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IN MULTIDIMENSIONAL BESOV SPACES
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Abstract. For the composition operator Tf : g �→ f ◦ g we find a class of functions f : R → R

for which there exists a family of positive constants c( f ,t) , t > 0 , such that the estimate

‖Tf (g)‖Bs
p,q(Rn) � c( f ,t)‖g‖Bs

p,q (Rn)

holds, for all g ∈W 1
∞ ∩Bs

p,q(R
n) satisfying ‖∇g‖∞ � t (or g ∈ L∞ ∩Bs

p,q(R
n) with ‖g‖∞ � t

and [s] = 1). We establish this assertion, for all f ∈ Bs1 ,�oc
p,∞ (R) with s1 > 1+ 1/p , in the case

1 < p < ∞ , 0 < q � ∞ and 0 < s < s1 .

1. Introduction

In the present paper we deal with the mapping properties of the nonlinear compo-
sition operator Tf : g �→ f ◦ g , associated with a function f : R → R , on Besov spaces
Bs

p,q(R
n) with n > 1. We are interested in the two following properties

Tf (Bs
p,q(R

n)) ⊆ Bs
p,q(R

n) (Full acting property),

Tf (Bs
p,q(R

n)∩L∞(Rn)) ⊆ Bs
p,q(R

n) (Restricted acting property).

Based on the different previous works, e.g., [8], [9], [10] in cases n = 1 and n � 2, we
believe on the following conjecture.

CONJECTURE 1. If 1 � p < ∞ , 0 < q � ∞ and s > 1+ 1/p, then the restricted
acting property holds if, and only if, f (0) = 0 and f ∈ Bs,�oc

p,q (R) .

In the context of this conjecture we recall:

(i) If Tf (Bs
p,q(Rn)∩L∞(Rn)) ⊆ Bs

p,∞(Rn) , then f is locally Lipschitz continuous,
i.e., f ∈W 1,�oc

∞ (R) , see [3] or [19].

(ii) If Tf (S (Rn)) ⊆ Bs
p,q(R

n) , then f ∈ Bs,�oc
p,q (R) , see [19, 5.3.1/thm. 2]
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With this respect, the conditions f (0) = 0 (obtained by testing f on the zero function)
and f ∈W 1,�oc

∞ (R) or f ∈ Bs,�oc
p,q (R) , are necessary for a function f , such that Tf maps

Bs
p,q(Rn) to itself. We refer to [19, 5.3] for some sufficient conditions, and to [11] for

motivations of this conjecture. In the case n = 1, 1 < p < ∞ and 0 < q � ∞ Conjecture
1 has been established, see [10], the case p = 1 and s ∈ N is an open question. On the
contrary, for n > 1 only partial results are known. The restricted acting property holds
in the following two cases:

(A1) If 1 < p < ∞ , q = p , s > 1+n/p , f (0) = 0 and f ∈ Bs,�oc
p,p (R) . See [10, rem. 1].

(A2) If 1 < p < ∞ , 1 � q � ∞ , 1+ 1/p < s < 2, f (0) = 0 and f ∈ Bs+ε,�oc
p,q (R) for

some ε > 0, see [5] and Remark 4 below.

In all known cases, if the acting property holds, then Tf is a bounded operator on
Bs

p,q(R
n) . For instance, the acting property in case n = 1 and s > 1+1/p , is reflected

by the following estimation

‖ f ◦ g‖Bs
p,q(R) � c‖ f ′‖Bs−1

p,q (R)‖g‖Bs
p,q(R)(1+‖g‖Bs

p,q(R))
s−1−1/p, (1)

(see our previous works [8], [9] and [17]). In (1), a replacement of the factor (1 +
‖g‖Bs

p,q(R))s−1−1/p either by (1+‖g‖∞)s−1−1/p or by (1+‖g′‖∞)s−1−1/p can be used
for an extension to the n -dimensional case, at least partly. In this sense we shall estab-
lish an estimate of the form

‖ f ◦ g‖Bs
p,q(Rn) � c( f )‖g‖Bs

p,q(Rn)

improving (A1)–(A2) on that way. Our method consists in studying the composition
operator on intersections. Recall that the study of Tf on intersections has a certain
history, e.g., in case of Sobolev spaces and/or Lizorkin-Triebel spaces by Adams and
Frazier [1], [2], Brezis and Mironescu [12], Maz’ya and Shaposnikova [15], Bourdaud
[6], Runst and Sickel [19, 5.3.7] as well as [16].

