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ON THE TRIEBEL–LIZORKIN SPACE BOUNDEDNESS OF

MARCINKIEWICZ INTEGRALS ALONG COMPOUND SURFACES
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(Communicated by J. Pečarić)

Abstract. In this paper the author present the boundedness of Marcinkiewicz integral oper-
ators associated to compound surfaces with rough kernels given by h ∈ Δγ(R+) and Ω ∈
L(log+ L)1/2(Sn−1)∪(∪1<r<∞B0,−1/2

r (Sn−1)) on Triebel-Lizorkin spaces and Besov spaces. The
main results of this paper represent improvements as well as natural extensions of many previ-
ously known results.

1. Introduction

Let Rn (n � 2) be the n -dimensional Euclidean space and Sn−1 denote the unit
sphere in Rn equipped with the induced Lebesgue measure dσ . Let Ω ∈ L1(Sn−1) be
a homogeneous function of degree zero and satisfy∫

Sn−1
Ω(u)dσ(u) = 0. (1)

For a complex number ρ = ς + iτ (ς ,τ ∈ R with ς > 0) and a suitable mapping
Γ : Rn → Rd with d � 1, we consider the parametric Marcinkiewicz integral operator
Mh,Ω,Γ,ρ on Rd by

Mh,Ω,Γ,ρ( f )(x) =
(∫ ∞

0

∣∣∣ 1
tρ

∫
|y|�t

f (x−Γ(y))
h(|y|)Ω(y)
|y|n−ρ dy

∣∣∣2 dt
t

)1/2
, (2)

where f ∈S (Rd) (the Schwartz class on Rd ) and h∈Δ1(R+) . Here R+ :=(0,∞) and
Δγ(R+)(γ � 1) denotes the set of all measurable functions h defined on R+ satisfying
the condition

‖h‖Δγ(R+) := sup
R>0

(
R−1

∫ R

0
|h(t)|γdt

)1/γ
< ∞.

Clearly, L∞(R+) = Δ∞(R+) � Δγ2(R+) � Δγ1(R+) if 1 � γ1 < γ2 < ∞ .
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When n = d and Γ(y) = y , we denote Mh,Ω,Γ,ρ by Mh,Ω,ρ . For ρ = h =
1, Mh,Ω,ρ reduces to the classical Marcinkiewicz integral operator denoted by MΩ ,
which was introduced by Stein [18] and investigated by many authors. For example,
see [4, 5] for the case Ω ∈ H1(Sn−1) (the Hardy space on Sn−1 ), [2, 3] for the case

Ω∈L(log+ L)1/2(Sn−1) , [1, 3, 8] for the case Ω∈B(0,−1/2)
r (Sn−1) (the block space gen-

erated by q -blocks). For h = 1, the operator Mh,Ω,ρ becomes the classical parametric
Marcinkiewicz integral operator denoted by MΩ,ρ . Hörmander [11] (resp., Sakamoto
and Yabuta [17]) first studied the Lp boundedness of MΩ,ρ with real (resp., complex)
number ρ . For further research on Mh,Ω,ρ , we refer the readers to consult [6, 8],
among others. It is well known that L(log+ L)α (Sn−1) � H1(Sn−1) for α � 1 and

L(log+ L)1/2(Sn−1) � H1(Sn−1) � L(log+ L)1/2(Sn−1); (3)

B(0,v)
r (Sn−1) ⊂ H1(Sn−1)+L(log+ L)1+v(Sn−1), ∀r > 1 and v > −1. (4)

The main purpose of this paper is to investigate the boundedness of Mh,Ω,Γ,ρ on
Triebel-Lizorkin spaces and Besov spaces. As is well known, the Triebel-Lizorkin
spaces and Besov spaces contain many important function spaces, such as Lebesgue
spaces, Hardy spaces, Sobolev spaces and Lipschitz spaces. The homogeneous Triebel-
Lizorkin spaces Ḟ p,q

α (Rd) and homogeneous Besov spaces Ḃp,q
α (Rd) are defined, re-

spectively, by

Ḟ p,q
α (Rd) :=

{
f ∈ S ′(Rd) : ‖ f‖Ḟ p,q

α (Rd) :=
∥∥∥(

∑
i∈Z

2−iαq|Θi ∗ f |q
)1/q∥∥∥

Lp(Rd)
< ∞

}
,

(5)

Ḃp,q
α (Rd) :=

{
f ∈ S ′(Rd) : ‖ f‖Ḃp,q

α (Rd) :=
(

∑
i∈Z

2−iαq‖Θi ∗ f‖q
Lp(Rd)

)1/q
< ∞

}
, (6)

where 0 < p, q � ∞ (p 
= ∞) , α ∈ R , S ′(Rd) denotes the tempered distribution
class on Rd , Θ̂i(ξ ) = φ(2iξ ) for i ∈ Z and φ ∈ C ∞

c (Rd) satisfies the conditions:
0 � φ(x) � 1; supp(φ)⊂ {x : 1/2 � |x|� 2} ; φ(x) > c > 0 if 3/5 � |x|� 5/3. The in-
homogeneous versions of Triebel-Lizorkin spaces and Besov spaces, which are denoted
by Fp,q

α (Rd) and Bp,q
α (Rd) , respectively, are obtained by adding the term ‖Φ∗ f‖Lp(Rd)

to the right hand side of (5) or (6) with ∑i∈Z replaced by ∑i�1 , where Φ ∈ S (Rd) ,
supp(Φ̂) ⊂ {ξ ∈ Rd : |ξ | � 2} , Φ̂(x) > c > 0 if |x| � 5/3. The following properties
are well known (see [9, 19], for example):

Ḟ p,2
0 (Rd) = Lp(Rd) ∀1 < p < ∞; (7)

Ḟ p,p
α (Rd) = Ḃp,p

α (Rd) ∀1 < p < ∞ and α ∈ R; (8)

Fp,q
α (Rd) ∼ Ḟ p,q

α (Rd)∩Lp(Rd) and ‖ f‖F p,q
α (Rd) ∼ ‖ f‖Ḟ p,q

α (Rd) +‖ f‖Lp(Rd) ∀α > 0;
(9)

Bp,q
α (Rd) ∼ Ḃp,q

α (Rd)∩Lp(Rd) and ‖ f‖Bp,q
α (Rd) ∼ ‖ f‖Ḃp,q

α (Rd) +‖ f‖Lp(Rd) ∀α > 0.
(10)

In recent years, the investigation of boundedness of parametric Marcinkiewicz
integral operators on Triebel-Lizorkin spaces has also attracted the attention of many
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authors. In 2009, Zhang and Chen [21] proved that MΩ is bounded on F p,q
α (Rn)

for 0 < α < 1 and 1 < p, q < ∞ under the condition Ω ∈ H1(Sn−1) . Later on, they
[22] showed that Mh,Ω,ρ with ρ = 1 is bounded on F p,q

α (Rn) for 0 < α < 1 and

1+ n+1
n+2−1/r < p, q < 2+ 1−1/r

n+1 if Ω ∈ Lr(Sn−1) for some r > 1 and h∈ L∞(R+) . Very
recently, Yabuta [20] obtained the following result.

THEOREM A. ([20]) Let n = d , ρ > 0 and Γ(y) = ϕ(|y|)y′ with ϕ ∈ F , where
F is the set of all functions φ satisfying

(a) φ is a positive increasing C 1(R+) function;
(b) there exist Cφ , cφ > 0 such that tφ ′(t) � Cφ φ(t) and φ(2t) � cφ φ(t) for all

t > 0 .
Suppose that Ω ∈ L(log+ L)1/2(Sn−1) ∪ (∪r>1B

(0,−1/2)
r (Sn−1)) satisfies (1) and

h ∈ Δγ (R+) for some γ > 1 . Then
(i) Mh,Ω,Γ,ρ is bounded on Ḟ p,q

α (Rd) for α ∈ (0,1) and (1/p,1/q) ∈ Rγ , where
Rγ is the set of all interiors of the convex hull of three squares ( 1

2 , 1
2 + 1

max{2,γ ′} )
2 ,

( 1
2 − 1

max{2,γ ′} ,
1
2 )2 and ( 1

2γ ,1− 1
2γ )2 ;

(ii) Mh,Ω,Γ,ρ is bounded on Ḃp,q
α (Rd) for α ∈ (0,1) , |1/p−1/2|< min{1/2,1/γ ′}

and 1 < q < ∞ .

