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Abstract. Let A;, i=1,...,m, be nx n positive definite matrices whose diagonal blocks are
()

i

det (iAﬂ) > det <§(A§‘>)l> o det <i(AEk))l> .
i—1 i=1 i=1

We first give a new proof of this inequality, and then present an analogous inequality involving
the Hadamard product

det (HoAH) > det (Ho(AE”V) oo det (HO(AE“)‘> .
i=1 i=1 P

nj-square matrices A;”’, j=1,... k. Choi recently proved

1. Introduction

Let M, be the space of n x n complex matrices. For two Hermitian matrices X
and Y, we write X > Y to mean that X —Y is positive semidefinite, so X > 0 denotes
that X is positive semidefinite. If X is positive definite, then we write X > 0. Let 1
denote the identity matrix of a proper size. The Hadamard product (i.e., the entrywise
product) of A, B € M, is denoted by Ao B. If more matrices Ay,...,A, € M, are
involved, we then use [T, oA; to denote the Hadamard product of these matrices.

X1 X2
rx= [le X2
in X is defined as

} € M, with X;; nonsingular, then the Schur complement of X7

X/X11 = Xoo — X1 X X12-

A well known property of the Schur complement is
detX =detXq; det(X/Xll).

For more information on the Schur complement, we refer to the comprehensive survey
(see [9)).

Mathematics subject classification (2010): 15A45.
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Fischer’s inequality [3, p. 506] states that for a positive semidefinite matrix A =
[An Az

with Ay square, it holds
Az Azz} 1

detA < detA;;detAs,.

Let A; € M,, i =1,...,m, be positive definite whose diagonal blocks are n;-
) j=1,....k, (50 nj +---+ng =n). Then

det (ﬁoA,) < det (ﬁoAf”) -+ -det (ﬁoAfk)>
i=1 i=1 i=1

follows directly from Fischer’s inequality. Determinantal inequalities for positive def-
inite matrices is the theme of a number of recent research papers, see for example
[1,4,5,7].

In [1], Choi proved the following result for positive definite matrices.

square matrices A/

THEOREM 1. [, Theorem 2] Let A; € I\\/JI,,, i=1,....,m, be positive definite
whose diagonal blocks are nj-square matrices A for j=1,....k, (son+---+n, =

n). Then
et (i&-‘) > det (i(AEI)W) - -det (i(Afk)) ) .
=1 =1 i=1

The main auxiliary result in Choi’s proof is from [6]. In this paper, we first give
an alternative proof of Theorem 1 using some properties on the Schur complement.
This is done in section 2. In section 3, we prove the following analogue of Theorem 1
involving the Hadamard product.

THEOREM 2. Let A; € M,,, i=1,...,m, be positive definite whose diagonal
blocks are nj-square matrices A for j=1,...;k(soni+---+ny=n). Then

det(HoAi1>>det<Ho(A§” ) det<Ho(A§"))1>.
i=1 i=1 i=1

2. New proof of Theorem 1
We need some lemmas which are useful for our new proof of Theorem 1.

LEMMA 1. [3, Corollary 7.7.4] If A,B € M, such that 0 < A < B, then B 1<
A1 and detA < detB.

LEMMA 2. [8, Theorem 7.13] Let A € M, be positive definite. Partition A as

A A
A =

[Am A

L (Aa) ' < (A D, i=1,2;

2.A7Y (A = (An) ™!

} with Ay square. Let A~' be conformally partitioned as A. Then
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LEMMA 3. [2, Theorem 2] Fori=1,...,m, let A; € Ml, be positive definite and
conformally partitioned. Then

(B)/ (3] E /)

i=1
where A" is the (1,1) block of A;, i=1,....m.

Now we are ready to present

Proof of Theorem 1. Since A; are positive definite for all i =1,...,m, then A; !
are all positive definite. Let A; ! be conformally partitioned as A; for i =1,...,m.
Then the diagonal blocks of A;! are n;-square matrices (A;')U) for j=1,... k.
Using mathematical induction on k, we may assume k = 2. Applying Lemma 3, we

have
(50)/ () » 5y w)

i=1 =1

Taking determinants on both sides, we get
- < (4-1y (D N —1y()
det <,-21A" 1) > det (2 (A7) )det (2 (ah/(a) ))
> det (i (AS”)_1> det (i (a7h/ (Ail)(1)>>
— det (i (AS”)_1> det (i (AEQ))_1> :

where the first inequality is due to the property of the Schur complement, the second
is a consequence of Lemma 1 and Lemma 2 (1), and the last equality follows from
Lemma?2 (2). 0

3. Proof of Theorem 2
In order to prove Theorem 2, we need to show a new result. which could be

regarded as a complement of [6, Theorem 1]. We require the following basic result
which is due to Schur.