NOTATION. As usual, N denotes the natural numbers, N0 := N∪ {0} , Z the
integers, R the real numbers and if s is a real number then [s] denotes its integer
part. We work in Euclidean spaces R

n . All functions are assumed to be real-valued.
For 1 � p � ∞ we denote by ‖ · ‖p the Lp -norm, and by Wm

p (Rn) (m ∈ N) the usual
Sobolev space with Ẇm

p (Rn) its the homogeneous counterpart (i.e., Ẇm
p (Rn) is the set

of f ∈S ′(Rn) such that f (α) ∈ Lp(Rn) for |α|= m and is endowed with the seminorm
‖ f‖Ẇm

p (Rn) := ∑|α |=m ‖ f (α)‖p ). We denote by Cb(Rn) and Cub(Rn) the Banach space
of bounded and continuous functions on R

n , and the Banach space of bounded and
uniformly continuous functions on R

n , respectively, endowed with the supremum. For
a space E of functions defined on R

n the associated local space E�oc is the set of f ∈
S ′(Rn) such that ϕ f ∈ E for all ϕ ∈ D(Rn) . We define the difference operators for
an arbitrary function f by Δh f := f (·+h)− f , Δ1

h f := Δh f and Δm+1
h f := Δh(Δm

h f ) ,
h ∈ R

n , m ∈ N . We denote by S∞(Rn) the set of all u ∈ S(Rn) such that 〈xα ,u〉 = 0
for all α ∈ N

n
0 , and S ′

∞(Rn) denotes its topological dual. For all f ∈ S ′(Rn) , we
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denote by [ f ]∞ the equivalence class of f modulo polynomials on R
n . The mapping

which takes any [ f ]∞ to the restriction of f to S∞(Rn) turns out to be an isomorphism
from the “S ′(Rn) modulo polynomials” onto S ′

∞(Rn) . Finally, constants c,c1, . . . are
strictly positive and depend only on the fixed parameters n,s, p and q , their values may
vary from line to line.

Plan of the paper. In Section 2 we formulate the main results of the paper. In
Section 3 we collect the needed properties of homogeneous and inhomogeneous Besov
spaces. Section 4 is devoted to the proofs. In the last section, we discuss open questions.

2. The main results

The main result is the following.

THEOREM 1. Let 1 < p < ∞ and 0 < q � ∞ . Let s,s1 be real numbers satisfying

s1 > 1+
1
p

and 0 < s < s1.

If the function f belongs to Bs1,�oc
p,∞ (R) and f (0) = 0 , then the composition operator

Tf takes Bs
p,q(R

n)∩W 1
∞(Rn) to Bs

p,q(R
n) .

The proof of Theorem 1 relies upon the following proposition, which has its own
interest. We need a standard cut-off function. More precisely, we consider once and for
all a function ρ , that is a radial C∞ on R satisfying 0 � ρ � 1, ρ(ξ ) = 1 for |ξ | � 1
and ρ(ξ ) = 0 for |ξ | � 3/2. We put ρt(x) := ρ(t−1x) for all x ∈ R and all t > 0.

PROPOSITION 1. Let s,s1, p and q be real numbers as in Theorem 1. Then there
exists a constant c > 0 such that

‖ f ◦ g‖Bs
p,q(Rn) � c‖ fρ‖g‖∞‖B

s1
p,∞(R)‖g‖Bs

p,q(Rn)(1+‖∇g‖∞)
s
s1

(s1−1−1/p)
(2)

holds, for all f ∈ Bs1,�oc
p,∞ (R) such that f (0) = 0 and all g ∈ Bs

p,q(Rn)∩W 1
∞(Rn) .

REMARK 1. By definition of s1 , we notice that lim
s1↓s

s
s1

(s1 − 1− 1/p) = s− 1−
1/p .

REMARK 2. Concerning the sharpness of the estimate (2), we can observe the
following: by Proposition 1, we obtain a class of functions f for which there exists a
family of constants c( f ,t) , t > 0, such that the inequality

‖ f ◦ g‖Bs
p,q(Rn) � c( f ,t)‖g‖Bs

p,q(Rn)

holds, for all g∈ Bs
p,q(R

n)∩W 1
∞(Rn) satisfying ‖∇g‖∞ � t . Such an estimation cannot

be improved, since it becomes an equality in case f (x) := x .
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Now, using the homogeneousBesov space Ḃs
p,q(R) , we introduce the space Bs

p,q(R)
of essentially bounded functions f such that [ f ]∞ ∈ Ḃs

p,q(R) , and endow it with the nat-
ural quasi-norm

‖ f‖Bs
p,q(R) := ‖ f‖∞ +‖[ f ]∞‖Ḃs

p,q(R). (3)

In [17, sec. 3.4] we find some properties of Bs
p,q(R) as embeddings, equivalent quasi-

norms, characterization by differences, etc., see also Section 3.3 below. Then, as men-
tioned before and in the sense of (1), we have the following result.

THEOREM 2. Let s,s1, p and q be real numbers as in Theorem 1. Then there
exists a constant c > 0 such that

‖ f ◦ g‖Bs
p,q(Rn) � c‖ f ′‖

B
s1−1
p,∞ (R)

‖g‖Bs
p,q(Rn)(1+‖∇g‖∞)

s
s1

(s1−1−1/p)
(4)

holds, for all f such that f (0) = 0 , f ′ ∈ Bs1−1
p,∞ (R) and all g ∈ Bs

p,q(Rn)∩Ẇ 1
∞(Rn) .

