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ESSENTIAL NORM OF THE DIFFERENCES OF

COMPOSITION OPERATORS ON THE BLOCH SPACE
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(Communicated by I. Franjić)

Abstract. We provide some estimates for the essential norm of the differences of composition
operators Cϕ −Cψ acting on the Bloch space by using pseudo-hyperbolic distance, Möbius
transformation and ϕn −ψn .

1. Introduction

Let D be the unit disk in the complex plane C , ∂D the unit circle and H(D) be
the class of functions analytic in D . We denote by S(D) the set of all analytic self-maps
of D . Let H∞ = H∞(D) denote the set of all bounded analytic functions on D with the
supremum norm ‖ f‖∞ = supz∈D | f (z)|. An f ∈ H(D) is said to belong to the Bloch
space, denoted by B = B(D) , if (see [15])

‖ f‖B = | f (0)|+ sup
z∈D

(1−|z|2)| f ′(z)| < ∞.

It is well known that B is a Banach space under the norm ‖ · ‖B . Note that H∞ ⊂ B
and ‖ f‖B � 2‖ f‖∞ if f ∈ H∞ . For ϕ ∈ S(D), ‖ϕ‖B � 2‖ϕ‖∞ � 2. The little Bloch
space, denoted by B0 = B0(D) , is a subspace of B consisting of all f ∈ H(D) such
that lim|z|→1(1−|z|2)| f ′(z)| = 0.

For a ∈ D , let σa be the Möbius transformation of D defined by

σa(z) =
a− z
1− az

.

For z , w ∈ D , the pseudo-hyperbolic distance between z and w is given by

ρ(z,w) = |σw(z)| =
∣∣∣∣ z−w
1−wz

∣∣∣∣.
It is well known that ρ(z,w) � 1. For ϕ ∈ S(D) , the Schwarz-Pick type derivative ϕ#

of ϕ is defined by

ϕ#(z) =
1−|z|2

1−|ϕ(z)|2 ϕ ′(z).
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By the Schwarz-Pick lemma, we have |ϕ#(z)| � 1 on D .
Let ϕ be an analytic self-map of D . The composition operator Cϕ is defined by

Cϕ( f )(z) = f (ϕ(z)), f ∈ H(D).

It is well known that the composition operator is bounded on the Bloch space since
|ϕ#(z)| � 1. The compactness of the composition operator on the Bloch space was
firstly studied in [6]. They proved that Cϕ : B →B is compact if and only if lim|ϕ(z)|→1

|ϕ#(z)|= 0. Tjani proved that Cϕ : B →B is compact if and only if lim|a|→1 ‖Cϕσa‖B

= 0 in [10, 11]. In [12], Wulan, Zheng and Zhu obtained a new characterization for the
compactness of the composition operator acting on the Bloch space, i.e., they proved
that Cϕ : B → B is compact if and only if limn→∞ ‖ϕn‖B = 0.

The essential norm of the composition operator acting on the Bloch space has been
studied by several authors. In [7], Montes-Rodrı́eguez proved that the essential norm
of the operator Cϕ : B → B is

‖Cϕ‖e,B = limsup
|ϕ(z)|→1

|ϕ#(z)|.

In [14], Zhao obtained another characterization for the essential norm of the operator
Cϕ : B → B , i.e., he showed that ‖Cϕ‖e,B = e

2 limsupn→∞ ‖ϕn‖B. Recall that the
essential norm of a bounded linear operator T : X → X is its distance to the set of
compact operators K mapping X into X , that is,

‖T‖e,X = inf{‖T −K‖X : K is compact },
where X is a Banach space and ‖ · ‖X is the operator norm.

Recently, one of the most interesting problems in the theory of composition oper-
ator is to characterize the boundedness, compactness and essential norm of the differ-
ences of two composition operators, more generally, the linear combination of composi-
tion operators. The study of the differences of composition operators was started on the
Hardy space H2 . The main purpose for the study of the differences is to understand the
topological structure of the set of composition operators C (H2) , see [1, 2, 9]. It is easy
to see that the differences of two composition operators is also bounded on the Bloch
space for any analytic self-map. In [3], the authors obtained some characterizations for
the compactness of Cϕ −Cψ , among others, they obtain the following result.

