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BOUNDS FOR THE ZEROS OF POLYNOMIALS

FROM NUMERICAL RADIUS INEQUALITIES
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(Communicated by J.-C. Bourin)

Abstract. We apply matrix norms and recent numerical radius inequalities to a certain Frobenius
companion matrix to derive several bounds for the zeros of polynomials. Our results are related
to some classical and recent bounds and lead to improve these bounds.

1. Introduction

The problem in locating the zeros of complex polynomials has been frequently
investigated. Matrix analysis methods have been used to obtain new proofs of classical
bounds for the zeros of polynomials and to derive new bounds for these zeros. Over
many decades a large number of research papers have been published. Matrix norms
computations and numerical radii estimations used to obtain bounds for zeros of poly-
nomials in terms of the entries of the first row of the Frobenius companion matrix and
the first row of the square of the Frobenius companion matrix. See, e.g., [2], [6], [8],
[9], [10], [11], and the references therein.

Let p(z) = zn +anzn−1 + · · ·+a2z+a1 be a complex monic polynomial with a1 �=
0. Let z1,z2, . . . ,zn be the zeros of p arranged in such a way that |z1|� |z2|� . . . � |zn| .
Then p(z) is the characteristic polynomial of the Frobenius companion matrix Cp of
p , which is given by

Cp =

⎡
⎢⎢⎢⎢⎢⎣

−an −an−1 · · · −a2 −a1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

(see [4, p. 316]). So

C2
p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

bn bn−1 · · · b3 b2 b1

−an −an−1 · · · −a3 −a2 −a1

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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where b j = ana j −a j−1 for j = 1,2, . . . ,n , with a0 = 0.
Let q(z) = (z−an) p(z) = zn+1−bnzn−1−bn−1zn−2−·· ·−b2z−b1. So z1,z2, . . . ,zn

and an are the zeros of q . The Frobenius companion matrix Cq of q , which is given
by

Cq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 bn bn−1 · · · b2 b1

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the spectral radius of a matrix A is dominated by its numerical radius, that is,
|λ1(A)| � w(A) , it follows that ∣∣z j

∣∣ � w(Cq) (1)

for j = 1,2, . . . ,n.
Let Mn(C) denote the algebra of all n×n complex matrices. For A ∈ Mn(C) , let

‖A‖ denote the spectral norm of A . The numerical radius of A ∈ Mn (C) is defined as

w(A) = sup{|〈Ax,x〉| : x ∈ C
n,‖x‖ = 1} ,

where 〈., .〉 is the Euclidean inner product on Cn . It is known that w(.) is a norm on
Mn (C) , which is equivalent to the spectral norm ‖.‖ .

In this paper, we apply several matrix inequalities to Cq to obtain bounds for the
zeros of f in terms of the first row of C2

p . In particular, we apply matrix norms and
recent numerical radius inequalities to obtain new bounds. This is a continuation of the
earlier work [10] and [11].

2. Bounds for the zeros of polynomials

To achieve our goal of obtaining new bounds for the zeros of polynomials we need
the following lemmas, The first two lemmas are well-known and they can be found in
[12] and [7, pp. 8–9], respectively.

LEMMA 1. Let A ∈ Mn(C) . Then

w(A) = max
θ∈R

∥∥∥Re
(
eiθ A

)∥∥∥ .

LEMMA 2. Let Ln be the n×n matrix given by

Ln =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦ .

Then w(Ln) = cos π
n+1 .
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The third lemma contains two recent inequalities for numerical radius, see [3].

LEMMA 3. Let A ∈ Mk(C),B ∈ Mk×m(C),C ∈ Mm×k(C) , and D ∈ Mm(C) , and

let T =
[

A B
C D

]
. Then

w(T ) � 1
2

(
w(A)+w(D)+

√
(w(A)−w(D))2 +4w2 (TO)

)
(2)

� 1
2

(
w(A)+w(D)+

√
(w(A)−w(D))2 +(‖B‖+‖C‖)2

)
, (3)

where Mk×m(C) is the space of all k×m complex matrices and TO =
[

0 B
C 0

]
.

