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ON THE TRIEBEL-LIZORKIN SPACE BOUNDEDNESS OF
MARCINKIEWICZ INTEGRALS ALONG COMPOUND SURFACES

FENG L1U

(Communicated by J. Pecari¢)

Abstract. In this paper the author present the boundedness of Marcinkiewicz integral oper-

ators associated to compound surfaces with rough kernels given by 7 € Ay(Ry) and Q €

L(log®™ L)'/2(s"~ YU (U|<,<°°B(,)’71/2(S"’1)) on Triebel-Lizorkin spaces and Besov spaces. The

main results of this paper represent improvements as well as natural extensions of many previ-
ously known results.

1. Introduction

Let R" (n > 2) be the n-dimensional Euclidean space and §"~! denote the unit
sphere in R” equipped with the induced Lebesgue measure do. Let Q € L' (5"~ 1) be
a homogeneous function of degree zero and satisfy

1 Q(u)do(u) =0. (D)
s

For a complex number p = ¢ +i7 (¢,7 € R with ¢ > 0) and a suitable mapping
I':R" — R with d > 1, we consider the parametric Marcinkiewicz integral operator
///MQLP on R4 by

-1 hyDRG) , )2@>1/2, @)

Anaro(N0) = ([[5 [_ se-Ton=BZ e g

where f €. (R?) (the Schwartz class on R?)and i € A{ (R, ). Here R :=(0,) and
Ay(Ry ) (y = 1) denotes the set of all measurable functions / defined on R satisfying
the condition

R 1/y
o —1 b4 o
[ENE Is;;%(R /O (o) rae) <

Clearly, L™(Ry) = Au(Ry) C Ay (Ry) S Ay (Ry) if 1< 7 < 95 < oo
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When n=d and I'(y) =y, we denote .#,qr, by #hqp. For p=h=
1, Ayqp reduces to the classical Marcinkiewicz integral operator denoted by .Zq,
which was introduced by Stein [18] and investigated by many authors. For example,
see [4, 5] for the case Q € H'(S"~!) (the Hardy space on §"~!), [2, 3] for the case
Qe Llog™L)/2(5"1), [1, 3, 8] for the case Q € B'" /% ($7-1) (the block space gen-
erated by g-blocks). For & = 1, the operator .#, ¢ p becomes the classical parametric
Marcinkiewicz integral operator denoted by .#q ,. Hormander [11] (resp., Sakamoto
and Yabuta [17]) first studied the L” boundedness of %Q.’p with real (resp., complex)
number p. For further research on .%o p» we refer the readers to consult [6, 8],
among others. It is well known that L(log™ L)*($"~1) C H'(5"!) for & > 1 and

L(log™L)"2(s"™") ¢ H'(s"™") & L(log™ L)"*(s""); 3)

BOV(s" Y c HY(s"Y) + L(log" L) (s" ), ¥r>landv>—1. (4

The main purpose of this paper is to investigate the boundedness of .#, orp on
Triebel-Lizorkin spaces and Besov spaces. As is well known, the Triebel-Lizorkin
spaces and Besov spaces contain many important function spaces, such as Lebesgue
spaces, Hardy spaces, Sobolev spaces and Lipschitz spaces. The homogeneous Triebel-
Lizorkin spaces F47(R?) and homogeneous Besov spaces Bh7(R?) are defined, re-
spectively, by

REARD = {1 € 7 @) I ligoresy = || (L2710 1)y <=
€

&)

BAEY) = {1 e 7 @) flgpaa) = (S 27000 g <=}, ©

i€Z

where 0 < p,g <o (p#), a € R, /(R denotes the tempered distribution
class on R?, @,(é) = ¢(2/€) for i € Z and ¢ € €°(RY) satisfies the conditions:
0<d(x) <1;supp(9) C{x:1/2<|x[<2}; ¢(x)>c>0if 3/5<|x| <5/3. Thein-
homogeneous versions of Triebel-Lizorkin spaces and Besov spaces, which are denoted
by F5(R?) and BG?(R?), respectively, are obtained by adding the term || @ f1| . o)
to the right hand side of (5) or (6) with Y7 replaced by Y,»,, where ® € .% (RY),
supp(®) C {&€ e R : |E| <2}, ®(x) > ¢ > 0 if |x] < 5/3. The following properties
are well known (see [9, 19], for example):

FP2A(RY) = LP(RY) V1 < p < oo} (7)
FLP(RY) = BLP(RY) V1 < p <eoand o € R; (8)

FPARY) ~ FPURY)NLP(RY) and || £l gpagay ~ 11l gpaa) + £ ]l o) Vo> 0;
9

By (RY) ~ BE(RY) NLP(R?) and || flgpara) ~ £ llgpageay + 1 £l pray Vo> 0.
(10)

In recent years, the investigation of boundedness of parametric Marcinkiewicz
integral operators on Triebel-Lizorkin spaces has also attracted the attention of many
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authors. In 2009, Zhang and Chen [21] proved that .#q is bounded on F(R")
for 0 < <1 and 1< p, g < c under the condition Q € H!(S"!). Later on, they
[22] showed that .#,, with p =1 is bounded on FJ¥(R") for 0 < a < 1 and

1+n+"2+11/r <p,q<2+ lni{r if Qe L7(S"!) forsome r > 1 and h € L”(R.). Very

recently, Yabuta [20] obtained the following result.

THEOREM A. ([20]) Let n=d, p >0 and T'(y) = @([y|)y’ with ¢ € §, where
$ is the set of all functions ¢ satisfying

(a) ¢ is a positive increasing €' (R ) function;

(b) there exist Cy,cy > 0 such that t¢'(t) = Cpd(r) and ¢(21) < co¢(t) for all
t>0.

