√
2−1) 1√

2
]p−1

� 0

Case II. 2 � p � 2.11. By (2.6),

(1+ t−1
0 )p−1− (

√
2−1)(t−1

0 − (
√

2−1))p−1 = 2p−1(1+(
√

2−1)p).

Hence by Lemma 2.2, we get t0 � 1.735−1 . Therefore by Lemma 2.3 we have

f (t0) = 2p−1(1+(
√

2−1)p)− (1+ t0)p−1− (1− (
√

2−1)t0)p−1 � 0. �

LEMMA 2.5. Let X be any Banach space, then for any α,β ∈ [0,1] and any
x1,x2,y1,y2 ∈ BX with x = αx1 +(1−α)x2 , y = βy1 +(1−β )y2 , we have

‖x+ ty‖p +‖x− ty‖p � max{‖xi + ty j‖p +‖xi− ty j‖p : i, j = 1,2}.

Proof. By Hölder inequality, for any α,β ∈ [0,1] and any x1,x2,y1,y2 ∈ BX with
x = αx1 +(1−α)x2 , y = βy1 +(1−β )y2 , we have

‖x+ ty‖p +‖x− ty‖p

= ‖α(x1 + ty)+ (1−α)(x2 + ty)‖p +‖α(x1− ty)+ (1−α)(x2− ty)‖p

� α‖x1 + ty‖p +(1−α)‖x2 + ty‖p + α‖x1− ty‖p +(1−α)‖x2− ty‖p

= α[‖β (x1 + ty1)+ (1−β )(x1 + ty2)‖p +‖β (x1− ty1)+ (1−β )(x1− ty2)‖p]
+(1−α)[‖β (x2 + ty1)+ (1−β )(x2 + ty2)‖p +‖β (x2− ty1)+ (1−β )(x2− ty2)‖p]

� αβ [‖x1 + ty1‖p +‖x1− ty1‖p]+ α(1−β )[‖x1 + ty2‖p +‖x1− ty2‖p]
+(1−α)β [‖x2 + ty1‖p +‖x2− ty1‖p]+ (1−α)(1−β )[‖x2+ ty2‖p +‖x2− ty2‖p]

� max{‖xi + ty j‖p +‖xi− ty j‖p : i, j = 1,2}. �
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THEOREM 2.1. Let p � 2 and X be the regular octagon space which is R
2 en-

dowed with the norm

‖x‖ = max{|x1|+(
√

2−1)|x2|, |x2|+(
√

2−1)|x1|}.

Then

C(p)
NJ (X) = 1+(

√
2−1)p. (2.8)

Proof. Firstly, we can prove that

‖x+ ty‖p +‖x− ty‖p � max{(1+ t)p +(1− (
√

2−1)t)p,

(1+(
√

2−1)p)(1+ t)p,2(1+(
√

2−1)t)p} (2.9)

for any x,y ∈ ex(BX ) and every t ∈ [0,1].
Since ex(BX ) = {(±1,0),(0,±1),(± 1√

2
, 1√

2
),(± 1√

2
,− 1√

2
)} and we can change

x into −x or y into −y . So we may assume that x,y = (0,1) , (1,0) or (± 1√
2
, 1√

2
) .

Case I. x = (1,0) .
Ia. If y = (1,0) , then

‖x+ ty‖p +‖x− ty‖p = (1+ t)p +(1− t)p � (1+ t)p +(1− (
√

2−1)t)p.

Hence, (2.9) is valid for this case.
Ib. If y = (0,1) , then

‖x+ ty‖p +‖x− ty‖p = 2(1+(
√

2−1)t)p.

Ic. If y = ( 1√
2
, 1√

2
) , then we can get

‖x+ ty‖p +‖x− ty‖p = (1+ t)p +(1− (
√

2−1)t)p

is valid for t ∈ [0, 1√
2
] , and

‖x+ ty‖p +‖x− ty‖p = (1+(
√

2−1)p)(1+ t)p.

is valid for t ∈ [ 1√
2
,1] . Hence (2.9) is also valid.

Case II. x = ( 1√
2
, 1√

2
) .

IIa. If y = (1,0) or y = (0,1) , then ‖x + ty‖ = 1 + t and ‖x− ty‖ = max{1−
(
√

2−1)t,(
√

2−1)(1+ t)} .
IIb If y = ( 1√

2
, 1√

2
) , then ‖x+ ty||= 1+ t, and ‖x− ty‖= 1− t .

IIc If y = (− 1√
2
, 1√

2
) , then ‖x+ ty‖= ‖x− ty‖= 1+(

√
2−1)t.

Case III. x = (0,1) or x = (− 1√
2
, 1√

2
) . These cases can be prove similarly as

above. Hence, we can show (2.9) is valid by the case I. Applying Lemma 2.5, we have
(2.9) is also valid for any x,y ∈ SX and every t ∈ [0,1] .
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Now letting ψ(t) = 2(1+(
√

2−1)t)p

2p−1(1+t p) , we have

ψ ′(t) =
2p(1+(

√
2−1)t)p−1

2p−1(1+ t p)2 {
√

2−1− t p−1}.