REMARK 3. Under the assumptions of Theorem 2, the inequality (4) holds also
for functions f such that f ′ ∈ Bs1−1

p,∞ (R) , since the embedding Bs1
p,∞(R) ↪→ Bs1

p,∞(R) is
satisfied, see Proposition 11(i) below.

The following result concerns the particular case 0 < s < 2.

THEOREM 3. Let 1 < p < ∞ and 0 < q � ∞ . Let s,s1 be real numbers satisfying

s1 > 1+
1
p

and 0 < s < min(s1, 2).

If the function f belongs to Bs1,�oc
p,∞ (R) and f (0) = 0 , then the composition operator

Tf takes Bs
p,q(Rn)∩L∞(Rn) to Bs

p,q(Rn) .

REMARK 4. Theorem 3 has been formulated in [5, thm. 3.1] without the restric-
tion s < 2. However, the proof given there contains a gap. Indeed, the argument in the
proof of the induction is based on the algebra property of Bs−1

p,q (R) , s > 1+1/p , (see,
e.g., [4, thm. 1.1/proof], [8, p. 951] or [10, 3.1.2]), which is no longer true in higher
dimensions. We can extend Theorem 3 to some values s � 2 depending on the algebra
property (see Theorem 5 below).

Similar to Theorem 1, the proof of Theorem 3 follows from an inequality of type
(4), i.e., we prove the following assertion.

THEOREM 4. Let 1 < p < ∞ and 0 < q � ∞ . Let s,s1 be real numbers satisfying

1+
1
p

< s1 < 2 and 0 < s < s1. (5)

Then there exists a constant c > 0 such that

‖ f ◦ g‖Bs
p,q(Rn) � c‖ f ′‖

B
s1−1
p,∞ (R)

‖g‖Bs
p,q(Rn)(1+‖g‖∞)

s
s1

(s1−1−1/p)

holds, for all f such that f (0) = 0 , f ′ ∈ Bs1−1
p,∞ (R) and all g ∈ Bs

p,q(R
n)∩L∞(Rn) .
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REMARK 5. (i) As in Remark 3, we can replace Bs1−1
p,∞ (R) by Bs1−1

p,∞ (R) in Theo-
rem 4, then in that case the condition (5) becomes s1 > 1+1/p and 0 < s < min(s1,2) ,
i.e., we do not need the assumption s1 < 2 since Besov spaces are monotone in the sense
Bs2

p,∞(R) ↪→ Bs1
p,∞(R) for s2 > s1 .

(ii) As in Proposition 1, Theorem 4 also holds by taking both f ∈ Bs1,�oc
p,∞ (R) and

‖ fρ‖g‖∞‖B
s1
p,∞(R) instead of f ′ ∈ Bs1−1

p,∞ (R) and ‖ f ′‖
B

s1−1
p,∞ (R)

, respectively. We also

have the counterpart of Remark 2.

Now, we turn to the end of Remark 4 by considering the case of Besov algebra
spaces. Then Theorem 3 becomes true for some values s � 2 and Conjecture 1 holds
at least with Bs

p,p(R
n) .

THEOREM 5. Let 0 < q � ∞ . Let either

max
(
1,

n
2

)
< p < ∞, s1 > 1+

1
p

and
n
p

< s < min(s1,2)

or
1 < p < ∞, [s] � 2 and

n
p

+1 < s < s1

be satisfied. If f ∈ Bs1,�oc
p,∞ (R) and f (0) = 0 , then the composition operator Tf takes

Bs
p,q(R

n) to itself.

THEOREM 6. Let max(1,n/2) < p < ∞ . Let s be a real number such that

max
( n

p
,1+

1
p

)
< s < 2.

Then the composition operator Tf takes Bs
p,p(R

n) to itself if, and only if, f (0) = 0 and

f ∈ Bs,�oc
p,p (R) .

REMARK 6. Theorem 6 was proved in [10, rem. 1] under the assumption s >
1+n/p .

3. The Besov spaces

For Besov spaces we do not go into details, we recall some properties and refer the
reader to [18], [14] [20], [21], [19], [7] and [17]. Let γ1 be a fixed radial C∞ function
on R

n such that 0 � γ1 � 1, γ1(ξ ) = 1 if |ξ |� 1 and γ1(ξ ) = 0 if |ξ |� 3/2. We put
γ(ξ ) := γ1(ξ )− γ1(2ξ ) for all ξ ∈ R

n . Then γ is supported by the compact annulus
1/2 � |ξ | � 3/2, and the following identities hold:

∑
j∈Z

γ(2 jξ ) = 1 (∀ξ ∈ R
n \ {0}),

γ1(ξ )+ ∑
j�1

γ(2− jξ ) = 1 (∀ξ ∈ R
n).
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For any j ∈Z , we introduce the pseudodifferential operators S j := γ1(2− jD) and Qj :=
γ(2− jD) . It is clear that S j is defined on S ′(Rn) , and that Qj is defined on S ′

∞(Rn)
since Qj f = 0 (∀ j ∈Z) if, and only if, f is a polynomial. We also notice that according
to Young inequality in Lp(Rn) the families of operators (S j) j∈Z and (Qj) j∈Z constitute
bounded subsets of the normed space L (Lp(Rn)) for any p ∈ [1,+∞] . On the other
hand, the Littlewood-Paley decompositions of a tempered distribution are described in
the following well known statement.