THEOREM A. Let ϕ and ψ be analytic self-maps of D . Suppose that neither Cϕ
nor Cψ is compact on B . Then Cϕ −Cψ is compact on B if and only if

lim
|a|→1

‖(Cϕ −Cψ)σa‖B = 0 and lim
|a|→1

‖(Cϕ −Cψ)(σa)2‖B = 0.

See [3, 4, 5, 8, 13] for more information of the compactness of the differences of
composition operators on the Bloch space. Based on the idea of [12, 14] and THEOREM

A, it is natural to ask whether Cϕ −Cψ is compact on B if and only if

lim
n→∞

‖ϕn−ψn‖B = 0?
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In this paper, we give a positive answer. In fact, motivated by [3, 12, 14], we obtain
some estimates for the essential norm of the differences of composition operators on
the Bloch space. Our main result is stated as follows.

THEOREM 1. Let ϕ and ψ be analytic self-maps of D . Then,

‖Cϕ −Cψ‖e,B

≈ lim
s→1

sup
|ϕ(z)|>s

ρ(ϕ(z),ψ(z))|ϕ#(z)|+ lim
s→1

sup
|ψ(z)|>s

ρ(ϕ(z),ψ(z))|ψ#(z)|

+ lim
s→1

sup
|ϕ(z)|>s
|ψ(z)|>s

|ϕ#(z)−ψ#(z)|

≈ limsup
|a|→1

‖(Cϕ −Cψ)σa‖B + limsup
|a|→1

‖(Cϕ −Cψ)(σa)2‖B

≈ limsup
n→∞

‖ϕn−ψn‖B.

Throughout this paper, we say that A � B if there exists a constant C such that
A � CB . The symbol A ≈ B means that A � B � A .

2. Preliminary

In this section, we give some auxiliary results. For z,w ∈ D , we define

b(z,w) = sup
‖ f‖B�1

|(1−|z|)2 f ′(z)− (1−|w|)2 f ′(w)|.

LEMMA 1. [3, Proposition 2.2] For all z,w ∈ D , we have

ρ(z,w)2 � b(z,w) � 18ρ(z,w).

For r ∈ (0,1) , let Kr f (z) = f (rz) . Then Kr is a compact operator on the space B
or B0 , with ‖Kr‖B � 1.

LEMMA 2. [14, Lemma 4.2] There is a sequence {rk} , with 0 < rk < 1 tending
to 1 , such that the compact operator Ln = 1

n ∑n
k=1 Krk acting on B0 satisfies

(i) For any t ∈ [0,1) , limn→∞ sup‖ f‖B�1 sup|z|�t |((I−Ln) f )′(z)| = 0 .

(iia) limsupn→∞ sup‖ f‖B�1 sup|z|>s |(I − Ln) f (z)|(log 1
1−|z|2 )

−1 � 1 , for s suffi-

ciently close to 1 , and
(iib) limn→∞ sup‖ f‖B�1 sup|z|�s |(I−Ln) f (z)| = 0 , for the above s.
(iii) limsupn→∞ ‖I−Ln‖ � 1 .
Furthermore, the same is true for the sequence of biadjoints L∗∗

n on B .

LEMMA 3. Let ϕ and ψ be analytic self-maps of D . Then
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(i)

lim
s→1

sup
|ϕ(z)|>s

ρ(ϕ(z),ψ(z))|ϕ#(z)|

� limsup
|a|→1

‖(Cϕ −Cψ)σa‖B +
1
2

limsup
|a|→1

‖(Cϕ −Cψ)(σa)2‖B.

(ii)

lim
s→1

sup
|ψ(z)|>s

ρ(ϕ(z),ψ(z))|ψ#(z)|

� limsup
|a|→1

‖(Cϕ −Cψ)σa‖B +
1
2

limsup
|a|→1

‖(Cϕ −Cψ)(σa)2‖B.

(iii)

lim
s→1

sup
|ϕ(z)|>s
|ψ(z)|>s

|ϕ#(z)−ψ#(z)|

� 19limsup
|a|→1

‖(Cϕ −Cψ)σa‖B +9limsup
|a|→1

‖(Cϕ −Cψ)(σa)2‖B.