LEMMA 4. [3, Theorem 7.5.3] Let A\ BeM,,. IfA>0and B> 0, then AoB >
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| Xk Yk
THEOREM 3. Let T; = [0 Z

partitioned matrices, where Xy, Z;. are r-square and (n— r)-square, respectively. Then

m m m
det (H oT} Tk> > det (H ox,jxk> -det (H oz;;zk> :
k=1 k=1 k=1

] eM,, k=1,...,m, be n-square conformally

Proof. We first assume that X" X} is nonsingular for all k= 1,...,m, then

XX, XY,
(X Y] [Xi Y] = [Y: le YEYZ“] >0,

for k=1,...,m, using Lemma 4, we have

a * HZLIOX]:X;( quzloX]:Yk
[ o [Xe 1] X 7] = [H}?_l ) I AR

k=1
Further
m m m 71 m
TTovive—{ TTovexXe | | [T oXi X« [1oXiYe ) > 0.
k=1 k=1 k=1 k=1
On the other hand

o | XE Xk XY
TeTi= {Yk*Xk Vv z:zi| 7
Hence, we get

m

(ﬁoTk*Tk> / (]m‘[x,jxk> —[]e(WY+7Z2z)
k=1 k=1

k=1

m m -1 m
— | TTeveXe | | TToXi X [IRaz
k=1 k=1 k=1

m
> H oZiZy 2 0.
k=1
Applying the determinant on both sides, the desired inequality follows whenever XX
is nonsingular for all £ = 1,...,m. By a continuity argument, the assertion also holds
if XX issingular forall k=1,...,m. [

REMARK 1. By asimple induction, Theorem 3 can be extended to the k x k (k >
2) block upper triangular case.

The following lemma is useful for the proof of Theorem 2.

B*C

be factorized as P =T*T with T = [)é ;

LEMMA 5. [1,Lemma?2] Let P= [A B} € M, be positive definite. Then P can

] being conformally partitioned as P.
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Now we are in a position to present
Proof of Theorem 2. Mathematical induction allows us to prove Theorem 2 for

k=2. By Lemma 5, for each i = 1,...,m, there exists a matrix 7; = [)é’ ;’} being
1

conformally partitioned as A;” ! such that Ai_1 =T"T;. Then

m m m
det (HoAﬂ) > det (HOX,-*Xi> -det( oZl-*Zi>
i—1 i—1 i=1

follows by Theorem 3. Now it is enough to show (X7X;)~! <A!") and (z7Z)~! <A?
for each i, since these relations and the inequality above imply

det (ﬁmﬂ) > det (ﬁo(AE”)1> det (ﬁo(AEz))l>
=1 =1 =1

by Lemma 1. From
X X; X*Y;
=1 _ e i i Li
we have
AY = (X=X Y+ Z2) 7 X)

and thus (X7X;) ™' < Afl) by Lemma 1 again. Similarly,
AP = (VY4 ZZ— VXX X)X Y
= Y+ Z 2= Y XX) X)X )
=(zz)'. O

COROLLARY 1. Let A € M, be positive definite whose diagonal blocks are n;-
square matrices A;, foreach i=1,... k. Then

det(IoA™") > det(IoA[") - det(IoA, ).
COROLLARY 2. Let C € M, be positive definite whose diagonal blocks are nj;-

square matrices Cj, for i =1,... k. Let D; > 0 be n;-square matrices, for each i =
1,...,k, and D = diag(Dy,...,Dy). Then

det(C~'oD) > det(C; ' oDy) -+ det(C; ' o Dy).
Proof. We first assume that D is nonsingular, that is, D; are all invertible for
i=1,...,k. Then, by Theorem 2
det(C 'oD)=det(C'o (D™
> det(Cy o (D)) det(C o (D) T
=det(C; ' oDy)---det(C; ' o Dy).
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By a standard continuity argument, the statement is also true if D is singular. [
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