Suppose that Q € L(log* L)'/2(s*~ ") U (Ur>1B£O’71/2)(S”’1)) satisfies (1) and
h e Ay(Ry) for some y > 1. Then

() Myqar,p is bounded on FG4(RY) for oo € (0,1) and (1/p,1/q) € Ay, where

. L 11 1 2
&?Y is thf set of all interiors oflth;e convex hull of three squares (5,5 + W)
(3 - max{2,/]° 2) and (2)/7 1- 2_y_) ;

(i) My qr p is bounded on By (RY) for e € (0,1), [1/p—1/2| <min{1/2,1/y'}
and 1 < g < oo.

REMARK 1. It should be pointed out that the questions concerning the F*¢(R?)
bounds and B5(RY) bounds for .#), g, with T being as in Theorem A and Q €
H'(5"!) have been answered by Yabuta in [20]. There are some model examples
for the class §, such as % (ot > 0), tPIn(147)(B > 1), tInin(e +1), real-valued
polynomials P on R with positive coefficients and P(0) = 0 and so on. Note that there
exists By > 1 such that ¢(2¢) > By¢(t) for any ¢ € § (see [13]). On the other hand,
we remark that %y, C %, forany 1 <y <7y < eo. Specially, Z.. = (0,1) x (0,1).

In this paper we shall present several new results for the boundedness of parametric
Marcinkiewicz integral operators along certain compound surfaces on Triebel-Lizorkin
spaces and Besov spaces. We now briefly describe each of our main results.

The first type of our operators we consider is the parametric Marcinkiewicz inte-

gral operators supported by polynomial mappings. When I'(y) = Z2(y) = (P1(y), P2 (), - - -

with P; being real valued polynomials on R", we denote .#,qrp by o .2p-
The L? bounds of .%o 2, has been studied by many authors (see [3, 5, 7, 14]
etc.). In particular, Al-Qassem and Pan [3] proved that .#}, o » , is bounded on
LP(RY) for |1/p—1/2| <min{1/2,1/¥} if h € Ay(R) for some y > 1 and Q €
L(log" L)V2(s" 1)U (Ur B2 (571,

Based on the above result and (7), it is natural to ask whether the condition Q €
L(log™ L)V/2(S" 1Y U (Uy- B2 (577 1)) implies the £2/(R¢) bounds of Mn0,2.p
for some o # 0 or g # 2. Our investigation will not only address this problem, but also
deal with a more general class of operators. More precisely, we shall establish the
following

THEOREM 1. Let ¢ € § and T(y) = 2(o(|y|)y'), where & = (P|,Ps,...,P)
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with Pj being real valued polynomials on R". Suppose that h € Ay(R.) for some
y>1and Q € Llog" L)'/2(s" U (U,>1B£0’71/2)(S"’1)) satisfies (1). Then

(i) Mnar,p is bounded on FL(RY) for oo € (0,1) and (1/p,1/q) € %y;

(ii) My qr.p is bounded on BY'(RY) for o € (0,1), [1/p—1/2| <min{1/2,1/7}
and 1 < g < oo.

The bounds are independent of the coefficients of P for 1 < j < d, but depend on
n,d, @ and deg(P;) for 1 < j<d.

REMARK 2. Theorem 1 extends Theorem A, which corresponds to the case p >
0,n=d and Z(y) =y.

The second type of our operators we consider are the parametric Marcinkiewicz
integral operators along polynomial compound curves. In this paper we shall establish
the following

THEOREM 2. Let n=d and T'(y) = (Pi(@(|y]))¥],-- - Ba(@([y|))y;,) with P; be-
ing real valued polynomials on R with satisfying P;(0) =0 and ¢ € §. Suppose that
QeL(loghL)V/2(s"1u (Ur>1B£O’71/2) (S"71)) satisfies (1) and h € Ay(R..) for some
Y> 1. Then

() Myar,p is bounded on FJ*(R") for oo € (0,1) and (1/p,1/q) € %y,

(i) My arp is bounded on By (R") for a€ (0,1), [1/p—1/2| <min{1/2,1/7'}
and 1 < g < oo.

The bounds are independent of the coefficients of P; for 1 < j <n, but depend on
n, @ and deg(P;) for 1 < j <n.

REMARK 3. Theorem 2 extends Theorem A, which corresponds to the case p >0
and P (1) =P (t)=---=P,(t) =1t.

REMARK 4. By employing the method in the proof of [3, Theorem 2.3] and ap-
plying some estimates about Fourier transforms of measures appeared in [14, 15], one
can easily obtain that .#j, o is bounded on L?(R?) for |1/p—1/2| <min{1/2,1/7}
if /1, Q are given as in Theorem 1 and T is given as in Theorem 1 or 2.

As a direct consequence of Theorems 1 and 2, we have the following

COROLLARY 1. Let h € Aw.(Ry) and Q, T be given as in Theorem 1 or 2. Then
Myor,p is bounded on FL(RY) and BL(R) for o € (0,1) and 1 < p, g < e.

To obtain Theorems 1 and 2, we need to establish the following delicate sharp
F{(R?) bounds for .#yqarp .-

THEOREM 3. Let h, T be given as in Theorem 1. Suppose that Q € L*(S"~1) for
some s € (1,2] satisfying (1). Then for a € (0,1) and (1/p,1/q) € %y, there exists
C > 0 such that

| o p (D gy < Cls = 1) 21R| g1 1 pcas).
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where C = C, o pgnd,gdeg() 1S independent of s,€2 and the coefficients of P; for
1<j<d.