PROPOSITION 2. (i) For every f ∈ S∞(Rn) (resp. S ′
∞(Rn) ) , it holds f =

∑ j∈Z Qj f , in S∞(Rn) (resp. S ′
∞(Rn) ) .

(ii) For every f ∈ S(Rn) (resp. S ′(Rn) ) and every k ∈ Z , it holds f = Sk f +
∑ j>k Qj f , in S(Rn) (resp. S ′(Rn) ) .

3.1. The homogeneous Besov spaces

DEFINITION 1. The homogeneousBesov space Ḃs
p,q(Rn) is the set of f ∈S ′

∞(Rn)
such that

‖ f‖Ḃs
p,q(Rn) :=

(
∑
j∈Z

(2s j‖Qj f‖p)q
)1/q

< ∞.

Ḃs
p,q(Rn) is a quasi-Banach space for the above defined quasi-norm, contains

S∞(Rn) and is continuously embedded in S ′
∞(Rn) . It has the remarkable property

c1‖ f‖Ḃs
p,q(Rn) � λ n/p−s‖ f (λ (·))‖Ḃs

p,q(Rn) � c2‖ f‖Ḃs
p,q(Rn) (∀λ > 0).

Another equivalent quasi-norm is given by the following assertion (cf., [7]).

PROPOSITION 3. A member f of S ′
∞(Rn) belongs to Ḃs

p,q(Rn) if, and only if, its
first order derivatives ∂ j f belongs to Ḃs−1

p,q (Rn) for j = 1, . . . ,n.
Moreover ∑n

j=1‖∂ j f‖Ḃs−1
p,q (Rn) is an equivalent quasi-norm in Ḃs

p,q(R
n) .

The following property is useful for us, see [14, thm. 2.1].

PROPOSITION 4. The continuous embedding Ḃs1
p1,q(R

n) ↪→ Ḃs2
p2,q(R

n) holds for
all parameters s,s1, p, p1 satisfying p1 < p2 and s1 −n/p1 = s2 −n/p2 .

3.2. The inhomogeneous Besov spaces

By using Proposition 2(ii), we obtain the (ordinary) Besov spaces.

DEFINITION 2. The Besov space Bs
p,q(Rn) is the set of f ∈ S ′(Rn) such that

‖ f‖Bs
p,q(Rn) := ‖S0 f‖p +

(
∑
j�1

(2s j‖Qj f‖p)q
)1/q

< ∞.
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In connection with the homogeneous Besov space, we dispose the following as-
sertion proved in, e.g., [21, thm. 2.3.3, p. 98].

PROPOSITION 5. Let s > 0 , 1 � p � ∞ and 0 < q � ∞ . Then Bs
p,q(R

n) is the
set of all f ∈ Lp(Rn) such that [ f ]∞ ∈ Ḃs

p,q(R
n) . Moreover the expression ‖ f‖p +

‖[ f ]∞‖Ḃs
p,q(Rn) defines an equivalent quasi-norm in Bs

p,q(Rn) .

Also, according to Triebel [21, thm. 2.6.1, p. 140] and [20, thm. 2.3.8, pp. 58–59],
we have the following characterization and property of Bs

p,q(R
n) .

PROPOSITION 6. Let 1 � p � ∞ , 0 < q � ∞ , m ∈ N and 0 < s < m. Let {e1 ,
. . . , en} denotes the canonical basis of R

n . Then the expression

‖ f‖p +
n

∑
j=1

(∫ 1

0
t−sq‖Δm

te j
f‖q

p
dt
t

)1/q

defines an equivalent quasi-norm in Bs
p,q(R

n) .

PROPOSITION 7. Let s ∈ R , 1 � p � ∞ and 0 < q � ∞ . There exists c > 0
such that the estimate ‖∂ j f‖Bs−1

p,q (Rn) � c‖ f‖Bs
p,q(Rn) ( j = 1, . . . ,n) holds, for all f ∈

Bs
p,q(R

n) .

We also have a characterization by the derivatives, which is a variant of the Triebel’s
theorem [20, thm. 2.3.8].

PROPOSITION 8. If s > 0 , 1 � p � ∞ and 0 < q � ∞ , then the expression ‖ f‖p +
∑n

j=1 ‖∂ j f‖Bs−1
p,q (Rn) is an equivalent quasi-norm in Bs

p,q(Rn) .

Proof. It suffices to take n = 1. Let f ∈ Bs
p,q(R) . By Proposition 7 and the

embedding Bs
p,q(R) ↪→ Lp(R) for s > 0, it holds ‖ f‖p + ‖ f ′‖Bs−1

p,q (R) � c‖ f‖Bs
p,q(R) .

