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Abstract. Let Ai , i = 1, . . . ,m , be n× n positive definite matrices whose diagonal blocks are

nj -square matrices A( j)
i , j = 1, . . . ,k . Choi recently proved
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We first give a new proof of this inequality, and then present an analogous inequality involving
the Hadamard product
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1. Introduction

Let Mn be the space of n× n complex matrices. For two Hermitian matrices X
and Y , we write X � Y to mean that X −Y is positive semidefinite, so X � 0 denotes
that X is positive semidefinite. If X is positive definite, then we write X > 0. Let I
denote the identity matrix of a proper size. The Hadamard product (i.e., the entrywise
product) of A, B ∈ Mn is denoted by A ◦B . If more matrices A1, . . . ,Am ∈ Mn are
involved, we then use ∏m

i=1 ◦Ai to denote the Hadamard product of these matrices.

If X =
[
X11 X12

X21 X22

]
∈ Mn with X11 nonsingular, then the Schur complement of X11

in X is defined as
X/X11 = X22−X21X

−1
11 X12.

A well known property of the Schur complement is

detX = detX11 det(X/X11).

For more information on the Schur complement, we refer to the comprehensive survey
(see [9]).
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Fischer’s inequality [3, p. 506] states that for a positive semidefinite matrix A =[
A11 A12

A21 A22

]
with A11 square, it holds

detA � detA11 detA22.

Let Ai ∈ Mn , i = 1, . . . ,m , be positive definite whose diagonal blocks are n j -

square matrices A( j)
i , j = 1, . . . ,k , (so n1 + · · ·+nk = n ). Then
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follows directly from Fischer’s inequality. Determinantal inequalities for positive def-
inite matrices is the theme of a number of recent research papers, see for example
[1, 4, 5, 7].

In [1], Choi proved the following result for positive definite matrices.

THEOREM 1. [1, Theorem 2] Let Ai ∈ Mn , i = 1, . . . ,m, be positive definite

whose diagonal blocks are n j -square matrices A( j)
i for j = 1, . . . ,k, (so n1 + · · ·+nk =

n). Then
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The main auxiliary result in Choi’s proof is from [6]. In this paper, we first give
an alternative proof of Theorem 1 using some properties on the Schur complement.
This is done in section 2. In section 3, we prove the following analogue of Theorem 1
involving the Hadamard product.

THEOREM 2. Let Ai ∈ Mn , i = 1, . . . ,m, be positive definite whose diagonal

blocks are n j -square matrices A( j)
i for j = 1, . . . ,k (so n1 + · · ·+nk = n). Then
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2. New proof of Theorem 1

We need some lemmas which are useful for our new proof of Theorem 1.

LEMMA 1. [3, Corollary 7.7.4] If A,B ∈ Mn such that 0 < A � B, then B−1 �
A−1 and detA � detB.

LEMMA 2. [8, Theorem 7.13] Let A ∈ Mn be positive definite. Partition A as

A =
[
A11 A12

A21 A22

]
with A11 square. Let A−1 be conformally partitioned as A. Then

1. (Aii)−1 � (A−1)ii , i = 1,2;
2. A−1/(A−1)11 = (A22)−1.
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LEMMA 3. [2, Theorem 2] For i = 1, . . . ,m, let Ai ∈ Mn be positive definite and
conformally partitioned. Then(
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where A(1)
i is the (1,1) block of Ai , i = 1, . . . ,m.

Now we are ready to present

Proof of Theorem 1. Since Ai are positive definite for all i = 1, . . . ,m, then A−1
i

are all positive definite. Let A−1
i be conformally partitioned as Ai for i = 1, . . . ,m.

Then the diagonal blocks of A−1
i are n j -square matrices (A−1

i )( j) for j = 1, . . . ,k.
Using mathematical induction on k, we may assume k = 2. Applying Lemma 3, we
have (
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Taking determinants on both sides, we get
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where the first inequality is due to the property of the Schur complement, the second
is a consequence of Lemma 1 and Lemma 2 (1), and the last equality follows from
Lemma 2 (2). �

3. Proof of Theorem 2

In order to prove Theorem 2, we need to show a new result. which could be
regarded as a complement of [6, Theorem 1]. We require the following basic result
which is due to Schur.

LEMMA 4. [3, Theorem 7.5.3] Let A,B ∈ Mn . If A � 0 and B � 0 , then A◦B �
0 .
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THEOREM 3. Let Tk =
[
Xk Yk

0 Zk

]
∈ Mn, k = 1, . . . ,m, be n-square conformally

partitioned matrices, where Xk , Zk are r -square and (n−r)-square, respectively. Then
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Proof. We first assume that X∗
k Xk is nonsingular for all k = 1, . . . ,m, then
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Applying the determinant on both sides, the desired inequality follows whenever X∗
k Xk

is nonsingular for all k = 1, . . . ,m. By a continuity argument, the assertion also holds
if X∗

k Xk is singular for all k = 1, . . . ,m. �

REMARK 1. By a simple induction, Theorem 3 can be extended to the k×k (k �
2) block upper triangular case.

The following lemma is useful for the proof of Theorem 2.

LEMMA 5. [1, Lemma 2] Let P =
[

A B
B∗ C

]
∈ Mn be positive definite. Then P can

be factorized as P = T ∗T with T =
[
X Y
0 Z

]
being conformally partitioned as P.
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Now we are in a position to present

Proof of Theorem 2. Mathematical induction allows us to prove Theorem 2 for

k = 2. By Lemma 5, for each i = 1, . . . ,m, there exists a matrix Ti =
[
Xi Yi

0 Zi

]
being

conformally partitioned as A−1
i such that A−1

i = T ∗
i Ti . Then
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follows by Theorem 3. Now it is enough to show (X∗
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COROLLARY 1. Let A ∈ Mn be positive definite whose diagonal blocks are ni -
square matrices Ai, for each i = 1, . . . ,k. Then

det(I ◦A−1) � det(I ◦A−1
1 ) · · ·det(I ◦A−1

k ).

COROLLARY 2. Let C ∈ Mn be positive definite whose diagonal blocks are ni -
square matrices Ci, for i = 1, . . . ,k. Let Di � 0 be ni -square matrices, for each i =
1, . . . ,k, and D = diag(D1, . . . ,Dk) . Then

det(C−1 ◦D) � det(C−1
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Proof. We first assume that D is nonsingular, that is, Di are all invertible for
i = 1, . . . ,k. Then, by Theorem 2
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By a standard continuity argument, the statement is also true if D is singular. �
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