THEOREM 4. Let h, T be given as in Theorem 2. Suppose that Q € L*(S"~1) for
some s € (1,2] satisfying (1). Then for a € (0,1) and (1/p,1/q) € %y, there exists
C > 0 such that

|t p D)l pagny < Cls = 1) 21R sgsr 1) 1 pagar

where C': Cp7a,p7q7n7(p,max1<j<,, deg(P;) 1S independent of s, Q and the coefficients of P;
for 1 < j<n.

Applying Remark 4, the properties (9)—(10) and Theorems 1 and 2, we can get the
following conclusion immediately.

COROLLARY 2. Under the same conditions of Theorems 1 and 2, the operator
Myor,p is bounded on FJ(RY) and BL(R), respectively.

REMARK 5. When y = oo, the range of (p,q) in Corollary 2 becomes (1,0)2.
Therefore, Corollary 2 extends and improves greatly the result of [22], even in the
special case p =1, n=d and T'(y) = y. It should be pointed out that all of our main
results are new, even in the special case: p =1, n=d, h(t) =1 and ¢(r) =1.

The rest of this paper is organized as follows. After presenting some technical lem-
mas in Section 2, we shall give the proofs of our main results in Section 3. We would
like to remark that some ideas in our proofs are taken from [3, 10, 12, 20] and the main
novelty in this paper is to give a standard approach on the bounds for Marcinkiewicz
integral operators in Triebel-Lizorkin spaces and Besov spaces. The proofs of Theo-
rems 3—4 are based on two important lemmas (see Lemmas 2.4 and 2.6). The proofs of
Theorems 1-2 follows from Theorems 3-4 and an extrapolation method followed from
[3].

Throughout this paper, we let p’ denote the dual exponent to p defined 1/p+
1/ p' = 1. The letter C, sometimes with additional parameters, will stand for positive
constants, not necessarily the same one at each occurrence but is independent of the
essential variables. We shall use Op» to denote the Dirac delta function on R” and
n"(m > n) to denote a projection operator from R” to R". We also denote by D!
the inverse transform of D and D' the transpose of D for any linear transformation D.
In what follows, we set R, = {£ € RY; 1/2 < |{| < 1}. We also use the conventions

Zjeoaj =0 and ng@dj =1.

2. Preliminary Lemmas

In this section, we shall present some necessary lemmas, which will play key
roles in our proofs. Let us begin with some useful characterizations of Triebel-Lizorkin
spaces and Besov spaces, which are followed from [20].
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LEMMA 1. ([20]) Let 0 < &t < oo and | be an integer satisfying | > . We
denote by Alg (f) the L-th difference of f for an arbitrary function f defined on R?

and § € Ry.
MIfl<p<o, 1<g<eand 1 <r<min{p,q}. Then

/m\ 1/
11 gagaa ~ H(ZZ’“N( [ 185 s trag)™)
kEZ
) If1<p<oo, 1 <g<oeoand 1 <r<p. Then

. 1/ry1q 1/q
Hf||B{;~q(Rd) ~ <22kqa (/m |Alz*" ()l dC) L Rd)> '

keZ
The following lemma can be used in the estimates about Fourier transformations
of some measures appeared in the proof of Theorem 4.

LP(]Rd);

LEMMA 2. ([16]). Let A # 0. Suppose ®(t) =™ + upt™® + -+ + Ut and
WY € Clla, b], where ly,..., U, are real parameters, and o4, . .., 0, are distinct positive
(not necessarily integer) exponents. Then

b
/exp(ik@(t))‘{’(t)dt‘<C|M_£{ sup |¥(r |+/ [¥'(1) |dt

a<t<b

with € = min{1/oy,1/n} and C does not depend on Uy, ... U, aslong as 0 < a <
b< 1.

The following results obtained by Liu in [12] are two vector-valued norm inequal-
ities of the Hardy-Littlewood maximal operator.

LEMMA 3. ([12]) (i) Let M4y be the Hardy-Littlewood maximal operator on R,

Then NV g
H( (2 Mia)8;. 4] ) U(md)>

keZ
1/q
<CH( )
jez (M)

1/2)1q
(Zleical’)
kezZ
forany 1 < p,q,r <oo, where C > 0 is independent of functions {gj,g,k}j,g,k on R4
parametrized by £ € Ry and j, k € Z;
(ii) Let .# » be the Hardy-Littlewood maximal operator supported by polynomial
mappings defined by

LP(RY)

LP(R9)

Mof()=sup~ [ |fa— 2 ().

>0 " Jly|<r

where & = (P, ...,Py) with Pj being real-valued polynomials on R". Then

(g rtieltin) <l S5

LP(Rd)’
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forany 1 < p,q,r <eo, where C > 0 is independent of the coefficients of P; for 1 <
j<d.

Let h, Q, T, p be goven as in (2), we define the family of measures {0y, o r,} and
the related maximal operators 0}, g, - on R? by

1 h(|x))Q(x)
/Rd f(x)dopar(x) = t_P/t/2<|x|<,f(r(x))|x|Tde’

Char(f)x) = f;‘g |[Gna.rs* f(x)],

where |0j, o | is defined in the same way as oj, o, but with Q and & replaced by
|| and |A], respectively.

