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ILLUMINATED CAPS OF THE UNIT SPHERES OF

BANACH SPACES AND RELATED INEQUALITIES

SENLIN WU, XINLING ZHANG AND XINXIN TONG

(Communicated by H. Martini)

Abstract. Geometric properties of illuminated caps of the unit sphere of a finite dimensional
Banach space play an important role in Hadwiger’s covering problem for centrally symmetric
convex bodies. In view of this, fundamental properties of illuminated caps are presented, in-
centers, inradii, and self-circumradii of illuminated caps are studied, and related inequalities are
obtained.

1. Introduction

We denote by X = (Rn,‖·‖) (n � 2) a Minkowski space (i.e., a real finite dimen-
sional Banach space) with origin o , unit ball BX , and unit sphere SX . Each point in
SX will be called a unit vector or a direction. The interior and closure of a subset A of
X is denoted by intA and clA , respectively. For two unit vectors p and q satisfying
p �= −q , the set

arc(p,q) = {α p+ βq : α,β � 0}∩SX

is called the minor arc connecting p and q . Let X be a Minkowski plane (i.e., a real
two-dimensional Banach space), u ∈ SX , and H+ and H− be the two open halfplanes
bounded by the line 〈−u,u〉 . Then each of the sets SX ∩H+ and SX ∩H− is called an
open semicircle.

Let x be a unit vector and u be a direction. If there exists a positive number λ such
that x+ λu ∈ intBX then we say that the direction u illuminates x . For each direction
u , we denote by IC(u) (called the cap illuminated by u) the set of points in SX that
are illuminated by u , and by Sbd(u) (called the shadow boundary in the direction of
u ) the set SX \ (IC(u)∪ IC(−u)) . I.e., Sbd(u) is the set of points in SX that cannot be
illuminated either by u or by −u . It is easy to see that Sbd(u) is precisely the set of
unit vectors that are Birkhoff orthogonal to u (cf. [15, Proposition 2 and Proposition
3]), where a vector x is said to be Birkhoff orthogonal to another vector y (denoted by
x ⊥B y) if

‖x+ λy‖ � ‖x‖ , ∀λ ∈ R.
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See [1] for more information on this and other orthogonality types in normed linear
spaces. Clearly, for each u ∈ SX we have (cf. [15, Proposition 2]) that

SX = IC(u)∪ IC(−u)∪Sbd(u), −u ∈ IC(u), u ∈ IC(−u), IC(u) = −IC(−u),

and that both IC(u) and IC(−u) are connected and relatively open with respect to SX .
Moreover, it can be seen that the relative boundary of IC(−u) with respect to SX is
cl(IC(−u))∩Sbd(u) .

Our work is partially motivated by Hadwiger’s covering problem described below.
A compact convex set in R

n having interior points is called a convex body. For each
convex body K in R

n , we denote by c(K) the least number of translates of intK needed
to cover K . Clearly, c(K) is an affine invariant with respect to K . The famous covering
problem of Hadwiger (cf. [8], [2], [5], [11], [3], and [4]) asks whether c(K) is bounded
from above by 2n for each convex body K in R

n . This problem is already very difficult
when K is assumed to be symmetric with respect to o . The answer for this subcase of
the problem is affirmative when n = 3 (cf. [10]), and this problem is open when n � 4.
We note that, when K is symmetric with respect to o , it is the unit ball BX for a normed
space X , and that c(K) equals to the least number of directions needed to illuminate SX

(cf. §34 in [5] or [11]). In other words, c(K) equals to the least number of illuminated
caps needed to cover SX . This observation shows that it is of fundamental importance
to study properties of illuminated caps.

In Section 2 we mainly focus on the fundamental geometric structure of illumi-
nated caps. In Section 3 we study the inradius and the circumradius of illuminated caps
and present some related inequalities. New characterizations of inner product spaces
are obtained in both Section 2 and 3. Note that, although we mainly focus on the geom-
etry of Minkowski spaces, many of our results are also valid for the infinite-dimensional
cases.

2. Fundamental properties of illuminated caps

We start with two simple lemmas.

LEMMA 1. Let X be a Minkowski space and u ∈ SX . If v ∈ IC(−u) , then there
exists a number λ0 > 0 such that

‖v−λu‖< 1, ∀λ ∈ (0,λ0); (1)

moreover,
‖v+ λu‖> 1, ∀λ > 0.

Proof. Since v∈ IC(−u) , there exists a positive number λ0 such that ‖v−λ0u‖<
1 or, equivalently, v−λ0u ∈ intBX . For each λ ∈ (0,λ0) , we have

v−λu =
(

1− λ
λ0

)
v+

λ
λ0

(v−λ0u) ∈ intBX .
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Thus (1) holds.
For each number λ > 0, we have

1 = ‖v‖ =
∥∥∥∥ λ

λ0 + λ
(v−λ0u)+

λ0

λ0 + λ
(v+ λu)

∥∥∥∥ <
λ

λ0 + λ
+

λ0

λ0 + λ
‖v+ λu‖.

It follows that ‖v+ λu‖> 1. �

LEMMA 2. Let X be a Minkowski space. For each unit vector u and each pair of
points x,y ∈ IC(u) , we have ‖x− y‖ < 2 .

Proof. By the definition of IC(u) , there exists a positive number λ such that

x+ λu∈ intBX and y+ λu∈ intBX .

