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ON HARDY’S INEQUALITIES FOR
THE SPECIAL HERMITE EXPANSIONS

JINSEN XIAO AND JIANXUN HE

(Communicated by I. Peri¢)

Abstract. This article presents two types of Hardy’s inequalities for the special Hermite expan-
sions. The proofs are mainly based on an estimate of atomic functions deduced by the horizontal
Taylor formula of the Heisenberg group.

1. Introduction

The well known Hardy’s inequalities on C state thatif f(z) = Y5 oaz* € HP(C),
0 < p < 1, then one has the following results for the Taylor coefficients:

g < k' P L

and

oo

> (k1P arl? < epll flifpo
k=0

where ¢, depends only on p (see Theorems 6.2 and 6.4 in [6]).

Since 1990s, considerable attentions have been paid to study different types of
Hardy’s inequalities. Generalizations of these results have been established for Hermite
expansions [3, 7, 8, 10, 13], for Laguerre expansions [7, 8, 14], and for special Hermite
expansions [12, 13, 16]. More works related to this topic can be found in [2, 4, 9,
15]. Now in this paper we aim to extend Hardy’s inequalities for the special Hermite
expansions to the atomic Hardy spaces HJ(C") with 0 < p < 1. Explicitly, we shall
prove the following

THEOREM 1. Suppose f € HY(C") with 0 < p < 1. Then there exists a constant
¢ such that

|f (e, B)| < (2] +1) 1 fllgz cny»
where T=n(1/p—1).
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From this theorem we can easily obtain

COROLLARY 1. Suppose f € HY(C") with 0 < p < 1. Then there exists a con-
stant ¢ such that

|f (e, B)] < clex| + Bl +n) [l fll s ()
where T=n(1/p—1).

Moreover, we will show that

THEOREM 2. Suppose f € HJ(C") with 0 < p < 1. Then there exists a constant
¢ such that

> 3 f@ B (ol + 181+ n)C <l

oeN" BeNr

where ¢ =3n(2—p)/2.

We note that this theorem is the same as Theorem 3.2 stated in [13] without proof.
The key point to prove this theorem is an estimate for the Heisenberg left-invariant vec-
tors (where in [13] is for the normal derivatives) on the special Hermite functions, which
is deduced by the horizontal Taylor formula with integral remainder on the Heisenberg

group.

2. Preliminaries

We begin by recalling some notions from the article [1 1], which has laid the foun-
dation for the Heisenberg group. The (2n+ 1)-dimensional Heisenberg group H" is a
Lie group structure on C" x R with the multiplication law

(2,0) 0 (Z,1') = (z+ 2t +1' +2Imz?),

where zz/ = ¥/i_, z;Z;. For (z,r) € H", its homogeneous norm is |(z,1)| = (|z[* +
|t[>)!/4. The set B,(z0,%0) = {(z,t) € H" : |(z0,%0) ' o (z,¢)| < r} is called the ball of
radius 7 centered at (z9,79), and whose measure is given by |B,(z0,t0)| = cr¢, where
Q = 2n+ 2 is the homogeneous dimension of H".

The Lie algebra ¢ of H", which admits a stratification by ¢ =V, @V, is gener-
ated by the left-invariant vector fields

T=09/dt, Zj=03/dz;+iz;0/dt,Z; =03/dZ;—izjd/dt,1 < j<n

The horizontal layer is the first layer V| generated by Z jj HI<j<n

Now let 0 = (G],--~7(52n762n+1) = (1,---,1,2), 1= (i17--'7ik) with iy,---,i; €
{1,2,--+,2n+1} and use the notation G(I) =0j, +- -+ 0j, to denote the homogeneous
length of I. We also write X; = Z;, X,y = Z , 1 < j<n, Xopy1 =T and use the
notation X; = X;, ---X;, to denote the left-lnvarlant differential operator.
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A function P on H" is called a polynomial if Poexp is a polynomial on ¢. Every
polynomial on H" can be written uniquely as a finite sum