LEMMA 4. Let v> 1 and T'(y) = (Pi(¢(]y]))a1(y), .. Pd((p(|y|))ad( )), where
@ €F, Pi,....P; are real-valued polynomials on R, and al(y) ay(y) are arbi-
trary functwns independent of |y|. Suppose that h € Ay(R.) for some y> 1 and
Qerl(sh satzsﬁes (1) If (l/p, l/q, L/r) belongs to the interior of the convex
hull of three cubes (%, %+ max{2 7,,}) (5 - W’ 1?3 and (2y,1 - —)3 then for

arbitrary functions {g.;,g,k}],g,k € LP(¢4(L"(0%)),RY), there exists C > 0 such that

H(j / kez/ Hohgw gjgk}zdt>l/2d§>q>l/q
(2 eel) o)

JEZ keZ
The constant C > 0 is independent of v, L and the coefficients of P; for 1 < j <d.

LP(R4)
(11)
S CV1/2||Q||L1(S)171)

LP(RY)

Proof. By Holder’s inequality we have

2dtN1/2  Na\1/a

H( / /k |GhQrt\*gj<:k| ) dC) )
keZ 2"

2dt>1/2 q >l/q
L'(Ry)

forany 1 < p, q, r <eo. Thus, to prove (11), it suffices to show that

Z/ HO' B }zdt>1/2 )1/11
tez 2k nQT | %8¢ k 9y

(SIS et )

keZ
for (1/p, 1/q, 1/r) belonging to the interior of the convex hull of three cubes (4,1 +
W){ (% - m, é) and (2),, 27) and arbitrary functions {g; ¢ «} ¢ x €

LP(R4)

o %
,ez keZ/2k || o] * 8¢ il Lo

d
Jez Lr(R9)

(12)
< cV1/2||sz||Ll<sH>|

LP(R4)
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LP(04(L"(£*,Ry)),RY), where C > 0 is independent of v, Q and the coefficients of P;
for 1 < j<d.

Below we shall prove (12). We first conclude that

< €@l

Lr(RY) LP(RY)
(13)
for any ¥ < p, q, r < e and arbitrary functions {f;;} € L’ (¢4(L"(Ry)),R?). By the

change of variables and Holder’s inequality,

H(jezz||a;,g,r<f,;¢>||z,(m))” ' (JEZZIIfj,cIIZW)”q

G;;QI(JC ) (x) o
<swp [ ey By

>0 t/t2<|y|<t

~swp [ feTColaeo(E) Ik

1>0J1/2JS J Ly
_ 7
<2l A ([ sup [ 1r6-T00)1 Fieo)lao(o))
<clalil .,
ds 1y
fx—T(p~"(s)6))]” Q(6)|do (0
/s" 0/ o OO gy 20 )
1/y 1 _1 Yy 1Y
@l ([, sup [ 176=T(o 60N dsiuo)ldo(9)) .
sl T J)s|<t
which combining (ii) of Lemma 3 with Minkowski’s inequality yields (13).
We now discuss the following three cases:
Case 1 (1 <y < eo). Note that
sup  sup  ||oparl gl < G;7Q7F<Sup|gj,§,k‘>7
KEZ e [okv k1)) kEZ
which together with (13) leads to
(S s lionardescd], )"
jez " ke e 2k L'(Ry) Lr(RY) (14)

g CHQHLI(SVHI)

/
2 md)>l '

for any ¥ < p, g, r < . On the other hand, by the duality, Holder’s inequality, Fu-
bini’s theorem and (13) we have that for any 1 < p, g, r < 7, there exists a sequence of

sup \gj ¢, k| (R

(s
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functions {f; ¢}, with H{fJ}C}HLI”(M’(U’(%,,)),R(’) =1 such that

264D dt |4 1/q
H i keEz/ 22l U(md>>
k+1 dt
s [ L s Ionar 1649 i

LP(R9)

JET Rd ke
2 (k+1)v o dt
<3 [ [ Sleetl [, loar s D02 agax
jez Ri ez t
<3 [T lesealoiar(feh(-xdgas
J€L Rakez
1/q NI 1/q
H<;ez ke%|gh€k‘ r fRd) H <R“) <,§i”ah’g’r(ff’§) Lr’(md)> Hu/(Rd)

<Ol prggn1y

(Z

JEL

LP(R4)’

>l/q
ez L'(Ry)
(15)

where ]/‘J\E(x) = fj¢(—x). Interpolating between (14) and (15) yields that (12) holds
for (1/p,1/q,1/r) belonging to the interior of the cube (2),, 11— —y) .
Case 2 (1 < y<2). By Holder’s inequality we have

[h(»)Q)
o : < / o o(x—T(y))| RLWI,
|[Ohari*8;csx)| e 8, ccx—=T())] oY

)P , 12

[
RO, 12
) <//2<|y|<z [ dy)

1/2 1/2
< Cltllay ) 190 5501y (10 el I8 aP))

It follows that
SIS L Imartvsied ) )”q
*
jez" Neez /2 TS LK L(Ra) Lr(RA)
dt 1/q
<cllQ|/? ( ’ / ’ ) H
| ”Ll 1) = k% -~ |0'|h|2 YQFI‘ |g/,Ck‘ () LP(R4)

(16)
Note that |h[>" 7 €A y (Ry). By (16)and (15) with ¥, p, g, r replacingby 1, 2 4 L
2=y 2—y2 20202

respectively we have (12) for (1/p,1/q,1/r) belonging to the interior of the cube

(5 - )f, 1)3. By duality we see that (12) holds for (1/p,1/q, 1/r) belonging to the

interior of the cube (4,1 4 4)3 . Interpolating these two cases, we see that (12) holds
202 ;/

for (1/p,1/g,1/r) belonging to the interior of the convex hull of two cubes (4 — %, 53
and (27 5+ 7/) Note that in this case the interior of the cubes (2y,
in the interior of the convex hull of two cubes (5 — %, 53 and (3,5+ 7 )3

1- —) contains
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Case 3 (y =2). Note that Ay(R; ) C Ay(Ry) for y > 2. Interpolating between
cases 1 and 2 we obtain (12) for (1/p,1/q,1/r) belonging to the interior of the convex

hull of three cubes (5, 1 — —) , (0,%)* and (%,1)3. This finishes the proof of Lemma
4, O

Let 19 € €~ (R) be an even function satisfying 0 < no(r) < 1, 19(0) = 1 and
Mo(t) =0 for |¢| > 1. Set (&) =1 for |&] < 1, N(&) = no(E=L), where a > 1.