Proof. For any z ∈ D , we have

‖(Cϕ −Cψ)σϕ(z)‖B � (1−|z|2)|((Cϕ −Cψ)σϕ(z))
′(z)|

= (1−|z|2)
∣∣∣∣ ϕ ′(z)
1−|ϕ(z)|2 −

ψ ′(z)(1−|ϕ(z)|2)
(1−ϕ(z)ψ(z))2

∣∣∣∣
=

∣∣∣∣ϕ#(z)− (1−|ϕ(z)|2)(1−|ψ(z)|2)
(1−ϕ(z)ψ(z))2

ψ#(z)
∣∣∣∣

� |ϕ#(z)|− (1−|ϕ(z)|2)(1−|ψ(z)|2)
|1−ϕ(z)ψ(z))2| |ψ#(z)|

= |ϕ#(z)|− (1− (ρ(ϕ(z),ψ(z)))2)|ψ#(z)|
and

‖(Cϕ −Cψ)(σϕ(z))
2‖B � (1−|z|2)|((Cϕ −Cψ)(σϕ(z))

2)′(z)|
� 2(1− (ρ(ϕ(z),ψ(z)))2)|ψ#(z)|ρ(ϕ(z),ψ(z)).

Thus

‖(Cϕ −Cψ)σϕ(z)‖B +
1
2
‖(Cϕ −Cψ)(σϕ(z))

2‖B

� ρ(ϕ(z),ψ(z))‖(Cϕ −Cψ)σϕ(z)‖B +
1
2
‖(Cϕ −Cψ)(σϕ(z))

2‖B

� ρ(ϕ(z),ψ(z))|ϕ#(z)|.
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Similarly,

‖(Cϕ −Cψ)σψ(z)‖B +
1
2
‖(Cϕ −Cψ)(σψ(z))

2‖B � ρ(ϕ(z),ψ(z))|ψ#(z)|.

Then we have

lim
s→1

sup
|ϕ(z)|>s

ρ(ϕ(z),ψ(z))|ϕ#(z)|

� lim
s→1

sup
|ϕ(z)|>s

‖(Cϕ −Cψ)σϕ(z)‖B +
1
2

lim
s→1

sup
|ϕ(z)|>s

‖(Cϕ −Cψ)(σϕ(z))
2‖B

� limsup
|a|→1

‖(Cϕ −Cψ)σa‖B +
1
2

limsup
|a|→1

‖(Cϕ −Cψ)(σa)2‖B

and

lim
s→1

sup
|ψ(z)|>s

ρ(ϕ(z),ψ(z))|ψ#(z)|

� limsup
|a|→1

‖(Cϕ −Cψ)σa‖B +
1
2

limsup
|a|→1

‖(Cϕ −Cψ)(σa)2‖B.

Moreover, by applying Lemma 1, we have

‖(Cϕ −Cψ)σϕ(z)‖B

� |ϕ#(z)−ψ#(z)|− |ψ#(z)|
∣∣∣∣1− (1−|ϕ(z)|2)(1−|ψ(z)|2)

(1−ϕ(z)ψ(z))2

∣∣∣∣
� |ϕ#(z)−ψ#(z)|− |ψ#(z)||(1−|ϕ(z)|2)σ ′

ϕ(z)(ϕ(z))

−(1−|ψ(z)|2)σ ′
ϕ(z)(ψ(z))|

� |ϕ#(z)−ψ#(z)|− |ψ#(z)|b(ϕ(z),ψ(z))
� |ϕ#(z)−ψ#(z)|−18|ψ#(z)|ρ(ϕ(z),ψ(z)).

Thus,

|ϕ#(z)−ψ#(z)|
� ‖(Cϕ −Cψ)σϕ(z)‖B +18‖(Cϕ −Cψ)σψ(z)‖B +9‖(Cϕ −Cψ)(σψ(z))

2‖B.

Hence,

lim
s→1

sup
|ϕ(z)|>s
|ψ(z)|>s

|ϕ#(z)−ψ#(z)|

� 19limsup
|a|→1

‖(Cϕ −Cψ)σa‖B +9limsup
|a|→1

‖(Cϕ −Cψ)(σa)2‖B.