Fujii and Kubo [5] have used the fact that the spectral radius of the companion
matrix is dominated by any of its matrix norms to give proofs of some classical bounds,
such as:

Carmichael and Mason’s bound: for j = 1,2, . . . ,n , we have

∣∣z j
∣∣ �

√
1+

n

∑
i=1

|ai|2.

Cauchy’s bound: for j = 1,2, . . . ,n , we have∣∣z j
∣∣ � max(|a1| ,1+ |a2| , . . . ,1+ |an|)
� 1+max(|a1| , |a2| , . . . , |an|) .

Abdurakhmanov [1], Fujii and Kubo [6], Kittaneh [8], and others have given
bounds for the zeros of polynomials from the matrix inequalities applied to the com-
panion matrices, such as:

Abdurakhmanov’s bound: for j = 1,2, . . . ,n , we have

∣∣z j
∣∣ � 1

2

⎛
⎜⎝|an|+ cos

π
n

+

√√√√(
|an|− cos

π
n

)2
+

(
1+

√
n−1

∑
i=1

|ai|2
)2

⎞
⎟⎠ .

Fujii and Kubo’s bound: for j = 1,2, . . . ,n , we have

∣∣z j
∣∣ � cos

π
n+1

+
1
2

(
|an|+

√
n

∑
i=1

|ai|2
)

.

Kittaneh’s bound: for j = 1,2, . . . ,n , we have

∣∣z j
∣∣ � 1

2

(
|an|+ cos

π
n

+

√(
|an|− cos

π
n

)2
+(1+ |an−1|)2 +

n−2

∑
i=1

|ai|2
)

.

Our first bound is related to Cauchy’s bound.
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THEOREM 1. For j = 1,2, . . . ,n, we have∣∣z j
∣∣ � max(|b1| ,1+ |b2| ,1+ |b3| , . . . ,1+ |bn|) . (4)

Proof. For a matrix A = [ai j]n×n , the maximum column sum matrix norm ‖.‖1 is
defined on Mn(C) by (see [4, p. 294])

‖A‖1 = max
1� j�n

n

∑
i=1

∣∣ai j
∣∣ .

Applying this norm to Cq, we get∥∥Cq
∥∥

1 = max(|b1| ,1+ |b2| ,1+ |b3| , . . . ,1+ |bn|) .

Since the spectral radius of any matrix is dominated by any matrix norm, we get the
required result. �

The second bound is related to Carmichael and Mason’s bound.

THEOREM 2. For j = 1,2, . . . ,n, we have

∣∣z j
∣∣ �

√
1+

n

∑
j=1

∣∣b j
∣∣2. (5)

Proof. Let

R =

⎡
⎢⎢⎢⎢⎢⎣

0 bn bn−1 · · · b2 b1

0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ and S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then Cq = R+S and R∗S = S∗R = 0. So, by the triangle inequality, we have

∥∥Cq
∥∥2 =

∥∥C∗
qCq

∥∥ = ‖R∗R+S∗S‖ � ‖R∗R‖+‖S∗S‖ = ‖RR∗‖+1 = 1+
n

∑
j=1

∣∣b j
∣∣2 .

Since the spectral radius of any matrix is dominated by operator norm, the desired result
follows. �

Our third bound is related to Abdurakhmanov’s bound.

THEOREM 3. For j = 1,2, . . . ,n, we have

∣∣z j
∣∣ � 1

2

(
cos

π
n+1

+
√

cos2 π
n+1

+
(
1+

√
α
)2

)
, (6)

where α = ∑n
i=1 |bi|2 .
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Proof. Let v =
[
bn bn−1 · · · b2 b1

]
, e1 =

[
1 0 0 · · · 0

]t
, and Tn =

[
0 0

In−1 0

]
n×n

,

where In−1 is the identity matrix of order n− 1. Then Cq =
[

0 v
e1 Tn

]
. Applying in-

equality (3) , we get

w(Cq) = w

([
0 v
e1 Tn

])

� 1
2

(
w(Tn)+

√
w2 (Tn)+ (‖v‖+‖e1‖)2

)

=
1
2

(
cos

π
n+1

+
√

cos2
π

n+1
+

(
1+

√
α
)2

)
.

Now the desired result follows from inequality (1) . �
The fourth bound is related to Fujii-Kubo’s bound.