REMARK 1. It should be pointed out that the questions concerning the Ḟ p,q
α (Rd)

bounds and Ḃp,q
α (Rd) bounds for Mh,Ω,Γ,ρ with Γ being as in Theorem A and Ω ∈

H1(Sn−1) have been answered by Yabuta in [20]. There are some model examples
for the class F , such as tα (α > 0) , tβ ln(1 + t)(β � 1) , t ln ln(e + t) , real-valued
polynomials P on R with positive coefficients and P(0) = 0 and so on. Note that there
exists Bϕ > 1 such that ϕ(2t) � Bϕϕ(t) for any ϕ ∈ F (see [13]). On the other hand,
we remark that Rγ1 � Rγ2 for any 1 < γ1 < γ2 � ∞ . Specially, R∞ = (0,1)× (0,1) .

In this paper we shall present several new results for the boundedness of parametric
Marcinkiewicz integral operators along certain compound surfaces on Triebel-Lizorkin
spaces and Besov spaces. We now briefly describe each of our main results.

The first type of our operators we consider is the parametric Marcinkiewicz inte-
gral operators supported by polynomialmappings. When Γ(y)= P(y)= (P1(y),P2(y), . . . ,Pd(y)
with Pj being real valued polynomials on Rn , we denote Mh,Ω,Γ,ρ by Mh,Ω,P,ρ .
The Lp bounds of Mh,Ω,P,ρ has been studied by many authors (see [3, 5, 7, 14]
etc.). In particular, Al-Qassem and Pan [3] proved that Mh,Ω,P,ρ is bounded on
Lp(Rd) for |1/p− 1/2| < min{1/2,1/γ ′} if h ∈ Δγ (R+) for some γ > 1 and Ω ∈
L(log+ L)1/2(Sn−1)∪ (∪r>1B

(0,−1/2)
r (Sn−1)) .

Based on the above result and (7), it is natural to ask whether the condition Ω ∈
L(log+ L)1/2(Sn−1)∪(∪r>1B

(0,−1/2)
r (Sn−1)) implies the Ḟ p,q

α (Rd) bounds of Mh,Ω,P,ρ
for some α 
= 0 or q 
= 2. Our investigation will not only address this problem, but also
deal with a more general class of operators. More precisely, we shall establish the
following

THEOREM 1. Let ϕ ∈ F and Γ(y) = P(ϕ(|y|)y′) , where P = (P1,P2, . . . ,Pd)
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with Pj being real valued polynomials on Rn . Suppose that h ∈ Δγ (R+) for some

γ > 1 and Ω ∈ L(log+ L)1/2(Sn−1)∪ (∪r>1B
(0,−1/2)
r (Sn−1)) satisfies (1). Then

(i) Mh,Ω,Γ,ρ is bounded on Ḟ p,q
α (Rd) for α ∈ (0,1) and (1/p,1/q)∈ Rγ ;

(ii) Mh,Ω,Γ,ρ is bounded on Ḃp,q
α (Rd) for α ∈ (0,1) , |1/p−1/2|< min{1/2,1/γ ′}

and 1 < q < ∞ .
The bounds are independent of the coefficients of Pj for 1 � j � d , but depend on

n, d, ϕ and deg(Pj) for 1 � j � d .

REMARK 2. Theorem 1 extends Theorem A, which corresponds to the case ρ >
0, n = d and P(y) = y .

The second type of our operators we consider are the parametric Marcinkiewicz
integral operators along polynomial compound curves. In this paper we shall establish
the following

THEOREM 2. Let n = d and Γ(y) = (P1(ϕ(|y|))y′1, . . . ,Pn(ϕ(|y|))y′n) with Pj be-
ing real valued polynomials on R with satisfying Pj(0) = 0 and ϕ ∈ F . Suppose that

Ω ∈ L(log+ L)1/2(Sn−1)∪(∪r>1B
(0,−1/2)
r (Sn−1)) satisfies (1) and h∈ Δγ (R+) for some

γ > 1 . Then
(i) Mh,Ω,Γ,ρ is bounded on Ḟ p,q

α (Rn) for α ∈ (0,1) and (1/p,1/q)∈ Rγ ;
(ii) Mh,Ω,Γ,ρ is bounded on Ḃp,q

α (Rn) for α ∈ (0,1) , |1/p−1/2|< min{1/2,1/γ ′}
and 1 < q < ∞ .

The bounds are independent of the coefficients of Pj for 1 � j � n, but depend on
n, ϕ and deg(Pj) for 1 � j � n.

REMARK 3. Theorem 2 extends Theorem A, which corresponds to the case ρ > 0
and P1(t) = P2(t) = · · · = Pn(t) = t .

REMARK 4. By employing the method in the proof of [3, Theorem 2.3] and ap-
plying some estimates about Fourier transforms of measures appeared in [14, 15], one
can easily obtain that Mh,Ω,Γ,ρ is bounded on Lp(Rd) for |1/p−1/2|< min{1/2,1/γ ′}
if h, Ω are given as in Theorem 1 and Γ is given as in Theorem 1 or 2.

As a direct consequence of Theorems 1 and 2, we have the following

COROLLARY 1. Let h∈ Δ∞(R+) and Ω, Γ be given as in Theorem 1 or 2 . Then
Mh,Ω,Γ,ρ is bounded on Ḟ p,q

α (Rd) and Ḃp,q
α (Rd) for α ∈ (0,1) and 1 < p, q < ∞ .

To obtain Theorems 1 and 2, we need to establish the following delicate sharp
Ḟ p,q

α (Rd) bounds for Mh,Ω,Γ,ρ .

THEOREM 3. Let h, Γ be given as in Theorem 1 . Suppose that Ω ∈ Ls(Sn−1) for
some s ∈ (1,2] satisfying (1). Then for α ∈ (0,1) and (1/p,1/q) ∈ Rγ , there exists
C > 0 such that

‖Mh,Ω,Γ,ρ( f )‖Ḟ p,q
α (Rd) � C(s−1)−1/2‖Ω‖Ls(Sn−1)‖ f‖Ḟ p,q

α (Rd),
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where C = Cρ ,α ,p,q,n,d,ϕ,deg(P) is independent of s, Ω and the coefficients of Pj for
1 � j � d .

THEOREM 4. Let h, Γ be given as in Theorem 2 . Suppose that Ω ∈ Ls(Sn−1) for
some s ∈ (1,2] satisfying (1). Then for α ∈ (0,1) and (1/p,1/q) ∈ Rγ , there exists
C > 0 such that

‖Mh,Ω,Γ,ρ( f )‖Ḟ p,q
α (Rn) � C(s−1)−1/2‖Ω‖Ls(Sn−1)‖ f‖Ḟ p,q

α (Rn),

where C = Cρ ,α ,p,q,n,ϕ,max1� j�n deg(Pj) is independent of s, Ω and the coefficients of Pj

for 1 � j � n.

Applying Remark 4, the properties (9)–(10) and Theorems 1 and 2, we can get the
following conclusion immediately.

COROLLARY 2. Under the same conditions of Theorems 1 and 2 , the operator
Mh,Ω,Γ,ρ is bounded on F p,q

α (Rd) and Bp,q
α (Rd) , respectively.

REMARK 5. When γ = ∞ , the range of (p,q) in Corollary 2 becomes (1,∞)2 .
Therefore, Corollary 2 extends and improves greatly the result of [22], even in the
special case ρ = 1, n = d and Γ(y) = y . It should be pointed out that all of our main
results are new, even in the special case: ρ = 1, n = d , h(t) ≡ 1 and ϕ(t) = t .

The rest of this paper is organized as follows. After presenting some technical lem-
mas in Section 2, we shall give the proofs of our main results in Section 3. We would
like to remark that some ideas in our proofs are taken from [3, 10, 12, 20] and the main
novelty in this paper is to give a standard approach on the bounds for Marcinkiewicz
integral operators in Triebel-Lizorkin spaces and Besov spaces. The proofs of Theo-
rems 3–4 are based on two important lemmas (see Lemmas 2.4 and 2.6). The proofs of
Theorems 1-2 follows from Theorems 3-4 and an extrapolation method followed from
[3].