The proof is completed. �
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LEMMA 4. Let ϕ and ψ be analytic self-maps of D . Then
(i)

limsup
|a|→1

‖(Cϕ −Cψ)σa‖B � 2limsup
n→∞

‖ϕn−ψn‖B.

(ii)
limsup
|a|→1

‖(Cϕ −Cψ)(σa)2‖B � 8limsup
n→∞

‖ϕn−ψn‖B.

Proof. Note that the Maclaurin expansion of Möbius map σa is given by

σa(z) = a− (1−|a|2)
∞

∑
k=0

akzk+1.

For any fix positive integer n � 2, it follows from the triangle inequality that

‖(Cϕ −Cψ)σa‖B

� |(Cϕ −Cψ)σa(0)|+(1−|a|2)
∞

∑
k=0

|a|k‖ϕk+1−ψk+1‖B

= (1−|a|2)
n−2

∑
k=0

|a|k‖ϕk+1−ψk+1‖B +(1−|a|2)
∞

∑
k=n−1

|a|k‖ϕk+1−ψk+1‖B

� 4(n−1)(1−|a|2)+ (1−|a|2)
∞

∑
k=n−1

|a|k‖ϕk+1−ψk+1‖B

� 4(n−1)(1−|a|2)+2sup
k�n

‖ϕk −ψk‖B,

where we used ‖ϕ j−ψ j‖B � 2‖ϕ j‖∞ +2‖ψ j‖∞ � 4 for j = 1,2, . . . ,n−1 in the third
inequality. Letting |a| → 1 in the above inequality leads to

limsup
|a|→1

‖(Cϕ −Cψ)σa‖B � 2sup
k�n

‖ϕk −ψk‖B,

for any positive integer n � 2. Thus,

limsup
|a|→1

‖(Cϕ −Cψ)σa‖B � 2limsup
n→∞

‖ϕn−ψn‖B.

Also using Maclaurin expansion of Möbius map σ2
a , we have

σ2
a (z) =

(
a− (1−|a|2)

∞

∑
k=0

akzk+1
)2

= a2−2a(1−|a|2)
∞

∑
k=0

akzk+1 +(1−|a|2)2
( ∞

∑
k=0

akzk+1
)2

= a2−2a(1−|a|2)
∞

∑
k=0

akzk+1 +(1−|a|2)2
∞

∑
k=2

(k−1)ak−2zk.
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Therefore,

‖(Cϕ −Cψ)(σa)2‖B � |(Cϕ −Cψ)(σa)2(0)|+2|a|(1−|a|2)
∞

∑
k=0

|a|k‖ϕk+1−ψk+1‖B

+(1−|a|2)2
∞

∑
k=2

(k−1)|a|k−2‖ϕk −ψk‖B.

For each n � 2, we have

2|a|(1−|a|2)
∞

∑
k=n−1

|a|k‖ϕk+1−ψk+1‖B

� 2|a|(1−|a|2)
∞

∑
k=n−1

|a|k sup
j�n

‖ϕ j −ψ j‖B

� 4sup
k�n

‖ϕk −ψk‖B.

By elementary calculations, the function h(x) = nxn−1(1− x)+ xn, 0 � x � 1, attains
its maximum value 1, at the point 1. Therefore,

(1−|a|2)2
∞

∑
k=n

(k−1)|a|k−2‖ϕk −ψk‖B

� (1−|a|2)2
∞

∑
k=n

(k−1)|a|k−2 sup
k�n

‖ϕk −ψk‖B

� (1−|a|2)2 n|a|n−1(1−|a|)+ |a|n
(1−|a|)2 sup

k�n
‖ϕk −ψk‖B

� 4sup
k�n

‖ϕk −ψk‖B.

Thus,

‖(Cϕ −Cψ)(σa)2‖B

� 2|a|(1−|a|2)
n−2

∑
k=0

|a|k‖ϕk+1−ψk+1‖B

+(1−|a|2)2
n−1

∑
k=2

(k−1)|a|k−2‖ϕk −ψk‖B +8sup
k�n

‖ϕk −ψk‖B

� 8(n−1)|a|(1−|a|2)+2(n−1)(n−2)(1−|a|2)2 +8sup
k�n

‖ϕk −ψk‖B.