Conversely, let f ∈ Lp(R) be such that f ′ ∈ Bs−1
p,q (R) . Applying Propositions 5 and 3

we obtain

‖ f‖Bs
p,q(R) � c1(‖ f‖p +‖[ f ′]∞‖Ḃs−1

p,q (R)) � c2(‖ f‖p +‖ f ′‖Bs−1
p,q (R)).

The proof is complete. �
The Besov spaces have the Fatou property in the following sense (see, e.g., [13,

thm. 2.6/1]).

PROPOSITION 9. Let f ∈ S ′(Rn) . If there exists a bounded sequence (uk)k�0

in Bs
p,q(Rn) such that lim

k→∞
uk = f in S ′(Rn) , then f ∈ Bs

p,q(Rn) and ‖ f‖Bs
p,q(Rn) �

climinf
k→∞

‖uk‖Bs
p,q(Rn) .

An interpolation argument of Besov spaces will be used in the proofs of the above
results, for this reason we give the following statement.
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PROPOSITION 10. Let 0 < θ < 1 and 0 < q,qi � ∞ (i = 0,1,2,3) . Let s0,s1 ∈R

be such that s0 < s1 . We put s := (1−θ )s0 + θ s1 . Let T be an operator satisfying

• T (0) = 0 ,

• ‖T (g1)−T (g2)‖B
s0
p,q2(Rn) � h0(‖g1‖Ẇ1

∞(Rn),‖g2‖Ẇ1
∞(Rn))‖g1−g2‖B

s0
p,q0(Rn) for all

g1,g2 ∈ Bs0
p,q0(R

n)∩Ẇ1
∞(Rn) ,

• ‖T (g)‖B
s1
p,q3(Rn) � h1(‖g‖Ẇ1

∞(Rn))‖g‖B
s1
p,q1(Rn) for all g ∈ Bs1

p,q1(R
n)∩Ẇ 1

∞(Rn) ,

where h0,h1 are nonnegative and nondecreasing functions. Then the operator T takes
Bs

p,q(Rn)∩ Ẇ 1
∞(Rn) to Bs

p,q(Rn) . Moreover, there exist two positive constants c1,c2

such that

‖T (g)‖Bs
p,q(Rn) � c1h

1−θ
0 (c2‖g‖Ẇ1

∞(Rn),c2‖g‖Ẇ1
∞(Rn))h

θ
1 (c2‖g‖Ẇ1

∞(Rn))‖g‖Bs
p,q(Rn)

holds, for all g ∈ Bs
p,q(R

n)∩Ẇ 1
∞(Rn) .

Proof. If we replace L∞(Rn) by Ẇ 1
∞(Rn) in all places of occurrence in the proof

of Proposition 2.5.4/2 in [19], the claim follows. �

3.3. The modified Besov spaces Bs
p,q(R)

In this section we restrict ourselves to the one-dimensional case. In case s > 0,
Bs

p,q(R) (see the formula (3) for its quasi-norm) is a quasi-Banach algebra for the
pointwise product, see [17, thm. 3.26]. We also have the following assertion, which is
proved in [17, prop. 3.21].

PROPOSITION 11. (i) If s > 1/p, we have

Bs
p,q(R) ↪→ Bs

p,q(R) =
{

f ∈Cub(R) : [ f ]∞ ∈ Ḃs
p,q(R)

}
.

In case p = ∞ , the above embedding becomes an equality.

(ii) If s > 1+ 1/p, then Bs
p,q(R) is the set of functions f ∈ L∞(R) such that f ′ ∈

Bs−1
p,q (R) , and the expression ‖ f‖∞ + ‖ f ′‖Bs−1

p,q (R) defines an equivalent quasi-

norm in Bs
p,q(R) .

4. Proof of the main results

We split the proof into three parts: the first and the second correspond to the proof
of Theorems 1–2 and 3–4 respectively, and the third part concerns the Besov algebra
spaces.
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4.1. Proof of Theorems 1–2

Once Proposition 1 and Theorem 2 are proved, Theorem 1 follows easily. We also
need the following assertion proved in [10, thm. 2].

THEOREM 7. ([10, thm. 2]) Let 1 < p < ∞ and s > 1+1/p. Then there exists a
constant c > 0 such that the inequality

‖( f ◦ g)′‖Bs−1
p,∞ (R) � c‖ f ′‖Bs−1

p,∞ (R)‖g‖Bs
p,∞(R)(1+‖g′‖∞)s−1−1/p (6)

holds, for all functions f such that f ′ ∈ Bs−1
p,∞ (R) and all g ∈ Bs

p,∞(R) .

The estimate (6) can be easily extended to n -dimensional case. We have the fol-
lowing generalization of Theorem 7.

LEMMA 1. Let 1 < p < ∞ and s > 1+ 1/p. Then there exists a constant c > 0
such that the inequality

‖ f ◦ g‖Bs
p,∞(Rn) � c‖ f ′‖Bs−1

p,∞ (R)‖g‖Bs
p,p(Rn)(1+‖∇g‖∞)s−1−1/p (7)

holds, for all f such that f (0) = 0 , f ′ ∈ Bs−1
p,∞ (R) and all g ∈ Bs

p,p(R
n)∩Ẇ1

∞(Rn) .