J J j Jon
P=Yam’ ajeC,n’ =ni -,
J

where ;= {jolog, {i,---, 841 is the basis for 4* dual to the basis Xi, - - -, Xa,41 for
4. The monomial 1’ is homogeneous of degree d(J) = Y2, ji +2jan+1 and the homo-
geneous degree of P is given by d(P) = max{d(J):a; #0}. For s N={0,1,2,---},
we denote by &, the space of polynomials whose homogeneous degree < s. Let
(z,t) € H" and f € C**!(H"), the left Taylor polynomial of f at (z,#) of homoge-
neous degree s is the unique P(f,(z,7)) € & such that X;P(f, (z,7))(0) = X1 f(z,1)
for o(I) <s. Arena et al. [1] established the explicit Taylor polynomial on the Heisen-
berg group, but unfortunately, there are no comments on the remainders. However,
Bonfiglioli [5] obtained the following horizontal Taylor formula with integral remain-
der for the Heisenberg group:

THEOREM A. Let (7,t'),(z,0) € H" and suppose that f € C**!(k € N), then
f((d.1)o (Z 0))
X[f Z,t
+ Z Z ( )511 éit

D I X >oexp(zsé,»x,»))%ds,

I=(iy i) J<2n
i 5ol 15200

where the notation 10g(z,0) = ¥ j<5, §;X;

Now we define the Fock space .73 consisting of all holomorphic functions F' on

C" such that A
2 " B 2 P
11 = (%) [, IF@Pe e azaf <o

Then .7 is a Hilbert space with an orthogonal basis {EX (&) = (V24E)%/Val,a €
N"}. For A € R* = R\{0}, the Fock representation IT; of H" acts on 7| by

eilt+2l(§z—|z\2/2)F(§ —Z), if A >0,

;. (z,2)F(S) =
2 (@ )F(E) eM2ACETP2F(E — ), if A <0.

Then ITy (z,¢) = IT; (z)e** is an irreducible unitary representation of H” on A Set
@} 5(z,1) = (M (z0)E, Eﬁ)%1 and T1(z) =TT (z), then ®q 5(2) = (T(2)Eg, Ep) .
is called the special Hermite function and {®, g(z)} forms an orthonormal basis for
L*(C"). Let L=—A.+ 3|z]*+iN, where N =3_, (x;d/dy; —y;d/dx;), then D¢, g(z)
are eigenfunctions of L with eigenvalues 2|ot| 4+ n, and of the operators —A, + %\ZIz
with |o| + |B] 4 n.
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Note that IT is an irreducible projective representation of C" into the Fock space
771 such that

TI(z+w) = I1(2)TT(w)e 2imav.

Given a function f € L!'(C"), the Weyl transform of f is a bounded operator on %
defined by

f= . F(D)I(z)dzd 7.

And we have the following special Hermite expansions for functions in L?>(C") :

f@)=3 Y fla.B)®yp(z),

oeN" BeN"

where each coefficient f (o, B) is defined by

FoB) = [ f)Pap(idedz.
Moreover, we have

Y Y [FeB) =1 lks = 1715

oeNt feNn

For various results related to these expansions readers can refer to [17, 18].
Nowfor0<p<1<g<eo, p#q, s€Nand s> [0(1/p—1)], afunction a is
a (p,q,s)—atom with the center zg if
(i) supp(a) C B, (z0):
(ii) [lallq < |Br(z0) |97 1/P;
(iii) fen a(z)P(z —20)e?™%0dzd 7 = 0 for any polynomial P whose degree < s.
For 0 < p < 1, a tempered distribution f is said to be an element of the atomic
Hardy space HJ (C") if it can be characterized by the decomposition

fl@)= i Ajaj(z),
=1

where a;’s are (p,q,s)—atoms and ¥7_; |A;]” < eo. Moreover, the space H; (C") can
be made into a metric space by means of the quasi-norm defined by

=

A1y = (S5 A0 £ = 3 Ajay).

J=1

Note that the cancelation condition of (p,q,s)—atom is defined in consideration of the
Weyl transform, thus the atomic Hardy space H} (C") defined above is different from
the ordinary Hardy space H?(C") for 0 < p < 1 (see [13]).
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3. Proofs of the main results
Before giving the proofs of the main results, we need some crucial lemmas. Thro-

ughout this article, we will adopt the convention that ¢ denotes constants which may
be different from one statement to another.