Letting |a| → 1 in the above inequality leads to

limsup
|a|→1

‖(Cϕ −Cψ)(σa)2‖B � 8sup
k�n

‖ϕk −ψk‖B,

for any positive integer n � 2. Therefore we get

limsup
|a|→1

‖(Cϕ −Cψ)(σa)2‖B � 8limsup
n→∞

‖ϕn−ψn‖B. �
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3. Proof of main result

Now we are in a position to give the proof for the main result in this paper.

Proof of Theorem 1. First, we prove that

‖Cϕ −Cψ‖e,B � e
2

limsup
n→∞

‖ϕn−ψn‖B.

Let n be any positive integer. Consider the function zn . We have

‖zn‖B = sup
z∈D

n|z|n−1(1−|z|2) =
2n

n+1

(
n−1
n+1

) 1
2

and hence limn→∞ ‖zn‖B = 2
e . Let fn(z) = zn/‖zn‖B . Then ‖ fn‖B = 1 and fn → 0

weakly in B . Thus, if K is any compact operator on B , then limn→∞ ‖K fn‖B = 0.
Hence,

‖Cϕ −Cψ −K‖ � limsup
n→∞

‖(Cϕ −Cψ −K) fn‖B � limsup
n→∞

‖(Cϕ −Cψ) fn‖B.

Therefore

‖Cϕ −Cψ‖e,B � limsup
n→∞

‖(Cϕ −Cψ) fn‖B

= limsup
n→∞

1
‖zn‖B

‖(Cϕ −Cψ)zn‖B

=
e
2

limsup
n→∞

‖ϕn−ψn‖B. (1)

Let {Ln} be the sequence of operator given in Lemma 2. Since each L∗∗
n is com-

pact on B , Cϕ −Cψ is bounded on B , (Cϕ −Cψ)L∗∗
n is also compact on B and we

have

‖Cϕ −Cψ‖e,B � limsup
n→∞

‖Cϕ −Cψ − (Cϕ −Cψ)L∗∗
n ‖

= limsup
n→∞

‖(Cϕ −Cψ)(I−L∗∗
n )‖

� limsup
n→∞

sup
‖ f‖B�1

‖(Cϕ −Cψ)(I−L∗∗
n ) f‖B ,

which is bounded by

limsup
n→∞

sup
‖ f‖B�1

|(I−L∗∗
n )( f (ϕ(0))− f (ψ(0)))|

+ limsup
n→∞

sup
‖ f‖B�1

sup
z∈D

|((I−L∗∗
n ) f )′(ϕ(z))ϕ ′(z)− ((I−L∗∗

n ) f )′(ψ(z))ψ ′(z)|(1−|z|2).

Lemma 2 (iib) guarantees that

limsup
n→∞

sup
‖ f‖B�1

|(I−L∗∗
n )( f (ϕ(0))− f (ψ(0)))| = 0.
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Now we consider the term

J = sup
‖ f‖B�1

sup
z∈D

|((I−L∗∗
n ) f )′(ϕ(z))ϕ ′(z)− ((I−L∗∗

n ) f )′(ψ(z))ψ ′(z)|(1−|z|2).

Let f ∈ B with ‖ f‖B � 1 and fix an arbitrary r ∈ (0,1) . For the sake of simplicity,
we define

H f
n (z) := |((I−L∗∗

n ) f )′(ϕ(z))ϕ ′(z)− ((I−L∗∗
n ) f )′(ψ(z))ψ ′(z)|(1−|z|2)

and set

D1 := {z ∈ D : |ϕ(z)| � r, |ψ(z)| � r}, D2 := {z ∈ D : |ϕ(z)| � r, |ψ(z)| > r},

D3 := {z ∈ D : |ϕ(z)| > r, |ψ(z)| � r}, D4 := {z ∈ D : |ϕ(z)| > r, |ψ(z)| > r}.

Then

J = sup
‖ f‖B�1

sup
z∈D

H f
n = max

1�i�4
sup

‖ f‖B�1
sup
z∈Di

H f
n = max{J1,J2,J3,J4}.