Then, 1 satisfies xj¢<1(§) < N(E) < Yjej<a(&) and [9%7 (§)| < cgla—1)71e for

& € R? and o € N, where ¢, is independent of a. Let {a;} be a lacunary sequence
% > a > 1. We define functions {y}x on RY by

wi(&) =nla ), &) —n(a'E), & eR™ (17)
Then observe that
supp(Vi) C {ax < 8| < aayi1}; supp(yi) Nsupp(y;) =0 for [j—k| =2
Y w(§) =1 V& e R\ {0}.

keZ

Let m < d. Since y; is radial, we shall use the convention w;(|¢|) = yi (&) for
¢ € R™ satisfying |£| = |&| with £ € RY. We have the following lemma.

LEMMA 5. Let m<d, H:R" —R" and G :R? — R? be two nonsingular linear
transformations. Let W be given as in (17). Define the multiplier operator Sy on RY

by 8if (&) = wi(HRLGE)F(&). Then
2\ /2|4 1/q
=, ) Lr(md)>

I(Z
N (VR

< C(
a—
Jor 1 < p,q,r <o, where C >0 is independent of a and {f;}.

( [Skfjc

LP(RY)

LP(RY)

Proof. Define the function ¥y by ‘f’;(é) = yi(&). By [20, Lemma 2.5] we have

I(Z (M ) o)
<c(7) (S elton)

LP(R4) (18)

‘L’ (Ry) ) LP(]R‘]).

Define J by J =G ' (H~! ® 8ga-n). Obviously, J is a nonsingular linear transforma-

tion on RY. Let y = (y',%) with y! = (y1,y2,...,9m) and y* = (Vms1,¥m12,- -+ Va)-
One can easily check that

Sif(x) = || ¥y @ Sga-m £ (J'x), (19)
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where /(&) = |J|71f((J')7'E). We get from (18) and (19) that

H <,€% (ké‘skfhd )1/2
LSl syt

JEZ keZ

=t [ (2

JEZ keZ

)l
L'(Ry) LP(R4)

q pla

) dx
L'(Ry)
J 2\ /2|4 pla
\(2 W@ Sanx e 0P) | )y

1/2y1q p/a
Jpl/ / e £ ()] 0N vl dv?
= L ,Ez kEZ [ CMIONP) T )
_1/ a 7 r/q
<er ()" <2||f,g Werny) "y

<c(4)™ <,-€ZZ||f’*‘f||q'<m>> "I

which is just the conclusion of Lemma 5. [

1P (Rd)’

We end this section by presenting the following key lemma, which is the heart of
our proofs.

LEMMA 6. Let v>1, A€ N\ {0} and {o,; :t € Ry, 1 <5< A} be a family
of Borel measures on R with 00; =0 forall t € R .. We also denote by \GSJ| the
total variation of 0s,. For 1 <s <A, let %, Bs >0, My € N\ {0} and L : RY — RM:
be linear transformations. Suppose that @ € § and there exist py,qo > 1, 1 <ry <
min{pg,qo} and C,A > 0 independent of v such that the following conditions are
satisfied for 1 <s< A, t €Ry, E € R? and {81,¢ 1} € LPo (L0 (L0 (2, Ry)),RY):

@) 165(8) — 6,-14(8)| < CAp(1)*|Ly(£)]:

(i) [65(&)| < CAmin{L, (@(r)*|Ly(§)) P/}

(iif)
H(le% /‘ﬁd 2/22(" Hﬁsr\*glgkfdt) /2dC)f10)1/f10 o
1/2 1
<CAV1/2H<l€Z ’(,{é'gl“‘ ) / o md)> " LP0(RY)

Then for o. € (0,1) and (1/p,1/q) € P1P2\{(%, %)}, there exists C > 0 independent
of A and v such that

H (ZEZZIqa</md (/Ow |OA *Az,,g(f)‘z?ymaz)q) l/fIHLP(Rd) < CAV1/2Hf||F£~‘1(Rd),

(20)
where A\, C(f)( x) = f(x+2718) — f(x) and PP, is the line segment from Py to P

with P = (Z %) and P, = (170 qlo)
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Proof. Forany 1 < s <A, let I; =rank(Ly) < min{d,M;}. By [10, Lemma 6.1],
there are two nonsingular linear transformations .77 : R5 — Rb and %, : RY — R? such
that

| AT GE| < |Ls(E)| < M| AT GE|, W E eRY. 1)
Now we can choose a function y € %;°(R) such that y(r) =1 for |r| < 1/2 and

y(t) =0 for |t| > 1. For r >0 and 1 <s < A, we define the family of measures {7;,}
by

A
(6 =638 T1 vlo0 s - 5@ [Tvller A sE).
j=s+1 ’ j=s
(22)
By our assumption 0y, = 0 and (22) we get
A
Onr = D, Ty (23)
s=1
It follows that
> 1/2 a\ 1/q
2lq°‘ / / Opy /N -
H<lez ( fm( p 1O * Bl F ) C> ) LP(RY) (24)

<3

(2w ([ 1w toctreg) ag)')

I€Z

Lr(R)