REMARK 7. Lemma 1 is a variant of [10, thm. 4], indeed the result in [10] is
proved for functions f such that f ′ ∈ Bs−1

p,p (R) , for this reason we prefer to give its
proof.

Proof of Lemma 1. For x∈R
n , we put x′1 :=(x2, . . . ,xn) , x′2 :=(x1,x3, . . . ,xn), . . . ,

x′j := (x1, . . . ,x j−1,x j+1, . . . ,xn), . . . and

gx′j (y) := g(x1, . . . ,x j−1,y,x j+1, . . . ,xn), ∀y ∈ R. (8)

In Lp(Rn−1) it holds

(∫
Rn−1

‖gx′j‖
p
Bs

p,p(R)dx′j
)1/p

� ‖g‖p +
(∫ 1

0
t−sp‖Δm

te j
g‖p

p
dt
t

)1/p
� ‖g‖Bs

p,p(Rn), (9)

which implies that ‖gx′j‖Bs
p,p(R) < ∞ , then by the embedding Bs

p,p(R) ↪→ Bs
p,∞(R) , we

can apply Theorem 7 to the function gx′j . The assumption f (0) = 0 yields ‖ f ◦gx′j‖p �
‖ f ′‖∞‖gx′j‖p . Since ‖g′x′j‖∞ � ‖∇g‖∞ and by Proposition 3 it holds

‖ f ◦ gx′j‖Bs
p,∞(R) � ‖ f ′‖∞‖gx′j‖p +‖( f ◦ gx′j)

′‖Ḃs−1
p,∞ (R) (10)

� ‖ f ′‖∞‖gx′j‖p + c‖ f ′‖Bs−1
p,∞ (R)‖gx′j‖Bs

p,p(R)(1+‖∇g‖∞)s−1−1/p,
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where c is defined by Theorem 7, it depends only on s and p . Let m ∈ N be such that
s < m . Clearly, we have

‖ f ◦ g‖Bs
p,∞(Rn) � c1

{
‖ f ′‖∞‖g‖p +

n

∑
j=1

sup
0�t�1

t−s
(∫

Rn−1

∫
R

|Δm
t f ◦ gx′j(y)|

pdydx′j
)1/p}

� c2

{
‖ f ′‖∞‖g‖p +

n

∑
j=1

(∫
Rn−1

‖ f ◦ gx′j‖
p
Bs

p,∞(R) dx′j
)1/p}

. (11)

Then it suffices to combine (10), (11) and (9), the estimate (7) follows. �

Proof of Proposition 1. We have f ◦ g = ( fρt)◦ g for t := ‖g‖∞ . By the embed-
ding Bs1−1

p,∞ (R) ↪→ Bs1−1
p,∞ (R) (see Proposition 11(i)), by Proposition 7 and by assump-

tion on f , it holds

‖( fρt)′‖B
s1−1
p,∞ (R)

� c1‖( fρt)′‖B
s1−1
p,∞ (R)

� c2‖ fρt‖B
s1
p,∞(R).

Since ( fρt)(0) = 0, the desired estimate (2) follows by Theorem 2. Here we assumed
that Theorem 2 is already proved. �

Proof of Theorem 2. Let f be a function such that f (0) = 0 and f ′ ∈ Bs1−1
p,∞ (R) .

Applying Lemma 1 with s replaced by s1 , we obtain

‖Tf (g)‖B
s1
p,∞(Rn) � c‖ f ′‖

B
s1−1
p,∞ (R)

(1+‖∇g‖∞)s1−1−1/p‖g‖B
s1
p,p(Rn), (12)

for all g ∈ Bs1
p,p(Rn)∩Ẇ 1

∞(Rn) , where the constant c is independent of f and g . We
also have

‖Tf (g1)−Tf (g2)‖p � ‖ f ′‖∞‖g1−g2‖p (∀g1,g2 ∈ Lp(Rn)),

which implies (by using the embeddings B0
p,1(R

n) ↪→ Lp(Rn) ↪→ B0
p,∞(Rn)) that

‖Tf (g1)−Tf (g2)‖B0
p,∞(Rn) � c‖ f ′‖∞‖g1−g2‖B0

p,1(R
n), (13)

for all g1,g2 ∈B0
p,1(R

n)∩Ẇ 1
∞(Rn) , where the constant c is independent of f , g1 and g2

(recall that (13) is satisfied for all g1,g2 ∈ B0
p,1(R

n)). By (12), (13) and the assumption
Tf (0) = 0, we can apply Proposition 10 to the operator Tf . Then for 0 < q � ∞ and
0 < θ < 1 it holds

‖Tf (g)‖Bs
p,q(Rn) � c1‖ f ′‖1−θ

∞

(
‖ f ′‖

B
s1−1
p,∞ (R)