THEOREM 4. For j = 1,2, . . . ,n, we have

∣∣z j
∣∣ � cos

π
n+2

+
1
2

√
α, (7)

where α = ∑n
i=1 |bi|2 .

Proof. Let v =
[
bn bn−1 · · · b2 b1

]
, and Tn+1 =

[
0 0
In 0

]
(n+1)×(n+1)

, where In is

the identity matrix of order n . Then Cq =
[

0 v
0 0

]
+Tn+1. Using the triangle inequality

and Lemma 2, we get

w(Cq) = w

([
0 v
0 0

]
+Tn+1

)

� w

([
0 v
0 0

])
+w(Tn+1)

= cos
π

n+2
+

1
2

√
α.

The inequality (7) follows directly by recalling that
∣∣z j

∣∣ � w(Cq) . �
Our final bound is related to Kittaneh’s bound.

THEOREM 5. For j = 1,2, . . . ,n, we have

∣∣z j
∣∣ � 1

2

(
cos

π
n+1

+
√

cos2
π

n+1
+(1+ |bn|)2 + α

)
, (8)

where α = ∑n−1
i=1 |bi|2 .
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Proof. Let v =
[
bn bn−1 · · · b2 b1

]
, e1 =

[
1 0 0 · · · 0

]t
, Tn =

[
0 0

In−1 0

]
n×n

,

CD =
[

0 0
0 Tn

]
and CO =

[
0 v
e1 0

]
, where In−1 is the identity matrix of order n− 1.

Then Cq = CD +CO. Using Lemma 1, we have

w(CO) = max
θ∈R

∥∥∥Re
(
eiθCO

)∥∥∥
=

1
2
max
θ∈R

∥∥∥∥
[

0 u
u∗ 0

]∥∥∥∥
=

1
2
max
θ∈R

‖u‖

=
1
2
max
θ∈R

√
|eiθ bn− e−iθ |2 + α

=
1
2

√
(1+ |bn|)2 + α,

where u =
[−eiθ bn + e−iθ −eiθbn−1 −eiθ bn−2 · · · −eiθ b2 −eiθ b1

]
. Applying inequal-

ity (2) , we have

w(Cq) = w(CD +CO)

� 1
2

(
cos

π
n+1

+
√

cos2 π
n+1

+(1+ |bn|)2 + α
)

.

Now the desired result follows from inequality (1) . �
If we apply inequality (3) instead of inequality (2) in the previous theorem, we

get ∣∣z j
∣∣ � 1

2

(
cos

π
n+1

+
√

cos2 π
n+1

+(1+ α)2
)

, (9)

For j = 1,2, . . . ,n, where α = ∑n
i=1 |bi|2 . It should be mentioned here that bound (8)

improves bound (9) .

3. Conclusions

We conclude the paper with the following remarks concerning our results.

REMARK 1. Cauchy’s bound, Carmichael and Mason’s bound, Abdurakhmanov’s
bound, Kittaneh’s bound, and Fujii-Kubo’s bound are not uniformly better than our
bounds. For example, for p(z) = z5 + z4 + 2z3 + 2z2 + 2z + 2. Cauchy’s bound =
3, Carmichael and Mason’s bound ≈ 4.24264, Abdurakhmanov’s bound ≈ 3.40633,
Kittaneh’s bound ≈ 3.19779, and Fujii-Kubo’s ≈ 3.42758, while the bound given in
(4) ≈ 2, the bound given in (5) = 2.44949, the bound given in (6) ≈ 2.10799, the
bound given in (7) ≈ 2.01900, and the bound given in (8) ≈ 1.91203. Therefore, our
bounds lead to improve these bound by taking the minimum of these bounds.
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REMARK 2. Our new bounds presented here locate the zeros of p inside discs.
The zeros of p can be located inside annuli in those discs by applying these bounds to
the polynomial h(z) = zn

a1
p
(

1
z

)
. Indeed, the zeros of h are the reciprocals of those of

p . Thus, every upper bound for the zeros of p yields a lower bound counterpart.

REMARK 3. Although the computations are quite involved, it is still possible to
derive more bounds for the zeros of p by considering different partitions of Cq,C2

q , and
C3

q . and estimate the numerical radii of Cq,C2
q , and C3

q in these cases.
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