Throughout this paper, we let p′ denote the dual exponent to p defined 1/p +
1/p′ = 1. The letter C , sometimes with additional parameters, will stand for positive
constants, not necessarily the same one at each occurrence but is independent of the
essential variables. We shall use δRn to denote the Dirac delta function on Rn and
πm

n (m � n) to denote a projection operator from Rm to Rn . We also denote by D−1

the inverse transform of D and Dt the transpose of D for any linear transformation D .
In what follows, we set Rd = {ζ ∈ Rd ; 1/2 < |ζ | � 1} . We also use the conventions
∑ j∈ /0 a j = 0 and ∏ j∈ /0 a j = 1.

2. Preliminary Lemmas

In this section, we shall present some necessary lemmas, which will play key
roles in our proofs. Let us begin with some useful characterizations of Triebel-Lizorkin
spaces and Besov spaces, which are followed from [20].
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LEMMA 1. ([20]) Let 0 < α < ∞ and l be an integer satisfying l > α . We
denote by �l

ζ ( f ) the l -th difference of f for an arbitrary function f defined on Rd

and ζ ∈ Rd .
(i) If 1 < p < ∞ , 1 < q � ∞ and 1 � r < min{p,q} . Then

‖ f‖Ḟ p,q
α (Rd) ≈

∥∥∥(
∑
k∈Z

2kqα
(∫

Rd

|�l
2−kζ ( f )|rdζ

)q/r)1/q∥∥∥
Lp(Rd)

;

(ii) If 1 � p < ∞ , 1 � q � ∞ and 1 � r � p. Then

‖ f‖Ḃp,q
α (Rd) ≈

(
∑
k∈Z

2kqα
∥∥∥(∫

Rd

|�l
2−kζ ( f )|rdζ

)1/r∥∥∥q

Lp(Rd)

)1/q
.

The following lemma can be used in the estimates about Fourier transformations
of some measures appeared in the proof of Theorem 4.

LEMMA 2. ([16]). Let λ 
= 0 . Suppose Φ(t) = tα1 + μ2tα2 + · · ·+ μntαn and
Ψ∈C1[a, b] , where μ2, . . . ,μn are real parameters, and α1, . . . ,αn are distinct positive
(not necessarily integer) exponents. Then∣∣∣∫ b

a
exp(iλ Φ(t))Ψ(t)dt

∣∣∣ � C|λ |−ε
{

sup
a�t�b

|Ψ(t)|+
∫ b

a
|Ψ′(t)|dt

}
,

with ε = min{1/α1,1/n} and C does not depend on μ2, . . . ,μn as long as 0 � a <
b � 1 .

The following results obtained by Liu in [12] are two vector-valued norm inequal-
ities of the Hardy-Littlewood maximal operator.

LEMMA 3. ([12]) (i) Let M(d) be the Hardy-Littlewood maximal operator on Rd .
Then ∥∥∥(

∑
j∈Z

∥∥∥(
∑
k∈Z

|M(d)g j,ζ ,k|2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

� C
∥∥∥(

∑
j∈Z

∥∥∥(
∑
k∈Z

|g j,ζ ,k|2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

for any 1 < p, q, r < ∞ , where C > 0 is independent of functions {g j,ζ ,k} j,ζ ,k on Rd

parametrized by ζ ∈ Rd and j, k ∈ Z;
(ii) Let MP be the Hardy-Littlewood maximal operator supported by polynomial

mappings defined by

MP f (x) = sup
r>0

1
rn

∫
|y|�r

| f (x−P(y))|dy,

where P = (P1, . . . ,Pd) with Pj being real-valued polynomials on Rn . Then

∥∥∥(
∑
j∈Z

‖MP f j,ζ ‖q
Lr(Rd)

)1/q∥∥∥
Lp(Rd)

� C
∥∥∥(

∑
j∈Z

‖ f j,ζ‖q
Lr(Rd)

)1/q∥∥∥
Lp(Rd)

,
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for any 1 < p, q, r < ∞ , where C > 0 is independent of the coefficients of Pj for 1 �
j � d .

Let h, Ω, Γ, ρ be goven as in (2), we define the family of measures {σh,Ω,Γ,t} and
the related maximal operators σ∗

h,Ω,Γ on Rd by

∫
Rd

f (x)dσh,Ω,Γ,t (x) =
1
tρ

∫
t/2<|x|�t

f (Γ(x))
h(|x|)Ω(x)
|x|n−ρ dx,

σ∗
h,Ω,Γ( f )(x) = sup

t>0

∣∣|σh,Ω,Γ,t | ∗ f (x)
∣∣,

where |σh,Ω,Γ,t | is defined in the same way as σh,Ω,Γ,t , but with Ω and h replaced by
|Ω| and |h| , respectively.

LEMMA 4. Let v > 1 and Γ(y) = (P1(ϕ(|y|))a1(y), . . . ,Pd(ϕ(|y|))ad(y)) , where
ϕ ∈ F , P1, . . . ,Pd are real-valued polynomials on R+ and a1(y), . . . ,ad(y) are arbi-
trary functions independent of |y| . Suppose that h ∈ Δγ(R+) for some γ > 1 and
Ω ∈ L1(Sn−1) satisfies (1). If (1/p, 1/q, 1/r) belongs to the interior of the convex
hull of three cubes ( 1

2 , 1
2 + 1

max{2,γ ′})
3 , ( 1

2 − 1
max{2,γ ′} ,

1
2)3 and ( 1

2γ ,1− 1
2γ )3 , then for

arbitrary functions {g j,ζ ,k} j,ζ ,k ∈ Lp(�q(Lr(�2)),Rd) , there exists C > 0 such that

∥∥∥(
∑
j∈Z

(∫
Rd

(
∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σh,Ω,Γ,t | ∗ g j,ζ ,k

∣∣2 dt
t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

� Cv1/2‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

|g j,ζ ,k|2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

.

(11)

The constant C > 0 is independent of v , Ω and the coefficients of Pj for 1 � j � d .

Proof. By Hölder’s inequality we have

∥∥∥(
∑
j∈Z

(∫
Rd

(
∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σh,Ω,Γ,t | ∗ g j,ζ ,k

∣∣2 dt
t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

�
∥∥∥(

∑
j∈Z

∥∥∥(
∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σh,Ω,Γ,t | ∗ g j,ζ ,k

∣∣2 dt
t

)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

for any 1 < p, q, r < ∞ . Thus, to prove (11), it suffices to show that

∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σh,Ω,Γ,t | ∗ g j,ζ ,k

∣∣2 dt
t

)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

� Cv1/2‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

|g j,ζ ,k|2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

(12)

for (1/p, 1/q, 1/r) belonging to the interior of the convex hull of three cubes ( 1
2 , 1

2 +
1

max{2,γ ′} )
3 , ( 1

2 − 1
max{2,γ ′} ,

1
2 )3 and ( 1

2γ ,1− 1
2γ )3 , and arbitrary functions {g j,ζ ,k} j,ζ ,k ∈
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Lp(�q(Lr(�2,Rd)),Rd) , where C > 0 is independent of v , Ω and the coefficients of Pj

for 1 � j � d .