Therefore, to prove (20), it suffices to show that

I(Z 2, (f ore 0P ') <A

I€Z
(25)
forany 1 <s <A, o€ (0,1) and (1/p,1/q) € PiP\{(5, 5-)}, where C >0 is
independent of A, v.
Next we prove (25). Fix 0 < o < 1. By straightforward calculations, conditions
(1)—(ii) and (21)—(22) we obtain that for any 1 <s <A,

T2 (&) < CAmin{1, (@(t)*|Ls(£)])'"}: (26)
T2 (&) < CA((0)|Ls (E))) P/, i ()| AmGE| > 1. 27)

For any fixed s € {1,2,...,A}. Let y; be given as in (17) with a; = @(27%)™% and
a= Bv(py‘ , where By, is given as in Remark 1. Define the multiplier operator S; ¢ on R4
by

Seof (&) = W ATIGENF(E).
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By Minkowski’s inequality we have

loc - 2di\1/2 Va
(32 (L. (] m_,mw;(f)\ ) a))
B / 2dt ay1/a
- (Eﬁzqa /iRd kzi/zk» ‘T”*Az i ) )) LP(RY)
2 (k+1)v d 12 1/q
_ !
= (le%zqa /md 2/2h \rst*ESj ksDo-ie (f —) dC) ) (e
dr\1/2 1/q
< Zlqa / / g . YA B 2 )
<J§i <l§i Ry ke% 2k |T"’*SJ esBa-1¢(f)] ) dC) ) Lp(RT)
(28)

Define the mixed norm || - || gra for measurable functions on RY x Ry x Zx Z xR, by

lelige:= [ (Z2( [, (S [letwtrinrs)  ac))™

1€Z

LP(Rd)
Forany j € Z, let

Vis(£) (6, §, Lk 1) 1= T Sk s D1 (f) () Xt athrimy (1)
Thus we have

[ (f (S e erctnr®) Pag)) ™

I€Z

< 2 WVis(Hllgpa-

JEL

LR (29)

By (26)-(27), Holder’s inequality, Minkowski’s inequality, Fubini’s theorem and Plancherel’s
theorem we have

IV;s(f )||2

H( 221a(/ z/ 2+t |17 S (f )|2dt)1/2dc>2>1/2 2
- S, s — D

lez Ry Ngeg /2 S ¢ L2 (RY)
= 27 eyt g OWEL) it
= 2 / / T.\'I*S'fk.s 21 f d

R? 7, kekZth ! ¢

dt

cex e [ 3 [0 [ lnies i g(Paa

IeZ. dkez

k+l)v
<cyef 5/ /k 5 00 23 (1) (0P
€7 2‘S|deeZ Ej g2k
< CAMBY 1152
(30)

where C, ¢ > 0 are independent of v and

Ejys={xeR?: M)k | 4alGE| < B @2* 7D
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Combining (30) with (8) yields
IVis(llgzz < CAVBE M ] 22 G

where C > 0 is independent of v. Following that, we will prove that there exists C > 0
which is independent of v such that

1Vjs ()l g0 < CAV £ oo - (32)

In fact, interpolation between (31) and (32) implies that for o € (0,1) and (1/p,1/q) €
P1P2\{(p0 m L)1 there exists 8 € (0,1) such that
—cO|j
Vs (llgps < CAV2By I £l (33)

where C is independent of v. (33) together with (29) yields (25).

It remains to show (32). For 1 < s < A, let ®° be a radial function in .% (Rll‘)
defined by @5 (x) = y(|x|), where x € Rb and v is given as in (22). Define J; and X,
by

Jof (x) i= f(G5 (A @ idga-i;)x)

and
Xsf(x) = sup sup |Xk,t;.¥f(x)|a
kEZ e kv 2(k+1)v)
where
Xirssf (%) =I5 (@i ® Spa-1y) * I f) (%),
and

D5 (%) = (@) ) 4@ (g (1) %),
where x° € R% . One can easily check that
X5 f (¥)] < G5! o (M) @ idga-i,) 0 i) (f) (%), (34)

where x = (x%,x') € Rb x R~ | This combining with (i) of Lemma 3 yields

1/2 1/
I(ZI(Z 72) von) e

L (Rd)

1€Z keZ

S CH <leZ ’ <ke%| J_ ®lde ]Y) oJ }(gl 6 k)|2> " Z’(Sfiﬁ) " ZP(RLI)

<anlf,, [ (2] MU,)[(ngl7g,k<-,x1>>]<x°>2)” ) e
1/

<c|(Z !(%'gwk‘) vow)

(35)
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forany 1 <s<Aand 1 <p,q,r <eo.Define X°f =X;0X;yj0---0Xpf for 1 <s<

A. We get from (35) that
1/2)1q L/aqp
(S acl) [m,)

H <l€Z keZ 12114 Lr(Re)
<A (2] (Z Jarear’)

forany 1 <s< A and 1 < p, g,r <eo. On the other hand, by the definition of Xj .
we have

(36)

L’(‘.Rd)> l/qHuz(Rd)'

keZ

Tos * f = Ogp % (Xipisp1 0 X542 0 - 0 Xi i f) — Os— 14 % (K25 0 X pis1 © - - 0 Xpeyin f)-

It follows that

(k+1)v (k+1)v

2 dt 2
2
T — <2 (
/2/1\/ ‘ st * f| t = ~/2k\;

(k+1)v
3 2dt 2 2 dt
||G.\',t|*X“+1f} 7+/2kv |GS 1] X? f| )