LEMMA 1. Forany (z,t) € H", and oo € N", we have

>

BeNn

2
<er(@laf+n)|A)°"

qu)f;ﬁ (th)

Proof. We expand IT, (w)E2 (&) in terms of EéL by

W A A
M, (W)EA (&) = %(m() Eﬁ)ﬁ’}@’

from which we get

q)%c,a((_z7 —t)O(ZJ)) = (Hl(zvt)Eév H?L(th)Eé)jﬁ

= ﬁZN (H)L(Z,I)E(%(,Eé)jﬁ (E/)jLa H?L(Zat)E(})L())ﬁ
€ n

-y ’

g q)ﬁgﬁ (Z7t)
eN)l

Note that d)ga((—z, —t)o(z,1)) = @%(7&(0,0) =1 and hence we have

2
=1.

>

g q)g/} (th)
eNr

Then we can easily deduce this lemma by the facts that: X;,, 1@& 8 (z,0) =il d)f;_ B (z,1)
andfor 1 < j<n /

)

1/2g, )
N (2o +2)A) Pk, 4z0), ifA>0,
Xj @y p(2,1) = g |
~(20y(2]) FL_, s(zp), ifA <O,

1/2 ]

. ~(2041A)) 0%, ﬁ( 0, ifA>0,
Xj+"q)a7l3 (z,1) = 1/2 .
(2o +2)|A]) @2, p(an), if A <0,

where {ey,---,e,} is the standard basis of R". [J
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LEMMA 2. Let P(®q,y,0) be the horizontal Taylor polynomial of @,y at origin
of homogeneous degree k. Then for (z,0),(z0,0) € H" we have

2

< ez (2] —|—n)k+l.

>

BeNr

Eq)yﬁ (20,0) (q)a,y(zy 0) — Pi(Po,y,0)(z, 0))

14

Proof. For the special Hermite functions we find that

e p(z0+2) = Zq)%/i (Zo)q)am(z)eizlmzzo-
Y

Hence

2@y (ZO7O)X1(D0L,7(Z»O)‘ = |X1®4 5((20,0)(z,0))].
%

Then for (z,0) = exp(X <2, ;X;), by the horizontal Taylor formula and Lemma 1 we
have

2
2 Eq)yﬁ (Z0> (q)a,)/(z70) _Pk(q)a,)/70)(z7o)>
BeNtl y
! (1—s)F \[
= Zq)%ﬁ(ZO) > gil”'gikJrl/O Xi®oy(exp( Y 58X;)) k! ds
BeNtl y I=(ieenipy 1) j<2n :
i 5eeslpp 1 <200
2
<3 (3 la-aal)
BEN" N\ I=(i| ity )
i]5eeslg 1520
! (1—s)k |7
X Y /ZCD%/;(ZO,O)XICDMY exp( D, s&X; s
I=(ifseipy) 170 Y j<on :
i]5eeslp 1520
11 12k42 ! ? 1(1—5)%
éck\z| Z / Z XI‘Daﬁ((ZO7O)(Z57O)) dS/ st
I=(igmigy 1) 0 BeN” 0 :
il 1 S20

< ez 2 (2] —i—n)kJrl

)

where we have used the notation (zs,0) = exp(Y, <2, 5§;X;) and the fact |§; | < ¢|(z,0)
= c|z| (see Lemma 3 of [5]) in the second inequality. [J

LEMMA 3. Let a be the (p,2,s)-atom with the center zo. Then we have

2 s+1+n
(i) Sper |a(e, B)|* < c(2la] +n)lall, "7
(i) Zgenn

R 2 2- s
a(a,B)|” <cllall, "




HARDY’S INEQUALITIES 497

Proof. For the first estimate, assume that Py(®¢,y,0)(z,0) is the Taylor polyno-
mial of @y y(z,0) at origin of homogeneous degree s. By the property (ii) of p-atom,

e., ||a||271/[2n(1/p71/2)] > r, together with the property (iii) of p-atom and Lemma 2
we have
N 2
2 |a(e.p)l
BeNn