Below we shall prove (12). We first conclude that

∥∥∥(
∑
j∈Z

‖σ∗
h,Ω,Γ( f j,ζ )‖q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

� C‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

‖ f j,ζ‖q
Lr(Rd)

)1/q∥∥∥
Lp(Rd)

(13)
for any γ ′ < p, q, r < ∞ and arbitrary functions { f j,ζ} ∈ Lp(�q(Lr(Rd)),Rd) . By the
change of variables and Hölder’s inequality,

σ∗
h,Ω,Γ( f )(x)

� sup
t>0

∫
t/2<|y|�t

| f (x−Γ(y))| |h(|y|)Ω(y)|
|y|n dy

= sup
t>0

∫ t

t/2

∫
Sn−1

| f (x−Γ(rθ ))||Ω(θ )|dσ(θ )|h(r)|dr
r

� 2‖h‖Δγ(R+)‖Ω‖1/γ
L1(Sn−1)

(∫
Sn−1

sup
t>0

∫ t

t/2
| f (x−Γ(rθ ))|γ ′ dr

r
|Ω(θ )|dσ(θ )

)1/γ ′

� C‖Ω‖1/γ
L1(Sn−1)

×
(∫

Sn−1
sup
t>0

∫ ϕ(t)

ϕ(t/2)
| f (x−Γ(ϕ−1(s)θ ))|γ ′ ds

ϕ−1(s)ϕ ′(ϕ−1(s))
|Ω(θ )|dσ(θ )

)1/γ ′

� C(ϕ)‖Ω‖1/γ
L1(Sn−1)

(∫
Sn−1

sup
t>0

1
t

∫
|s|�t

| f (x−Γ(ϕ−1(s)θ ))|γ ′ds|Ω(θ )|dσ(θ )
)1/γ ′

,

which combining (ii) of Lemma 3 with Minkowski’s inequality yields (13).

We now discuss the following three cases:

Case 1 (1 < γ � ∞) . Note that

sup
k∈Z

sup
t∈[2kv,2(k+1)v]

∣∣|σh,Ω,Γ,t | ∗ g j,ζ ,k

∣∣ � σ∗
h,Ω,Γ

(
sup
k∈Z

|g j,ζ ,k|
)
,

which together with (13) leads to

∥∥∥(
∑
j∈Z

∥∥∥ sup
k∈Z

sup
t∈[2kv,2(k+1)v]

∣∣|σh,Ω,Γ,t | ∗ g j,ζ ,k

∣∣∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

� C‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥ sup
k∈Z

|g j,ζ ,k|
∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

(14)

for any γ ′ < p, q, r < ∞ . On the other hand, by the duality, Hölder’s inequality, Fu-
bini’s theorem and (13) we have that for any 1 < p, q, r < γ , there exists a sequence of
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functions { f j,ζ} j,ζ with ‖{ f j,ζ}‖Lp′ (�q′ (Lr′ (Rd)),Rd) = 1 such that

∥∥∥(
∑
j∈Z

∥∥∥ ∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σh,Ω,Γ,t | ∗ g j,ζ ,k

∣∣dt
t

∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

= ∑
j∈Z

∫
Rd

∫
Rd

∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σh,Ω,Γ,t | ∗ g j,ζ ,k(x)
∣∣dt

t
| f j,ζ (x)|dζdx

� ∑
j∈Z

∫
Rd

∫
Rd

∑
k∈Z

|g j,ζ ,k(x)|
∫ 2(k+1)v

2kv
|σh,Ω,Γ,t | ∗ |̃ f j,ζ |(−x)|dt

t
dζdx

� v ∑
j∈Z

∫
Rd

∫
Rd

∑
k∈Z

|g j,ζ ,k(x)|σ∗
h,Ω,Γ(|̃ f j,ζ |)(−x)dζdx

� v
∥∥∥(

∑
j∈Z

∥∥∥ ∑
k∈Z

|g j,ζ ,k|
∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

∥∥∥(
∑
j∈Z

∥∥∥σ∗
h,Ω,Γ(|̃ f j,ζ |)

∥∥∥q′

Lr′ (Rd)

)1/q′∥∥∥
Lp′ (Rd)

� Cv‖Ω‖L1(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥ ∑
k∈Z

|g j,ζ ,k|
∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

,

(15)
where f̃ j,ζ (x) = f j,ζ (−x) . Interpolating between (14) and (15) yields that (12) holds
for (1/p,1/q,1/r) belonging to the interior of the cube ( 1

2γ ,1− 1
2γ )3 .

Case 2 (1 < γ � 2) . By Hölder’s inequality we have

∣∣|σh,Ω,Γ,t | ∗ g j,ζ ,k(x)
∣∣ �

∫
t/2<|y|�t

|g j,ζ ,k(x−Γ(y))| |h(y)Ω(y)|
|y|n dy

�
(∫

t/2<|y|�t
|g j,ζ ,k(x−Γ(y))|2 |h(y)|2−γ |Ω(y)|

|y|n dy
)1/2

×
(∫

t/2<|y|�t

|h(y)|γ |Ω(y)|
|y|n dy

)1/2

� C‖h‖Δγ(R+)‖Ω‖1/2
L1(Sn−1)

(
|σ|h|2−γ ,Ω,Γ,t | ∗ |g j,ζ ,k|2(x)

)1/2
.

It follows that∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σh,Ω,Γ,t | ∗ g j,ζ ,k

∣∣2 dt
t

)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

� C‖Ω‖1/2
L1(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥ ∑
k∈Z

∫ 2(k+1)v

2kv
|σ|h|2−γ ,Ω,Γ,t | ∗ |g j,ζ ,k|2

dt
t

∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

(16)
Note that |h|2−γ ∈Δ γ

2−γ
(R+) . By (16) and (15) with γ, p, q, r replacing by γ

2−γ , p
2 , q

2 , r
2 ,

respectively we have (12) for (1/p,1/q,1/r) belonging to the interior of the cube
( 1

2 − 1
γ ′ ,

1
2)3 . By duality we see that (12) holds for (1/p, 1/q, 1/r) belonging to the

interior of the cube ( 1
2 , 1

2 + 1
γ ′ )

3 . Interpolating these two cases, we see that (12) holds

for (1/p,1/q,1/r) belonging to the interior of the convex hull of two cubes ( 1
2 − 1

γ ′ ,
1
2 )3

and ( 1
2 , 1

2 + 1
γ ′ )

3 . Note that in this case the interior of the cubes ( 1
2γ ,1− 1

2γ )3 contains

in the interior of the convex hull of two cubes ( 1
2 − 1

γ ′ ,
1
2 )3 and ( 1

2 , 1
2 + 1

γ ′ )
3 .
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Case 3 (γ � 2) . Note that Δγ(R+) ⊂ Δ2(R+) for γ � 2. Interpolating between
cases 1 and 2 we obtain (12) for (1/p,1/q,1/r) belonging to the interior of the convex
hull of three cubes( 1

2γ ,1− 1
2γ )3 , (0, 1

2 )3 and ( 1
2 ,1)3 . This finishes the proof of Lemma

4. �
Let η0 ∈ C ∞(R) be an even function satisfying 0 � η0(t) � 1, η0(0) = 1 and

η0(t) = 0 for |t| � 1. Set η(ξ ) = 1 for |ξ | � 1, η(ξ ) = η0(
|ξ |−1
a−1 ) , where a > 1.

Then, η satisfies χ|ξ |�1(ξ ) � η(ξ ) � χ|ξ |�a(ξ ) and |∂ α η(ξ )| � cα(a− 1)−|α | for
ξ ∈ Rd and α ∈ Nd , where cα is independent of a . Let {ak} be a lacunary sequence
satisfying infk∈Z

ak+1
ak

� a > 1. We define functions {ψk}k on Rd by

ψk(ξ ) = η(a−1
k+1ξ )−η(a−1

k ξ ), ξ ∈ Rd . (17)

Then observe that

supp(ψk) ⊂ {ak � |ξ |� aak+1}; supp(ψk)∩ supp(ψ j) = /0 for | j− k| � 2;

∑
k∈Z

ψk(ξ ) = 1 ∀ξ ∈ Rd \ {0}.

Let m � d . Since ψk is radial, we shall use the convention ψk(|ζ |) = ψk(ξ ) for
ζ ∈ Rm satisfying |ζ | = |ξ | with ξ ∈ Rd . We have the following lemma.

LEMMA 5. Let m � d , H : Rm →Rm and G : Rd →Rd be two nonsingular linear
transformations. Let ψk be given as in (17). Define the multiplier operator Sk on Rd

by Ŝk f (ξ ) = ψk(|Hπd
mGξ |) f̂ (ξ ) . Then

∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

|Sk f j,ζ |2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

� C
( a

a−1

)d+2∥∥∥(
∑
j∈Z

‖ f j,ζ‖q
Lr(Rd)

)1/q∥∥∥
Lp(Rd)

.

for 1 < p, q, r < ∞ , where C > 0 is independent of a and { f j,ζ} .