(37)
From (36)—(37) and assumption (iii), one can get
2kt 1/2 N dqoy /40
H(E / E/k | Tss * 81, il —> dC) ) 70 (pd
i \wa N S o 1/ LOED - (3g)
< 1/2 2 0
CAv H(zez ‘(é'g%k‘ ) L'O(md)> LP0(RY)

for arbitrary functions {g; ¢} € LPO(¢90 (L0 (£%,Ry)),R?) and 1 < s < A. Then (38)
1/2 Igpo 12
Vsl oo < €A (3 2

together with (i) of Lemmas 1 and 5 leads to
9 > 1/q0
1€Z keZ L0 (M)

(2 \Sj,k7_YA2,l§(f)\2>
< CAv 1/2<B(Vp%vi 1>d+2‘ (l%zl%aHAz”C(f)HZQO(mdD 1/q0
S

<ca2(ZEN 1
Bh—1 ER00 (R

LPo (Rd)

7o (Rd)

This yields (32) and completes the proof of Lemma 6. [

3. Proofs of Theorems 1-4

This section is devoted to presenting the proofs of main results. In what follows,
let o)., be defined as in Section 2 and set A, (f)(x) = f(x+ 2718) — f(x) for

any [ € Z, { € R, and x € R?. Let us begin with the proof of Theorem 3.
Proof of Theorem 3. Following from [10], we first recall some notations. For [ €

N\ {0}, we denote V,,; as the space of real-valued homogeneous polynomials of degree
[ on R" and .27, denotes the class of polynomials of n variables with real coefficients.
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Let & = (Py,...,P;) with P; € dn for 1 < j < d and deg(#) = max; ¢ j<qdeg(P;).
There are integers 0 <[} <l < --- <l 4 < deg(Z?), and polynomials Q? € Vi, C
<y, Rj € o/ with deg(R )<deg(<@) for 1 <n <A4,1<j<d such that

N
P (x) = Z(|x[) + Zla@”(X)
n=

where 2" = (0],07,...,0}), Z = (R1,Ry,...,Ry) and Z;, (Q7) = Q7 for 1 <1 <
A and 1 < j <d, where Zl Van = Vo, is a linear transformation defined as in
(3.10) in [10]. Note that for each 1 <n </, thereis at least one 1 < j < d such that
Q? #0.For 1 <j<dand 1 <n <A, write

P Mn)/ P
= D, byjpxP = Y, by,
1BI=ly s=1

where £(n) = dim(V,;,) and |By .| =l forany 1 <v<{(n). For 1<n <A,
define the linear transformations Ly : R? — R‘ ) by

d
&)= (X b zb,,,/ &).
=
Define @y,...,®_4 by
@y (x) = Z(|x]) + 232” ) forO<n <A,

Forany 0 <n <./ and ¢ € Ry, we denote o, by Opqr,, with Ty(y) =
@, (@(ly])y'). By the change of variables and Holder’s inequality we have

5a 8) y
= rp/t/z [ Q0" exp(-2i& - @y (p(r)y))do (' )h(r) -5

< Cllnllaye.) </t/t2‘ [ QO exp(=27i - @y (@()y)do () V?> 1Y
([0 | et ew-2ms @)oot )

(t/2) ! Jsn—1 ()/dﬁ )1/(5/ (r)
<clo)( [7] [, 2u)exs(-2mit-@so))dot)| )

< ( )HQHmax{l 2/)/0}

lvs‘nl
Co
1

By the similar argument as in getting [10, Corollary 4.3] with € = (81;)
analysis, there exists C > 0 independent of s such that

(/1qu Q(y') exp(—27i& - @y (@(t)ry'))do(y)

sn—1

< Clo()nLy(§)|~ /) Qs (51

5! ﬂ>2/(s’max{2,)/})
p .

[ QO exp(=27i& - Py (9 (1)ry))do (Y

(39)
and careful

s’ dr)l/S’

r
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Combining this inequality with (39) implies

G0 (6)] < C(@) Qs 511) | @ (1) 1Ly (&) 7/ Gl max 27, (40)

It is easy to see that ;0 =0 forall € R, and

1610 (&) < ClIQ (5193 (41)
160 (8) = Gy —1(E)] < CJ| Q| s(sn1)@ ()" | L (§)]- (42)
It follows from (40)—(42) that
1607 (&) — G 1(E)] < ClIQ|s(sn1) (@) L (€)' (43)
1607 (€)] < C(@)IQ| 5 (gr-1y min{ 1, [ @ (1) Ly ()]} 7). (44)

Let oo € (0,1) and (1/p,1/q) € %y, we can choose 1 < r < min{p,q} such that
(1/p,1/4,1/r) belongs to the interior of the convex hull of three cubes (3,3 + mf ,

(% — m, é) and (2),, 2),)3 Invoking Lemma 4 we have

H<J€Z /9“(1 (ké/z,i(,ﬁl ||Gt1”l|*gj§k’2dt> /dc>q>1/q .
(ZI(Z ki) [my)

JEL " kel
for arbitrary functions {g; ¢ s} ;¢ x € LF (¢4 (L7 (¢%)),R%), where C > 0 is independent
of s,  and the coefficients of P; for 1 < j <d. Applying Lemma 6 and (43)—(45) we

get
H <1e221qa </‘ﬁd </0w 1051 % Az,,g(f)|2?> Ude)q) l/qHU’(Rd) (406)
<C(s— 1)_1/2||Q||Lx(sn—l)||fHF£~rq(Rd),

: (45)
1/2
<C(==7) "1y

LP(RY)

where C > 0 is independent of s, Q and the coefficients of P; for 1 < j <d. By
Minkowski’s inequality it follows that