(1+‖∇g‖∞)s1−1−1/p
)θ‖g‖Bs

p,q(Rn)

� c2‖ f ′‖
B

s1−1
p,∞ (R)

(1+‖∇g‖∞)θ(s1−1−1/p)‖g‖Bs
p,q(Rn)

for all g ∈ Bs
p,q(R

n)∩Ẇ 1
∞(Rn) , where the constants c1,c2 are independent of f and g ,

and with s := θ s1 . Now, the inequality (4) follows and the desired result is proved. �
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4.2. Proof of Theorems 3–4

We only prove Theorem 4, since for Theorem 3 we argue so as in the proof of
Proposition 1. Indeed, by using the function ρt with t := ‖g‖∞ , we choose a number r
such that s < r < min(2,s1) , and the fact that f ∈ Br,�oc

p,∞ (R) implies ( fρt)′ ∈Br−1
p,∞ (R) ,

then we apply Theorem 4 with r instead of s1 . Now, we turn to the proof of Theorem
4 and begin by some preparations.

LEMMA 2. Let 1 < p < ∞ , p � q � ∞ and 1+1/p < s < 2 . We put r := sp−1 .
Then there exists a constant c > 0 such that the inequality

‖ f ◦ g‖Bs
p,q(R) � c‖ f ′‖Bs−1

p,q (R)

(
‖g‖Bs

p,q(R) +‖g‖s−1/p

B
1+1/r
r,1 (R)

)
(14)

holds, for all f such that f (0) = 0 , f ′ ∈ Bs−1
p,q (R) and all g ∈ Bs

p,q(R) .

Proof. This statement is essentially proved in [17], but we will give the following
explanation. First, in [17, (4.15)-(4.16)] we have proved the estimate (14) under the
following conditions:

• f is of class C1 , f (0) = 0 and f ′ ∈ Bs−1
p,q (R) ,

• g is real analytic and g ∈ Bs
p,q(R) .

Second, as in [17, p. 254] the general case can be obtained by applying, in Bs
p,q(R) ,

the Fatou property to the sequence of functions ( f j ◦ g j) j�0 , where f j := ρ(2− jD) f −
ρ(2− jD) f (0)ρ and g j := ρ(2− jD)g , with ρ is defined in the beginning of Section 2
and ρ(2− jD) f is defined by F

(
ρ(2− jD) f

)
(ξ ) = ρ(2− jξ )F f (ξ ) (∀ξ ∈ R) where

F f is the Fourier transform of f . �

LEMMA 3. Let 1 < p < ∞ and 1+1/p < s < 2 . We put θ := (s−1/p)−1 . Then
there exists a constant c > 0 such that the inequality

‖( f ◦ g)′‖Bs−1
p,∞ (R) � c‖ f ′‖Bs−1

p,∞ (R)‖g‖Bs
p,θ(R)(1+‖g‖∞)s−1−1/p (15)

holds, for all functions f such that f ′ ∈ Bs−1
p,∞ (R) and all g ∈ Bs

p,θ (R) .

Proof. We first put f1(x) := f (x)− f (0) for all x ∈ R . Then we have

( f1 ◦ g)′ = ( f ◦ g)′.

By the embedding Bs−1
p,∞(R) ↪→Cb(R) , Propositions 5 and 3, we get

‖( f ◦ g)′‖Bs−1
p,∞ (R) = ‖( f ◦ g)′‖∞ +

∥∥∥[
( f1 ◦ g)′

]
∞

∥∥∥
Ḃs−1

p,∞ (R)

� ‖ f ′‖∞‖g′‖∞ + c1
∥∥ f1 ◦ g

∥∥
Bs

p,∞(R)

� c2

(
‖ f ′‖Bs−1

p,∞ (R)‖g‖Bs
p,∞(R) +

∥∥ f1 ◦ g
∥∥

Bs
p,∞(R)

)
. (16)
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Now, by applying Lemma 2 with the function f1 (since f1(0) = 0) and the exponent
r := sp−1, it holds

∥∥ f1 ◦ g
∥∥

Bs
p,∞(R) � c‖ f ′‖Bs−1

p,∞ (R)

(
‖g‖Bs

p,∞(R) +‖g‖s−1/p

B
1+1/r
r,1 (R)

)
. (17)

On the other hand, by the definition of θ , it holds that θ ∈]0,1[ , p/θ = r and θ s =
1+1/r . Using the Gagliardo-Nirenberg type inequality we obtain

‖g‖Bθ s
p/θ,1(R) � c‖g‖θ

Bs
p,θ (R)‖g‖1−θ

∞ (∀g ∈ Bs
p,θ (R)),

see, e.g., [19, thm. 2.2.5, p. 38]. Now inserting this inequality and (17) into (16),
applying the embedding Bs

p,θ (R) ↪→ Bs
p,∞(R) , we obtain (15). �

LEMMA 4. Let 1 < p < ∞ and 1+1/p < s < 2 . We put θ := (s−1/p)−1 . Then
there exists a constant c > 0 such that the inequality

‖ f ◦ g‖Bs
p,∞(Rn) � c‖ f ′‖Bs−1

p,∞ (R)‖g‖Bs
p,θ (Rn)(1+‖g‖∞)s−1−1/p

holds, for all f such that f (0) = 0 , f ′ ∈ Bs−1
p,∞ (R) and all g ∈ Bs

p,θ (Rn)∩L∞(Rn) .