Proof. Define the function Ψk by Ψ̂k(ξ ) = ψk(ξ ) . By [20, Lemma 2.5] we have

∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

|Ψk ∗ f j,ζ |2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

� C
( a

a−1

)d+2∥∥∥(
∑
j∈Z

‖ f j,ζ‖q
Lr(Rd)

)1/q∥∥∥
Lp(Rd)

.
(18)

Define J by J = G−1(H−1⊗ δRd−m) . Obviously, J is a nonsingular linear transforma-
tion on Rd . Let y = (y1,y2) with y1 = (y1,y2, . . . ,ym) and y2 = (ym+1,ym+2, . . . ,yd) .
One can easily check that

Sk f (x) = |J|Ψk ⊗ δRd−m ∗ f J(Jtx), (19)
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where f J(ξ ) = |J|−1 f ((Jt )−1ξ ) . We get from (18) and (19) that∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

|Sk f j,ζ |2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥p

Lp(Rd)

�
∫

Rd

(
∑
j∈Z

∥∥∥(
∑
k∈Z

||J|Ψk ⊗ δRd−m ∗ f J
j,ζ (Jtx)|2

)1/2∥∥∥q

Lr(Rd)

)p/q
dx

= |J|p−1
∫

Rd

(
∑
j∈Z

∥∥∥(
∑
k∈Z

|Ψk ⊗ δRd−m ∗ f J
j,ζ (y)|2

)1/2∥∥∥q

Lr(Rd)

)p/q
dy

= |J|p−1
∫

Rd−m

∫
Rm

(
∑
j∈Z

∥∥∥(
∑
k∈Z

|[Ψk ∗ f J
j,ζ (·,y2)](y1)|2

)1/2∥∥∥q

Lr(Rd)

)p/q
dy1dy2

� C|J|p−1
( a

a−1

)p(d+2) ∫
Rd

(
∑
j∈Z

‖ f J
j,ζ (y)‖q

Lr(Rd)

)p/q
dy

� C
( a

a−1

)p(d+2)∥∥∥(
∑
j∈Z

‖ f j,ζ‖q
Lr(Rd)

)1/q∥∥∥p

Lp(Rd)
,

which is just the conclusion of Lemma 5. �
We end this section by presenting the following key lemma, which is the heart of

our proofs.

LEMMA 6. Let v > 1 , Λ ∈ N \ {0} and {σs,t : t ∈ R+ , 1 � s � Λ} be a family
of Borel measures on Rd with σ0,t = 0 for all t ∈ R+ . We also denote by |σs,t | the
total variation of σs,t . For 1 � s � Λ , let γs, βs > 0 , Ms ∈ N\{0} and Ls : Rd → RMs

be linear transformations. Suppose that ϕ ∈ F and there exist p0, q0 > 1 , 1 < r0 <
min{p0,q0} and C, A > 0 independent of v such that the following conditions are
satisfied for 1 � s � Λ , t ∈ R+ , ξ ∈ Rd and {gl,ζ ,k} ∈ Lp0(�q0(Lr0(�2,Rd)),Rd):

(i) |σ̂s,t(ξ )− σ̂s−1,t(ξ )| � CAϕ(t)γs |Ls(ξ )|;
(ii) |σ̂s,t(ξ )| � CAmin{1,(ϕ(t)γs |Ls(ξ )|)−βs/v} ;
(iii)

∥∥∥(
∑
l∈Z

(∫
Rd

(
∑
k∈Z

∫ 2(k+1)v

2kv

∣∣|σs,t | ∗ gl,ζ ,k

∣∣2 dt
t

)1/2
dζ

)q0
)1/q0

∥∥∥
Lp0 (Rd)

� CAv1/2
∥∥∥(

∑
l∈Z

∥∥∥(
∑
k∈Z

|gl,ζ ,k|2
)1/2∥∥∥q0

Lr0 (Rd)

)1/q0
∥∥∥

Lp0 (Rd)

Then for α ∈ (0,1) and (1/p,1/q)∈ P1P2 \{( 1
p0

, 1
q0

)} , there exists C > 0 independent
of A and v such that∥∥∥(

∑
l∈Z

2lqα
(∫

Rd

(∫ ∞

0
|σΛ,t ∗�2−lζ ( f )|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

�CAv1/2‖ f‖Ḟ p,q
α (Rd),

(20)
where �2−lζ ( f )(x) = f (x+ 2−lζ )− f (x) and P1P2 is the line segment from P1 to P2

with P1 = ( 1
2 , 1

2) and P2 = ( 1
p0

, 1
q0

) .
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Proof. For any 1 � s � Λ , let ls = rank(Ls) � min{d,Ms} . By [10, Lemma 6.1],
there are two nonsingular linear transformations Hs : Rls →Rls and Gs : Rd →Rd such
that

|Hsπd
lsGsξ | � |Ls(ξ )| � Ms|Hsπd

lsGsξ |, ∀ ξ ∈ Rd . (21)

Now we can choose a function ψ ∈ C ∞
0 (R) such that ψ(t) ≡ 1 for |t| � 1/2 and

ψ(t)≡ 0 for |t|> 1. For t > 0 and 1 � s � Λ , we define the family of measures {τs,t}
by

τ̂s,t(ξ ) = σ̂s,t(ξ )
Λ

∏
j=s+1

ψ(|ϕ(t)γ jH jπd
l jG jξ |)− σ̂s−1,t(ξ )

Λ

∏
j=s

ψ(|ϕ(t)γ jH jπd
l jG jξ |).

(22)
By our assumption σ0,t = 0 and (22) we get

σΛ,t =
Λ

∑
s=1

τs,t . (23)

It follows that

∥∥∥(
∑
l∈Z

2lqα
(∫

Rd

(∫ ∞

0
|σΛ,t ∗�2−lζ ( f )|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

�
Λ

∑
s=1

∥∥∥(
∑
l∈Z

2lqα
(∫

Rd

(∫ ∞

0
|τs,t ∗�2−lζ ( f )|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

.

(24)

Therefore, to prove (20), it suffices to show that

∥∥∥(
∑
l∈Z

2lqα
(∫

Rd

(∫ ∞

0
|τs,t ∗�2−lζ ( f )|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

� CAv1/2‖ f‖Ḟ p,q
α (Rd)

(25)
for any 1 � s � Λ , α ∈ (0,1) and (1/p,1/q) ∈ P1P2 \ {( 1

p0
, 1

q0
)} , where C > 0 is

independent of A, v .
Next we prove (25). Fix 0 < α < 1. By straightforward calculations, conditions

(i)–(ii) and (21)–(22) we obtain that for any 1 � s � Λ ,

|τ̂s,t (ξ )| � CAmin{1,(ϕ(t)γs |Ls(ξ )|)1/v}; (26)

|τ̂s,t (ξ )| � CA(ϕ(t)γs |Ls(ξ )|)−βs/v, if ϕ(t)γs |Hsπd
lsGsξ | � 1. (27)

For any fixed s ∈ {1,2, . . . ,Λ} . Let ψk be given as in (17) with ak = ϕ(2−kv)−γs and
a = Bvγs

ϕ , where Bϕ is given as in Remark 1. Define the multiplier operator Sk,s on Rd

by

Ŝk,s f (ξ ) = ψk(|Hsπd
lsGsξ |) f̂ (ξ ).
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By Minkowski’s inequality we have∥∥∥(
∑
l∈Z

2lqα
(∫

Rd

(∫ ∞

0
|τs,t ∗�2−lζ ( f )|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

=
∥∥∥(

∑
l∈Z

2lqα
(∫

Rd

(
∑
k∈Z

∫ 2(k+1)v

2kv
|τs,t ∗�2−lζ ( f )|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

=
∥∥∥(

∑
l∈Z

2lqα
(∫

Rd

(
∑
k∈Z

∫ 2(k+1)v

2kv
|τs,t ∗ ∑

j∈Z
S j−k,s�2−lζ ( f )|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

� ∑
j∈Z

∥∥∥(
∑
l∈Z

2lqα
(∫

Rd

(
∑
k∈Z

∫ 2(k+1)v

2kv
|τs,t ∗ S j−k,s�2−lζ ( f )|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

.