By (i) of Lemma 2,

limsup
n→∞

J1 = limsup
n→∞

sup
‖ f‖B�1

sup
z∈D1

H f
n

� limsup
n→∞

sup
‖ f‖B�1

sup
|ϕ(z)|�r

|((I−L∗∗
n ) f )′(ϕ(z))||ϕ ′(z)|(1−|z|2)

+ limsup
n→∞

sup
‖ f‖B�1

sup
|ψ(z)|�r

|((I−L∗∗
n ) f )′(ψ(z))||ψ ′(z)|(1−|z|2)

= 0.

By Lemma 1, we have

H f
n (z) = |((I−L∗∗

n ) f )′(ϕ(z))ϕ ′(z)− ((I−L∗∗
n ) f )′(ψ(z))ψ ′(z)|(1−|z|2)

= |((I−L∗∗
n ) f )′(ψ(z))|(1−|ψ(z)|2)|ϕ#(z)−ψ#(z)|

+|((I−L∗∗
n ) f )′(ϕ(z))(1−|ϕ(z)|2)− ((I−L∗∗

n ) f )′(ψ(z))(1−|ψ(z)|2)||ϕ#(z)|
� |((I−L∗∗

n ) f )′(ψ(z))|(1−|ψ(z)|2)|ϕ#(z)−ψ#(z)|+b(ϕ(z),ψ(z))|ϕ#(z)|
� |((I−L∗∗

n ) f )′(ψ(z))|(1−|ψ(z)|2)|ϕ#(z)−ψ#(z)|+18ρ(ϕ(z),ψ(z))|ϕ#(z)|.

Similarly,

H f
n (z) � |((I−L∗∗

n ) f )′(ϕ(z))|(1−|ϕ(z)|2)|ϕ#(z)−ψ#(z)|+18ρ(ϕ(z),ψ(z))|ψ#(z)|.
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Then, we obtain

limsup
n→∞

J2

� limsup
n→∞

sup
‖ f‖B�1

sup
z∈D2

(|((I−L∗∗
n ) f )′(ϕ(z))|(1−|ϕ(z)|2)|ϕ#(z)−ψ#(z)|

+18ρ(ϕ(z),ψ(z))|ψ#(z)|)
� limsup

n→∞
sup

‖ f‖B�1
sup

|ϕ(z)|�r
|((I−L∗∗

n ) f )′(ϕ(z))|(1−|ϕ(z)|2)|ϕ#(z)−ψ#(z)|

+18 sup
|ψ(z)|>r

ρ(ϕ(z),ψ(z))|ψ#(z)|

= 18 sup
|ψ(z)|>r

ρ(ϕ(z),ψ(z))|ψ#(z)|,

where we used (i) of Lemma 2 again in the last inequality. Since r is arbitrary, we have

limsup
n→∞

J2 � 18 lim
r→1

sup
|ψ(z)|>r

ρ(ϕ(z),ψ(z))|ψ#(z)|.

Similarly, we can prove that

limsup
n→∞

J3 � 18 lim
r→1

sup
|ϕ(z)|>r

ρ(ϕ(z),ψ(z))|ϕ#(z)|.

Also,

limsup
n→∞

J4

� limsup
n→∞

sup
‖ f‖B�1

sup
z∈D4

(|((I−L∗∗
n ) f )′(ϕ(z))|(1−|ϕ(z)|2)|ϕ#(z)−ψ#(z)|

+18ρ(ϕ(z),ψ(z))|ψ#(z)|)
� limsup

n→∞
sup

‖ f‖B�1
sup

|ϕ(z)|>r
|ψ(z)|>r

‖(I−L∗∗
n ) f‖B |ϕ#(z)−ψ#(z)|

+18 sup
|ψ(z)|>r

ρ(ϕ(z),ψ(z))|ψ#(z)|

� sup
|ϕ(z)|>r
|ψ(z)|>r

|ϕ#(z)−ψ#(z)|+18 sup
|ψ(z)|>r

ρ(ϕ(z),ψ(z))|ψ#(z)|,

where we used the fact

limsup
n→∞

‖(I−L∗∗
n ) f‖B � limsup

n→∞
‖I−L∗∗

n ‖‖ f‖B � 1

in the last inequality. Thus,

limsup
n→∞

J4 � lim
r→1

sup
|ϕ(z)|>r
|ψ(z)|>r

|ϕ#(z)−ψ#(z)|+18 lim
r→1

sup
|ψ(z)|>r

ρ(ϕ(z),ψ(z))|ψ#(z)|.
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Then we have