So,

maxt∈[0,1] ψ(t) = ψ((
√

2−1)
1

p−1 )
= 22−p(1+(

√
2−1)

p
p−1 )p−1

� 1+(
√

2−1)p.

Noting that (1 + (
√

2− 1)p)(1 + t)p � (1 + t)p + (1− (
√

2− 1)t)p if and only if t ∈
[ 1√

2
,1] , we can get

C(p)
NJ (X) � 1+(

√
2−1)p.

by Lemma 2.4. Finally, taking x0 = (1,0) and y0 = ( 1√
2
, 1√

2
) , we have

C(p)
NJ (X) � ‖x0 + y0‖p +‖x0− y0‖p

2p = 1+(
√

2−1)p.

This completes the proof of (2.8). �
Let’s turn to consider the case 1 < p � 2. Firstly, we need the following lemma.

LEMMA 2.6. Let α ∈ [0,1] , then

3α

2α +
2
2α � 5

2
, (2.10)

and

(
√

2)α +(
√

2−1)α +(2−
√

2)α �
√

2+1. (2.11)

Proof. Letting f (α) = 3α +2− 5
2 ×2α , we have

f ′(α) = 2α
[(3

2

)α
ln3− 5

2
ln2
]

� 2α
[3
2

ln3− 5
2

ln2
]

< 0,

and hence f (α) � f (1) = 0 for α ∈ [0,1] .
Next, we consider the function g(x) = xα +(x−1)α +(2− x)α − x . By applying

g′′(x) = α(α − 1)[xα−2 + (x− 1)α−2 + (2− x)α−2] � 0 on (1,2) , we get g(x) is a
concave function on [1,2] . Therefore by g(1) = 1 and (2.10) we have,

g(
√

2)−g(1)√
2−1

� g(1.5)−g(1)
1.5−1

=
( 3

2 )α + 2
2α − 5

2

0.5
� 0.

This completes the proof of (2.11). �
By the proof of Theorem 2.1, we have
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THEOREM 2.2. Let 1 < p � 2 and X be the regular octagon space. Then

C(p)
NJ (X) = 22−p(1+(

√
2−1)

p
p−1 )p−1.

Proof. Taking f (t) = (1+t)p+(1−(
√

2−1)t)p

2p−1(1+t p) , from f ′(t0) = 0, we can find t0 must
satisfies

(1+ t)p−1
√

2−1+ t p−1
=

(1− (
√

2−1)t)p−1

1− t p−1 . (2.12)

On [0, 1√
2
] , we note the function φ(t) =: (1+t)p−1√

2−1+t p−1 is decreasing from
√

2 + 1 to
(
√

2+1)p−1

(
√

2)p−1(
√

2−1)+1
, and the function ϕ(t)=: (1−(

√
2−1)t)p−1

1−t p−1 is increasing from 1 to 1
(
√

2)p−1−1

(easy to see (
√

2+1)p−1

(
√

2)p−1(
√

2−1)+1
< 1

(
√

2)p−1−1
). So the solution of (2.12) is unique. Now by

(
√

2+1)
1

p−1 +
√

2 � 2+
√

2 and (2.11) for α = p−1, we have(
1− 2

(
√

2+1)
1

p−1 +
√

2

)p−1
1+(

√
2)p−1

√
2+1− (

√
2)p−1

�
(
1− 2

2+
√

2

)p−1 1+(
√

2)p−1
√

2+1− (
√

2)p−1

=
(
√

2−1)p−1 +(2−√
2)p−1

√
2+1− (

√
2)p−1

� 1.

Hence,

φ(
√

2(
√

2−1)
1

p−1 ) =
(1+

√
2(
√

2−1)
1

p−1 )p−1
√

2−1+(
√

2)p−1(
√

2−1)

� [1−√
2(
√

2−1)
p

p−1 ]p−1

1− (
√

2)p−1(
√

2−1)
= ϕ(

√
2(
√

2−1)
1

p−1 ).

So we must have t0 �
√

2(
√

2−1)
1

p−1 by φ(0) > ϕ(0) . And also

maxt∈[0, 1√
2
] f (t) = f (t0) =

(1+ t0)p−1 +(1− (
√

2−1)t0)p−1

2p−1

� 22−p
[
1+(

√
2−1)

t0√
2

]p−1

� 22−p(1+(
√

2−1)
p

p−1 )p−1.

Finally, for the function ψ(t) which is in the proof of Theorem 2.1, we also have

max
t∈[0,1]

ψ(t) = 22−p(1+(
√

2−1)
p

p−1 )p−1.

To complete the proof, we only need to note for 1 < p � 2

[1+(
√

2−1)p]
1

p−1 � 2
2−p
p−1 [1+(

√
2−1)

p
p−1 ]. �
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