(28)
Define the mixed norm ‖ ·‖Ep,q

α
for measurable functions on Rd ×Rd×Z×Z×R+ by

‖g‖Ep,q
α

:=
∥∥∥(

∑
l∈Z

2lqα
(∫

Rd

(
∑
k∈Z

∫ ∞

0
|g(x,ζ , l,k,t)|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

.

For any j ∈ Z , let

Vj,s( f )(x,ζ , l,k,t) := τs,t ∗ S j−k,s�2−lζ ( f )(x)χ[2kv,2(k+1)v)(t).

Thus we have∥∥∥(
∑
l∈Z

2lqα
(∫

Rd

(
∑
k∈Z

∫ 2(k+1)v

2kv
|τs,t ∗�2−lζ ( f )|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

� ∑
j∈Z

‖Vj,s( f )‖Ep,q
α

.
(29)

By (26)–(27), Hölder’s inequality, Minkowski’s inequality, Fubini’s theorem and Plancherel’s
theorem we have

‖Vj,s( f )‖2
E2,2

α

=
∥∥∥(

∑
l∈Z

22lα
(∫

Rd

(
∑
k∈Z

∫ 2(k+1)v

2kv
|τs,t ∗ S j−k,s�2−lζ ( f )|2 dt

t

)1/2
dζ

)2)1/2∥∥∥2

L2(Rd)

=
∫

Rd
∑
l∈Z

22lα
(∫

Rd

(
∑
k∈Z

∫ 2(k+1)v

2kv
|τs,t ∗ S j−k,s�2−lζ ( f )(x)|2 dt

t

)1/2
dζ

)2
dx

� C ∑
l∈Z

22lα
∫

Rd
∑
k∈Z

∫ 2(k+1)v

2kv

∫
Rd

|τs,t ∗ S j−k,s�2−lζ ( f )(x)|2dx
dt
t

dζ

� C ∑
l∈Z

22lα
∫

Rd
∑
k∈Z

∫
Ej−k,s

∫ 2(k+1)v

2kv
|τ̂s,t(x)|2 dt

t
|�̂2−lζ ( f )(x)|2dxdζ

� CA2vB−2c| j|
ϕ ‖ f‖2

Ḃ2,2
α (Rd)

,

(30)
where C, c > 0 are independent of v and

Ej−k,s = {x ∈ Rd : ϕ(2(k− j)v)−γs � |Hsπd
lsGsξ | � Bvγs

ϕ ϕ(2(k− j−1)v)−γs}.
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Combining (30) with (8) yields

‖Vj,s( f )‖
E2,2

α
� CAv1/2B−c| j|

ϕ ‖ f‖
Ḟ2,2

α (Rd), (31)

where C > 0 is independent of v . Following that, we will prove that there exists C > 0
which is independent of v such that

‖Vj,s( f )‖E
p0,q0
α

� CAv1/2‖ f‖Ḟ
p0,q0

α (Rd). (32)

In fact, interpolation between (31) and (32) implies that for α ∈ (0,1) and (1/p,1/q)∈
P1P2 \ {( 1

p0
, 1

q0
)} , there exists θ ∈ (0,1) such that

‖Vj,s( f )‖Ep,q
α

� CAv1/2B−cθ | j|
ϕ ‖ f‖Ḟ p,q

α (Rd), (33)

where C is independent of v . (33) together with (29) yields (25).
It remains to show (32). For 1 � s � Λ , let Φs be a radial function in S (Rls)

defined by Φ̂s(x) = ψ(|x|) , where x ∈ Rls and ψ is given as in (22). Define Js and Xs

by
Js f (x) := f (G t

s (H
t

s ⊗ idRd−ls)x)

and
Xs f (x) = sup

k∈Z
sup

t∈[2kv,2(k+1)v]
|Xk,t;s f (x)|,

where
Xk,t;s f (x) = J−1

s ((Φk,t;s ⊗ δRd−ls )∗ Js f )(x),

and
Φk,t;s(x0) = (ϕ(t)γs)−lsΦs(ϕ(t)−γs x0),

where x0 ∈ Rls . One can easily check that

|Xs f (x)| � Cs[J−1
s ◦ (M(ls)⊗ idRd−ls )◦ Js]( f )(x), (34)

where x = (x0,x1) ∈ Rls ×Rd−ls . This combining with (i) of Lemma 3 yields

∥∥∥(
∑
l∈Z

∥∥∥(
∑
k∈Z

|Xsgl,ζ ,k|2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥p

Lp(Rd)

� C
∥∥∥(

∑
l∈Z

∥∥∥(
∑
k∈Z

|[J−1
s ◦ (M(ls) ⊗ idRd−ls )◦ Js](gl,ζ ,k)|2

)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥p

Lp(Rd)

� C|Js|
∫

Rd−ls

∫
Rls

(
∑
l∈Z

∥∥∥(
∑
k∈Z

|(M(ls)[(Jsgl,ζ ,k(·,x1))](x0)2
)1/2∥∥∥q

Lr(Rd)

)p/q
dx0dx1

� C
∥∥∥(

∑
l∈Z

∥∥∥(
∑
k∈Z

|gl,ζ ,k|2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥p

Lp(Rd)

(35)
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for any 1 � s � Λ and 1 < p, q, r < ∞ . Define Xs f = Xs ◦Xs+1◦ · · · ◦XΛ f for 1 � s �
Λ . We get from (35) that

∥∥∥(
∑
l∈Z

∥∥∥(
∑
k∈Z

|Xsgl,ζ ,k|2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥p

Lp(Rd)

� C
∥∥∥(

∑
l∈Z

∥∥∥(
∑
k∈Z

|gl,ζ ,k|2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥p

Lp(Rd)
.

(36)

for any 1 � s � Λ and 1 < p, q, r < ∞ . On the other hand, by the definition of Xk,t;s

we have

τs,t ∗ f = σs,t ∗ (Xk,t;s+1 ◦Xk,t;s+2 ◦ · · · ◦Xk,t;Λ f )−σs−1,t ∗ (Xk,t;s ◦Xk,t;s+1 ◦ · · · ◦Xk,t;Λ f ).

It follows that

∫ 2(k+1)v

2kv
|τs,t ∗ f |2 dt

t
� 2

(∫ 2(k+1)v

2kv

∣∣|σs,t | ∗Xs+1 f
∣∣2 dt

t
+

∫ 2(k+1)v

2kv

∣∣|σs−1,t | ∗Xs f
∣∣2 dt

t

)
.

(37)
From (36)–(37) and assumption (iii), one can get

∥∥∥(
∑
l∈Z

(∫
Rd

(
∑
k∈Z

∫ 2(k+1)v

2kv
|τs,t ∗ gl,ζ ,k|2

dt
t

)1/2
dζ

)q0
)1/q0

∥∥∥
Lp0 (Rd)

� CAv1/2
∥∥∥(

∑
l∈Z

∥∥∥(
∑
k∈Z

|gl,ζ ,k|2
)1/2∥∥∥q0

Lr0 (Rd)

)1/q0
∥∥∥

Lp0 (Rd)

(38)

for arbitrary functions {gl,ζ ,k} ∈ Lp0(�q0(Lr0(�2,Rd)),Rd) and 1 � s � Λ . Then (38)
together with (i) of Lemmas 1 and 5 leads to

‖Vj,s( f )‖E
p0,q0
α

� CAv1/2
∥∥∥(

∑
l∈Z

2lq0α
∥∥∥(

∑
k∈Z

|S j−k,s�2−lζ ( f )|2
)1/2∥∥∥q0

Lr0 (Rd)

)1/q0
∥∥∥

Lp0 (Rd)

� CAv1/2
( Bvγs

ϕ

Bvγs
ϕ −1

)d+2∥∥∥(
∑
l∈Z

2lq0α‖�2−lζ ( f )‖q0
Lr0 (Rd)

)1/q0
∥∥∥

Lp0 (Rd)

� CAv1/2
(

Bγs
ϕ

Bγs
ϕ −1

)d+2‖ f‖Ḟ
p0,q0

α (Rd).