2
= / o a(z0+2)@g p(20 +2)dzdz

2

= 2 / a(zo+2z) Zd)%,; (zo)d>a7y(z)ei21mzzodzd2
ﬁ Br(o) Y

2

=3 |S 0 [ | @l (Puple0) - P®ay0)(c0) ) dzaz
Blr r

2
dzdz

v.B (ZO) (q)067Y(Z7 0) - Ps(q)a,y,o) (Z,O))

<[alBY. [
2% 5,(0)

< cllal32la] +n)**! / o2z
B (0)

r

< cC2la +ny aly T

For the second estimate, by Lemma 1 and the property (ii) of p—atom we get

2
p(2)dzdz

< z /B \cpaﬁ(z)mdz”a”;
l} r

*|lal3

a(a, B)|* =

BeNn

Ler

1
c||a||2 (1/p— 1/2)

Hence the proof of this lemma is completed. [

Proof of Theorem 1. For f € HY(C"), it follows that f = X7 Ajaj, where a; 's
are the (p,2,s)-atoms and 3.7 |4;[7 < . Then we get

FleB)| < im,-ua,-(mm}.

Hence to prove this theorem, it is enough to show that for any j,

5 F(5-1)
|aj(a,[3)|<c(2\a\+n) P,
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In order to do this we first assume that 7~2 < 2|c| 4+ n. By (ii) of Lemma 3 we obtain
N 2 2- l __1
aj(e. ) < cllaslly " < el 4+m)* 7Y,

Next, if 7~2 > 2|a| +n, then by (i) of Lemma 3 we get

st14n

}éj(%ﬁ)} (2|oc|+n)‘+1HaJ||2 all/p=172)
c<2|a|+n>s+1<2|a|+n>2n<5—1>—s—1
= (2| +n)*" 7Y,
As desired, we finish the proof of this theorem. [

Proof of Theorem 2. Again using the fact that /' =37, Ajaj, where a;'s are the
(p,2,s)-atoms and 37 [A;]P < o, we have

Zlfaﬁ "o+ Bl +m)~°

i 1Y aje B o + Bl +n)~°

j=1 o.,p

<SIPC Y+ S DageB)| el + 1Bl +n)°
J=1 lo|+[Bl+n>r=2 o+ |Bl+n<r—2

8

Z 2417 (S1 4 52),

j=1

from which we see that to get this theorem it suffices to show that S| and S, are
bounded. For the term Sy, by Holder’s inequality we have

Si= Y

|ot|+|B|+n>r—2

g(
o

2-p
<c||aj||§< Z (k—l—n) - ,,+2n 1) 2

k+n>r—2

aj(o,B)|"(|ee| +|B| +n)~°

L 2-p

m}”%)z(( S ol plen )

lot|+[Bl+n)>r—2

< Crnp—2nr2c7—2n(2—p)
= C7

).

Nl
<=

where the last inequality follows from the fact ||a;||» < e
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Now for the term S,. Thanks to (i) of Lemma 3, we have

S = Y

ot +|Bl+n<r—2

= X )y

la|<r2 |Bl<r—2—|al-n

aj(o,B)|"(|ee| +|B[ +n)~°

aj(o, B)|"(|ee| + B[ +n)~°

J4 2—p
2\ 2 a2 2
<3 (3 ja@pPt) (T dal+lpien o)
loef<r=2 N |BI<r2—|e|—n IB|<r2—|o|—n

2—p

<2 (2’“ ‘””) ( )y (|a|+|ﬁ|+n)“"ﬁ>

|05\<r72 IB|<r—2—|a|—n
2—p
P( - s+ltn 2) )r+1) 5.2
<cllajl, N Qlal+n) T Y, (el+|Bl+n) 7
o <=2 IBI<r—2—|of-n
P=gip 7)) 0 g2 )
< clajl; S (T (alripno)
lo|<r=2 NBI<r—2—|a|—n
PU= 215 17)) (2n— 14250 —6) 2)) 3 5
< cllajll Y, (k+n) = > 1
k+n<r—2 lor|<r—2
< cr2np(%—%)(l—%)r267p(s+1)72n(27p)r7np

= C.

This ends the proof.
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