//fhgl“p / ' i 2p02kr/1/*f( )2dt>1/2

k=—oco

<y 25([Clow, 5 1P E) “7)

k=—oo
< ([Tl erwp®)”

By (46)—(47) and (i) of Lemma 1 we get
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|- #h.0r0 (Ol gpama) 1
<c|(Z29( [, MharpC+2710) - Aiarp(N0E)") :

Iez Lr®)
a\1/4
< lga
Az 2e( [, Haars@rictmac)’) 7, .
dr\N1/2  Nay /4
<el(B2m( [, ([ e )
(IEZ () o= 0P ) Tae) )
< C(s = 1) 219 sy L1l 2 ey
(48)
for ¢ € (0,1) and (1/p,1/q) € %,. This completes the proof of Theorem 3. O
Proof of Theorem 4. Let N = max;<j<,deg(P;). For 1 < j<n, weset P(t) =

SN @i jt’. There are integers 0 <[y <l < ... < Iy <N such that P( ) =38t
forany 1< j<nand (a,a; 27 Sap ) #(0,0,...,0) e R" forall 1 <i< A. For

I1<j<mand 1 <n <A, setP () S 1alljtl".Deﬁne(I)07(I)17...,CI)Aby

@y () = (P (- PV (3)y), 0<n <A

Clearly,
n n
HOREDWAICINEIED AOIISPIE
j=1 i=1
for any y,& € R" and 1 <1 <A, where L; : R" — R”" is the linear transformation
given by

Li(&) = (ay 181, 1,06, . ai, n&n)-

For any 0 < n < A and r € R;, we denote 0;p by opqr,, with Ty(y) =
@, (@(ly])y'). One can easily check that 6; o =0 forall 7 € R, and

1610 (&) < ClIQ (513 (49)
161(8) — G 1(8)] < IR s (sn-1y 9 (1) L (§)). (50)

By a change of variable and Holder’s inequality we have

5 &)1 =35 [, [ QW) ex(-2miE - on(o() o) 5|
< Clllage, / |, Q00 exp(-2mi& - @ (p(ry)do(y)

2 0
<ClQlFe; 7o

(/.

7 154
)

2@) 1/max{2,y'}

r

[ Q0" exp(-2miE - By (9 (1)) do )

(51
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By Lemma 2 and Holder’s inequality,

[ a0)ex(-miz- @0 ot
" "Yexp(—2mi& - @y (ry’ N? dr
= Lo | fy s QO exp(2miE a0 )| s s
<cto) [7 | [ at!yexp(-2mie - n( o) L
wl(t/2) st y
<C(qo)/f1 [ ev Jexp (— ZmZ o(1)'r")do(y) o

O /)

| [ zmi L&) 0/ ~ o)) Llao()aow)

<Clo // 000
S12

><m1n{10gc<,,,|(p()nLn(’g’) o —u)|~ l/l”}do( Ndo (i)
C(@) Q2 gr-1) | @) Ly (&)] /00,

which together with (51) yields

167 (6)] < ClIQ g1y @ (1)1 Ly (&) /I max27D), (52)

It follows from (49)—(50) and (52) that

1607 (8) = G 1(E)] < ClIQ| g1y (9()7 Ly (€)M (53)
16 (E)] < ClIQ| s g1y min{ L, | (e) 1Ly (£)[} 1/ 7). (54)

Let a € (0,1) and (1/p,1/q) € %Z,. We can choose 1 < r < min{p,q} such that
(1/p,1/q,1/r) belongs to the interior of the convex hull of three cubes (1,5 + mf ,

(3 - m7 1)3 and (21;/’1 — —)3 Invoking Lemma 4 we obtain

k+l)v

H<J€Z /9“(1 kg/zkr ||th|*gj§k|2dt> ) )1/4 -
( (2 8.2 )1/2 L md)>l/q

keZ
forany 1 <n < A. Applying Lemma 6, we get from (53)—(55) that

H(éw /md / ora % O, zg(f)|2dt>l/2 C>q>l/qHU,(Rd) (56)

<Cls=1)721Ql s 11l g9 2y

(55)

<C(=) "9l 5

LP(RA)
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for ov € (0,1) and (1/p,1/q) € Z%y. On the other hand, by the similar argument as in
getting (47) we have

1 - di\1/2
hars N < 7= ([ omsrwPT) " 57)

forany 0 < ¢ < 1 and 1 < p, g < eo. Theorem 4 follows from (56)—(57) and the same
argument as in getting (48). [

Proof of Theorem 1. By Theorem 3 and some extrapolation arguments (see the
proof of [3, Theorem 2.3(a)]). One can easily get (i) of Theorem 1. Let o € (0,1),
|1/p—1/2| <min{1/2,1/Y} and 1 < g < eo. By Remark 4, (ii) of Lemma 1 and
Fubini’s theorem we have

H‘%h,g,r,p (f) ||Bg~ﬂ (R4)

<c(z2|( [, rarse+2 O~ tarpn0rac) L )"
e d
<c(z2e|( f, traror ctrmrar) ) )"

e d

:C<le%2lqa</md /Rd |%h,(271"7p(A2,l€(f))(x)|pdxdg>‘1/I7>l/q

a/p\ /4
<O+ Qg ) (X2 [, [ 180001 agax) ™)
d

leZ
=C(1+ HQHL(logL)l/Z(snfl)) HfHB{;‘”(Rd)'

This yields (ii) of Theorem 1. [J

Proof of Theorem 2. By Theorem 4 and the same arguments as in the proof of [3,
Theorem 2.3], we can get (i) of Theorem 2. (ii) of Theorem 2 follows form the same
arguments as in getting (ii) of Theorem 1. We omit the details. [
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