This yields (32) and completes the proof of Lemma 6. �

3. Proofs of Theorems 1–4

This section is devoted to presenting the proofs of main results. In what follows,
let σh,Ω,Γ,t be defined as in Section 2 and set �2−lζ ( f )(x) = f (x + 2−lζ )− f (x) for

any l ∈ Z, ζ ∈ Rd and x ∈ Rd . Let us begin with the proof of Theorem 3.

Proof of Theorem 3 . Following from [10], we first recall some notations. For l ∈
N\{0} , we denote Vn,l as the space of real-valued homogeneous polynomials of degree
l on Rn and An denotes the class of polynomials of n variables with real coefficients.
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Let P = (P1, . . . ,Pd) with Pj ∈ An for 1 � j � d and deg(P) = max1� j�d deg(Pj) .
There are integers 0 < l1 < l2 < · · · < lN � deg(P) , and polynomials Qη

j ∈ Vn,lη ⊂
An, Rj ∈ A1 with deg(Rj) � deg(P) for 1 � η � N , 1 � j � d such that

P(x) = R(|x|)+
N

∑
η=1

Qη(x),

where Qη = (Qη
1 ,Qη

2 , . . . ,Qη
d ) , R = (R1,R2, . . . ,Rd) and Zlη (Qη

j ) = Qη
j for 1 � η �

N and 1 � j � d , where Zlη : Vn,lη → Vn,lη is a linear transformation defined as in
(3.10) in [10]. Note that for each 1 � η � N , there is at least one 1 � j � d such that
Qη

j 
= 0. For 1 � j � d and 1 � η � N , write

Qη
j (x) = ∑

|β |=lη

bη jβ xβ =
�(η)

∑
s=1

b′η jsx
βη,s ,

where �(η) = dim(Vn,lη ) and |βη,v| = lη for any 1 � v � �(η) . For 1 � η � N ,

define the linear transformations Lη : Rd → R�(η) by

Lη (ξ ) =
( d

∑
j=1

b′η j1ξ j, · · · ,
d

∑
j=1

b′η j�(η)ξ j

)
.

Define Φ0, . . . ,ΦN by

Φη (x) = R(|x|)+
η

∑
u=1

Qu(x) for 0 � η � N .

For any 0 � η � N and t ∈ R+ , we denote σt,η by σh,Ω,Γη ,t with Γη (y) =
Φη (ϕ(|y|)y′) . By the change of variables and Hölder’s inequality we have

|σ̂t,η (ξ )|
=

∣∣∣ 1
tρ

∫ t

t/2

∫
Sn−1

Ω(y′)exp(−2π iξ ·Φη (ϕ(r)y′))dσ(y′)h(r)
dr

r1−ρ

∣∣∣
� C‖h‖Δγ(R+)

(∫ t

t/2

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Φη(ϕ(r)y′))dσ(y′)
∣∣∣γ ′ dr

r

)1/γ ′

� C
(∫ ϕ(t)

ϕ(t/2)

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Φη(ry′))dσ(y′)
∣∣∣γ ′ dr

ϕ ′(ϕ−1(r))ϕ−1(r)

)1/γ ′

� C(ϕ)
(∫ cϕ

1

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Φη(ϕ(t)ry′))dσ(y′)
∣∣∣γ ′ dr

r

)1/γ ′

� C(ϕ)‖Ω‖max{1−2/γ ′,0}
Ls(Sn−1)

×
(∫ cϕ

1

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Φη(ϕ(t)ry′))dσ(y′)
∣∣∣s′ dr

r

)2/(s′max{2,γ ′})
.

(39)
By the similar argument as in getting [10, Corollary 4.3] with ε = (8lη)−1 and careful
analysis, there exists C > 0 independent of s such that(∫ cϕ

1

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Φη(ϕ(t)ry′))dσ(y′)
∣∣∣s′ dr

r

)1/s′

� C|ϕ(t)lη Lη (ξ )|−1/(4lηs′)‖Ω‖Ls(Sn−1).
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Combining this inequality with (39) implies

|σ̂t,η (ξ )| � C(ϕ)‖Ω‖Ls(Sn−1)|ϕ(t)lη Lη (ξ )|−1/(2lηs′max{2,γ ′}). (40)

It is easy to see that σt,0 = 0 for all t ∈ R+ and

|σ̂t,η (ξ )| � C‖Ω‖Ls(Sn−1); (41)

|σ̂t,η (ξ )− σ̂t,η−1(ξ )| � C‖Ω‖Ls(Sn−1)ϕ(t)lη |Lη(ξ )|. (42)

It follows from (40)–(42) that

|σ̂t,η (ξ )− σ̂t,η−1(ξ )| � C‖Ω‖Ls(Sn−1)(ϕ(t)lη |Lη(ξ )|)1/s′ ; (43)

|σ̂t,η (ξ )| � C(ϕ)‖Ω‖Ls(Sn−1) min{1, |ϕ(t)lη Lη (ξ )|}−1/(4lηγ ′s′). (44)

Let α ∈ (0,1) and (1/p,1/q) ∈ Rγ , we can choose 1 < r < min{p,q} such that
(1/p,1/q,1/r) belongs to the interior of the convex hull of three cubes ( 1

2 , 1
2 + 1

max{2,γ ′} )
3 ,

( 1
2 − 1

max{2,γ ′} ,
1
2 )3 , and ( 1

2γ ,1− 1
2γ )3 . Invoking Lemma 4 we have

∥∥∥(
∑
j∈Z

(∫
Rd

(
∑
k∈Z

∫ 2(k+1)s′

2ks′
∣∣|σt,η | ∗ g j,ζ ,k

∣∣2 dt
t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

� C
( s
s−1

)1/2‖Ω‖Ls(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

|g j,ζ ,k|2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

(45)

for arbitrary functions {g j,ζ ,k} j,ζ ,k ∈ Lp(�q(Lr(�2)),Rd) , where C > 0 is independent
of s , Ω and the coefficients of Pj for 1 � j � d . Applying Lemma 6 and (43)–(45) we
get ∥∥∥(

∑
l∈Z

2lqα
(∫

Rd

(∫ ∞

0
|σt,N ∗�2−lζ ( f )|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

� C(s−1)−1/2‖Ω‖Ls(Sn−1)‖ f‖Ḟ p,q
α (Rd),

(46)

where C > 0 is independent of s , Ω and the coefficients of Pj for 1 � j � d . By
Minkowski’s inequality it follows that

Mh,Ω,Γ,ρ( f )(x) =
(∫ ∞

0

∣∣∣ 0

∑
k=−∞

2kρσ2kt,N ∗ f (x)
∣∣∣2 dt

t

)1/2

�
0

∑
k=−∞

2kς
(∫ ∞

0
|σ2kt,N ∗ f (x)|2 dt

t

)1/2

� 1
1−2−ς

(∫ ∞

0
|σt,N ∗ f (x)|2 dt

t

)1/2
.

(47)

By (46)–(47) and (i) of Lemma 1 we get
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‖Mh,Ω,Γ,ρ( f )‖Ḟ p,q
α (Rd)

� C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rd

|Mh,Ω,Γ,ρ( f )(·+2−lζ )−Mh,Ω,Γ,ρ( f )(·)|dζ
)q)1/q∥∥∥

Lp(Rd)

� C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rd

|Mh,Ω,Γ,ρ(�2−lζ ( f ))|dζ
)q)1/q∥∥∥

Lp(Rd)

� C
∥∥∥(

∑
l∈Z

2lqα
(∫

Rd

(∫ ∞

0
|σt,N ∗�2−lζ ( f )|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

� C(s−1)−1/2‖Ω‖Ls(Sn−1)‖ f‖Ḟ p,q
α (Rd)

(48)
for α ∈ (0,1) and (1/p,1/q)∈ Rγ . This completes the proof of Theorem 3. �

Proof of Theorem 4 . Let N = max1� j�n deg(Pj) . For 1 � j � n , we set Pl(t) =
∑N

i=1 ai, jt i . There are integers 0 < l1 < l2 < .. . < lΛ � N such that Pj(t) = ∑Λ
i=1 ali, jt

li

for any 1 � j � n and (ali,1,ali,2, . . . ,ali,n) 
= (0,0, . . . ,0) ∈ Rn for all 1 � i � Λ . For

1 � j � n and 1 � η � Λ , set P(η)
j (t) = ∑η

i=1 ali, jt
li . Define Φ0, Φ1, . . . ,ΦΛ by

Φη (y) = (P(η)
1 (|y|)y′1, . . . ,P(η)

n (|y|)y′n), 0 � η � Λ.