limsup
n→∞

J = limsup
n→∞

max{J1,J2,J3,J4}

� 18 lim
r→1

sup
|ϕ(z)|>r

ρ(ϕ(z),ψ(z))|ϕ#(z)|+18 lim
r→1

sup
|ψ(z)|>r

ρ(ϕ(z),ψ(z))|ψ#(z)|

+ lim
r→1

sup
|ϕ(z)|>r
|ψ(z)|>r

|ϕ#(z)−ψ#(z)|.

From Lemmas 3 and 4, we have

‖Cϕ −Cψ‖e,B

� 18 lim
r→1

sup
|ϕ(z)|>r

ρ(ϕ(z),ψ(z))|ϕ#(z)|+18 lim
r→1

sup
|ψ(z)|>r

ρ(ϕ(z),ψ(z))|ψ#(z)|

+ lim
r→1

sup
|ϕ(z)|>r
|ψ(z)|>r

|ϕ#(z)−ψ#(z)|

� 55limsup
|a|→1

‖(Cϕ −Cψ)σa‖B +27limsup
|a|→1

‖(Cϕ −Cψ)(σa)2‖B

� 326limsup
n→∞

‖ϕn−ψn‖B. (2)

Combining (1) with (2), we immediately obtain

limsup
n→∞

‖ϕn−ψn‖B

� ‖Cϕ −Cψ‖e,B

� lim
r→1

sup
|ϕ(z)|>r

ρ(ϕ(z),ψ(z))|ϕ#(z)|+ lim
r→1

sup
|ψ(z)|>r

ρ(ϕ(z),ψ(z))|ψ#(z)|

+ lim
r→1

sup
|ϕ(z)|>r
|ψ(z)|>r

|ϕ#(z)−ψ#(z)|

� limsup
|a|→1

‖(Cϕ −Cψ)σa‖B + limsup
|a|→1

‖(Cϕ −Cψ)(σa)2‖B

� limsup
n→∞

‖ϕn−ψn‖B.

The proof is completed. �

REMARK 1. In [5], the authors showed that

‖Cϕ −Cψ‖e,B ≈ max
{

lim
r→1

sup
|ϕ(z)|>r

ρ(ϕ(z),ψ(z))|ϕ#(z)|,

lim
r→1

sup
|ψ(z)|>r

ρ(ϕ(z),ψ(z))|ψ#(z)|, lim
r→1

sup
|ϕ(z)|>r
|ψ(z)|>r

|ϕ#(z)−ψ#(z)|
}

.

In [13], Yang and Zhou obtained another estimate for the essential norm of the differ-
ences of composition operators on the Bloch space.
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From Theorem 1, we immediately get the following corollary.

COROLLARY 1. Let ϕ and ψ be analytic self-maps of D . Then the following
statements are equivalent:

(i) Cϕ −Cψ is compact on B .

(ii)

lim
s→1

sup
|ϕ(z)|>s

ρ(ϕ(z),ψ(z))|ϕ#(z)| = lim
s→1

sup
|ψ(z)|>s

ρ(ϕ(z),ψ(z))|ψ#(z)|

= lim
s→1

sup
|ϕ(z)|>s
|ψ(z)|>s

|ϕ#(z)−ψ#(z)| = 0.

(iii) lim|a|→1 ‖(Cϕ −Cψ)σa‖B = lim|a|→1 ‖(Cϕ −Cψ)(σa)2‖B = 0.

(iv) limn→∞ ‖ϕn−ψn‖B = 0.

REMARK 2. By results of [6, 10, 12], Corollary 1 was obviously true in case of
either Cϕ or Cψ is compact on B . The equivalence of (i), (ii) and (iii) was given in [3]
for the case where neither Cϕ nor Cψ is compact on B . The condition (iv) is a new
and simple compactness criteria.
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