Proof. As in (9), by applying the inequality of Minkowski with respect to the
space Lp/θ (Rn−1) , we obtain

(∫
Rn−1

‖gx′j‖
p
Bs

p,θ (R)dx′j
)1/p

� ‖g‖p +
(∫ 1

0
t−sθ

(∫
Rn

|Δ2
te j

g(x)|pdx
)θ/p dt

t

)1/θ

� c‖g‖Bs
p,θ (Rn) ( j = 1, . . . ,n),

(see (8) for the definition of gx′j ) where the constant c is independent of g . Then we

apply Lemma 3, and the rest of the proof is similar to that given for Lemma 1. �
Proof of Theorem 4. The proof is similar to that of Theorem 2, where by using

Lemma 4 with s replaced by s1 , the result follows by applying [19, prop. 2.5.4/2,
p. 88] to the operator Tf . We omit the details. �

4.3. Proof of Theorems 5–6

Proof of Theorem 5. Step 1: the case [s] = 1 . By Theorem 4, Remark 5(i) and the
embedding Bs

p,q(Rn) ↪→ L∞(Rn) it holds

‖ f ◦ g‖Bs
p,q(Rn) � c‖ f ′‖

B
s1−1
p,∞ (R)

‖g‖Bs
p,q(Rn)(1+‖g‖Bs

p,q(Rn))
s
s1

(s1−1−1/p)

for all f such that f (0) = 0, f ′ ∈ Bs1−1
p,∞ (R) and all g ∈ Bs

p,q(R
n) .

Now, for a function f ∈ Bs1,�oc
p,∞ (R) which satisfies f (0) = 0, we have both, the inequal-

ity
‖( fρ‖g‖∞)′‖

B
s1−1
p,∞ (R)

� c‖ fρ‖g‖∞‖B
s1
p,∞(R)
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and the equality f ◦ g = fρ‖g‖∞ ◦ g give the desired result.
Step 2: the case [s] � 2 . The result follows by both Theorem 1 and the fact that

Bs
p,q(Rn)∩W 1

∞(Rn) = Bs
p,q(Rn) since s > 1+n/p . �

Proof of Theorem 6. The necessity part is well known, cf., e.g., [19, 5.3.1]. For
the sufficiency part we will split the proof in two parts.

Step 1. Assume first that f ′ ∈ Bs−1
p,p (R) . We argue as in the proof of Lemma 1

and use its notations. We first have (for s < m with m ∈ N)

‖ f◦g‖Bs
p,p(Rn) � c1

{
‖ f ′‖∞‖g‖p+

n

∑
j=1

(∫
0�t�1

t−sp
∫

Rn−1

∫
R

|Δm
t f◦gx′j (y)|

pdydx′j
dt
t

)1/p}

� c2

{
‖ f ′‖∞‖g‖p +

n

∑
j=1

(∫
Rn−1

‖ f ◦ gx′j‖
p
Bs

p,p(R)dx′j
)1/p}

. (18)

On the other hand, because r := sp−1 > p > 1, we have

(∫
Rn−1

‖gx′j‖
r
B1+1/r

r,1 (R)
dx′j

)1/r
� c‖g‖

B
1+1/r
r,1 (Rn)

(∀g ∈ B1+1/r
r,1 (Rn)), (19)

which implies ‖gx′j‖B1+1/r
r,1 (R)

< ∞ , then by Lemma 2 (with p = q ) we obtain

‖ f ◦ gx′j‖Bs
p,p(R) � c‖ f ′‖Bs−1

p,p (R)

(
‖gx′j‖Bs

p,p(R) +‖gx′j‖
s−1/p

B1+1/r
r,1 (R)

)
,

the constant c depends only on s and p (see again Lemma 2). Now, inserting the last
inequality into (18) and using both (9) and (19), then by the embedding Bs

p,p(R
n) ↪→

B1+1/r
r,1 (Rn) it holds

‖ f ◦ g‖Bs
p,p(Rn) � c‖ f ′‖Bs−1

p,p (R)

(
‖g‖Bs

p,p(Rn) +‖g‖s−1/p
Bs

p,p(Rn)

)
.

Step 2. The general case can be done as in the proof of Proposition 1. �

5. Open question

As underlined in the introduction, the main problem is to obtain a class of nonlin-
ear functions f , including for instance Schwartz functions vanishing at 0, for which
the following estimate holds

‖ f ◦ g‖Bs
p,q(Rn) � c( f )‖g‖Bs

p,q(Rn)(1+‖g‖∞)s−1−1/p.

It would be also interesting to extend the validity of Theorem 4 to any s1 > 1+1/p .
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