Clearly,

Φη (y) ·ξ =
n

∑
j=1

P(η)
j (|y|)y′ ·ξ j =

η

∑
i=1

(Li(ξ ) · y′)|y|li ,

for any y, ξ ∈ Rn and 1 � η � Λ , where Li : Rn → Rn is the linear transformation
given by

Li(ξ ) = (ali,1ξ1,ali,2ξ2, . . . ,ali,nξn).

For any 0 � η � Λ and t ∈ R+ , we denote σt,η by σh,Ω,Γη ,t with Γη(y) =
Φη (ϕ(|y|)y′) . One can easily check that σt,0 = 0 for all t ∈ R+ and

|σ̂t,η (ξ )| � C‖Ω‖Ls(Sn−1); (49)

|σ̂t,η (ξ )− σ̂t,η−1(ξ )| � C‖Ω‖Ls(Sn−1)ϕ(t)lη |Lη(ξ )|. (50)

By a change of variable and Hölder’s inequality we have

|σ̂t,η (ξ )| =
∣∣∣ 1
tρ

∫ t

t/2

∫
Sn−1

Ω(y′)exp(−2π iξ ·Φη(ϕ(r)y′))dσ(y′)h(r)
dr

r1−ρ

∣∣∣
� C‖h‖Δγ(R+)

(∫ t

t/2

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Φη(ϕ(r)y′))dσ(y′)
∣∣∣γ ′ dr

r

)1/γ ′

� C‖Ω‖max{1−2/γ ′,0}
L1(Sn−1)

×
(∫ t

t/2

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Φη (ϕ(r)y′))dσ(y′)
∣∣∣2 dr

r

)1/max{2,γ ′}
.

(51)
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By Lemma 2 and Hölder’s inequality,

∫ t

t/2

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Φη (ϕ(r)y′))dσ(y′)
∣∣∣2 dr

r

=
∫ ϕ(t)

ϕ(t/2)

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Φη(ry′))dσ(y′)
∣∣∣2 dr

ϕ−1(r)ϕ ′(ϕ−1(r))

� C(ϕ)
∫ ϕ(t)

ϕ(t/2)

∣∣∣∫
Sn−1

Ω(y′)exp(−2π iξ ·Φη(ry′))dσ(y′)
∣∣∣2 dr

r

� C(ϕ)
∫ 1

c−1
ϕ

∣∣∣∫
Sn−1

Ω(y′)exp
(
−2π i

η

∑
i=1

(Li(ξ ) · y′)ϕ(t)li rli
)
dσ(y′)

∣∣∣2 dr
r

� C(ϕ)
∫∫

(Sn−1)2
|Ω(y′)Ω(u′)|

×
∣∣∣∫ 1

c−1
ϕ

exp
(
−2π i

η

∑
i=1

(Li(ξ ) · (y′ −u′))ϕ(t)li rli
)dr

r

∣∣∣dσ(y′)dσ(u′)

� C(ϕ)
∫∫

(Sn−1)2
|Ω(y′)Ω(u′)|

×min{logcϕ , |ϕ(t)lη Lη (ξ ) · (y′ −u′)|−1/lη}dσ(y′)dσ(u′)
� C(ϕ)‖Ω‖2

Ls(Sn−1)|ϕ(t)lη Lη(ξ )|−1/(lη s′),

which together with (51) yields

|σ̂t,η (ξ )| � C‖Ω‖Ls(Sn−1)|ϕ(t)lη Lη(ξ )|−1/(lη s′max{2,γ ′}). (52)

It follows from (49)–(50) and (52) that

|σ̂t,η (ξ )− σ̂t,η−1(ξ )| � C‖Ω‖Ls(Sn−1)(ϕ(t)lη |Lη(ξ )|)1/s′ ; (53)

|σ̂t,η (ξ )| � C‖Ω‖Ls(Sn−1) min{1, |ϕ(t)lη Lη (ξ )|}−1/(2lη γ ′s′). (54)

Let α ∈ (0,1) and (1/p,1/q) ∈ Rγ . We can choose 1 < r < min{p,q} such that
(1/p,1/q,1/r) belongs to the interior of the convex hull of three cubes ( 1

2 , 1
2 + 1

max{2,γ ′} )
3 ,

( 1
2 − 1

max{2,γ ′} ,
1
2 )3 and ( 1

2γ ,1− 1
2γ )3 . Invoking Lemma 4 we obtain

∥∥∥(
∑
j∈Z

(∫
Rd

(
∑
k∈Z

∫ 2(k+1)s′

2ks′
∣∣|σt,η | ∗ g j,ζ ,k

∣∣2 dt
t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

� C
( s
s−1

)1/2‖Ω‖Ls(Sn−1)

∥∥∥(
∑
j∈Z

∥∥∥(
∑
k∈Z

|g j,ζ ,k|2
)1/2∥∥∥q

Lr(Rd)

)1/q∥∥∥
Lp(Rd)

.

(55)

for any 1 � η � Λ . Applying Lemma 6, we get from (53)–(55) that

∥∥∥(
∑
l∈Z

2lqα
(∫

Rd

(∫ ∞

0
|σt,Λ ∗�2−lζ ( f )|2 dt

t

)1/2
dζ

)q)1/q∥∥∥
Lp(Rd)

� C(s−1)−1/2‖Ω‖Ls(Sn−1)‖ f‖Ḟ p,q
α (Rd),

(56)
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for α ∈ (0,1) and (1/p,1/q) ∈ Rγ . On the other hand, by the similar argument as in
getting (47) we have

Mh,Ω,Γ,ρ( f )(x) � 1
1−2−ς

(∫ ∞

0
|σt,Λ ∗ f (x)|2 dt

t

)1/2
. (57)

for any 0 < α < 1 and 1 < p, q < ∞ . Theorem 4 follows from (56)–(57) and the same
argument as in getting (48). �

Proof of Theorem 1 . By Theorem 3 and some extrapolation arguments (see the
proof of [3, Theorem 2.3(a)]). One can easily get (i) of Theorem 1. Let α ∈ (0,1) ,
|1/p− 1/2| < min{1/2,1/γ ′} and 1 < q < ∞ . By Remark 4, (ii) of Lemma 1 and
Fubini’s theorem we have

‖Mh,Ω,Γ,ρ( f )‖Ḃp,q
α (Rd)

� C
(

∑
l∈Z

2lqα
∥∥∥(∫

Rd

|Mh,Ω,Γ,ρ( f )(·+2−lζ )−Mh,Ω,Γ,ρ( f )(·)|pdζ
)1/p∥∥∥q

Lp(Rd)

)1/q

� C
(

∑
l∈Z

2lqα
∥∥∥(∫

Rd

|Mh,Ω,Γ,ρ(�2−lζ ( f ))|pdζ
)1/p∥∥∥q

Lp(Rd)

)1/q

= C
(

∑
l∈Z

2lqα
(∫

Rd

∫
Rd

|Mh,Ω,Γ,ρ(�2−lζ ( f ))(x)|pdxdζ
)q/p)1/q

� C(1+‖Ω‖L(log+ L)1/2(Sn−1))
(

∑
l∈Z

2lqα
(∫

Rd

∫
Rd

|�2−lζ ( f )(x)|pdζdx
)q/p)1/q

= C(1+‖Ω‖L(log+ L)1/2(Sn−1))‖ f‖Ḃp,q
α (Rd).

This yields (ii) of Theorem 1. �

Proof of Theorem 2 . By Theorem 4 and the same arguments as in the proof of [3,
Theorem 2.3], we can get (i) of Theorem 2. (ii) of Theorem 2 follows form the same
arguments as in getting (ii) of Theorem 1. We omit the details. �
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