Thus
‖x− y‖ = ‖x+ λu− (y+ λu)‖< 2. �

Let X be a Minkowski space and A ⊆ SX . If there exists a point a0 ∈ A such that

a ∈ A, a �= −a0 ⇒ arc(a0,a) ⊆ A,

then A is called a spherically star-shaped set and a0 is called a spherical star center of
A . If the implication

u,v ∈ A, u �= −v ⇒ arc(u,v) ⊆ A

holds, then we say that A is spherically convex.

PROPOSITION 1. For each direction u, IC(−u) is a spherically star-shaped set
having u as a spherical star center.

Proof. We only need to show that arc(u,v) ⊆ IC(−u) holds for each point v ∈
IC(−u) . The case u = v is trivial. Otherwise, Lemma 2 shows that u �= −v . For each
point w ∈ arc(u,v)\ {u,v} , there exists a number λ ∈ (0,1) such that

w =
λu+(1−λ )v
‖λu+(1−λ )v‖.

Then, by Lemma 1, we have∥∥∥∥w− λ
‖λu+(1−λ )v‖u

∥∥∥∥ =
(1−λ )

‖λu+(1−λ )v‖ =
1∥∥∥ λ

1−λ u+ v
∥∥∥ < 1,

which shows that w ∈ IC(−u) . �

PROPOSITION 2. Let u be a direction, p and q be two points in IC(−u) . Then,
for each λ ∈ [0,1] ,

[λ p+(1−λ )q,λ p+(1−λ)q+u〉∩SX ⊆ IC(−u).
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Proof. Since p,q ∈ IC(−u) , there exists a positive number γ such that p− γu ,
q− γu∈ intBX . Therefore

λ p+(1−λ )q− γu= λ (p− γu)+ (1−λ )(q− γu)∈ intBX , (2)

which shows that 〈λ p+(1−λ )q,λ p+(1−λ)q+u〉∩ intBX �= /0 . Therefore the set
[λ p+(1−λ )q,λ p+(1−λ )q+u〉∩SX contains precisely one point, namely r . Clearly,
there exists a number α � 0 such that r = λ p+(1−λ )q+ αu . From (2) it follows
that

r− (γ + α)u = λ p+(1−λ )q− γu∈ intBX .

Thus r ∈ IC(−u) . �
We continue with a simple characterization of the shape of illuminated caps of the

unit circle of a Minkowski plane.

PROPOSITION 3. If X is a Minkowski plane then, for each direction u, the set
IC(−u) (containing u) is either an open semicircle or a minor arc arc(p,q) without
endpoints for two points p,q ∈ Sbd(u) . Moreover, if X is strictly convex, then each
illuminated cap of SX is an open semicircle.

Proof. By Proposition 1, u ∈ IC(−u) . Let v be an arbitrary point in Sbd(u) ,

α = sup

{
λ ∈ [0,1] :

λv+(1−λ )u
‖λv+(1−λ )u‖ ∈ IC(−u)

}
,

and

β = sup

{
λ ∈ [0,1] :

−λv+(1−λ )u
‖−λv+(1−λ )u‖ ∈ IC(−u)

}
.

Put

p =
αv+(1−α)u

‖αv+(1−α)u‖ and q =
−βv+(1−β )u

‖−βv+(1−β )u‖.

The definitions of α and β and Proposition 1 show that

(arc(u, p)\ {p})∪ (arc(u,q)\ {q})⊆ IC(−u).

Since both IC(−u) and IC(u) are relatively open, p,q �∈ IC(−u)∪ IC(u) , which im-
plies that p,q ∈ Sbd(u) . Therefore α ·β �= 0.

If SX does not contain non-trivial segments parallel to the line 〈−u,u〉 , then
IC(−u) is arc(v,u)∪ arc(−v,u) \ {v,−v} , which is an open semicircle determined by
the line 〈−v,v〉 .

Now suppose that SX contains non-trivial segments parallel to 〈−u,u〉 . We claim
that α +β < 2. Otherwise, IC(−u) and IC(u) are the two open semicircles determined
by 〈−v,v〉 . Thus Sbd(u) = {−v,v} , a contradiction. Since, as we claimed, α +β < 2,
u ∈ arc(p,q) . Thus IC(−u) = arc(p,q)\ {p,q} .

Moreover, if X is strictly convex, then, for each u ∈ SX , SX does not contain
non-trivial segments parallel to 〈−u,u〉 , which implies that IC(−u) is an open semi-
circle. �
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Proposition 3 shows that IC(−u) is spherically convex for each u ∈ SX if the
underlying space is two-dimensional, while it is not spherically convex in general. See
the following example.

EXAMPLE 1. Let X = (R3,‖·‖∞) , u = (1,1,1) , p = (− 1
2 ,− 1

2 ,1) , q = (1,−1
2 ,− 1

2) ,
v = (0,−1,1) , and w = (1,−1,0) . Then p,q ∈ IC(−u) and v,w ∈ arc(p,q)∩Sbd(u) .
Thus IC(−u) is not spherically convex.

In the following we show that, if the underlying space has dimension at least three
and is strictly convex, then each illuminated cap is spherically convex if and only if the
underlying space is an inner product space.

LEMMA 3. Let X be an inner product space whose dimension is at least two.
Then for each u ∈ SX , v ∈ IC(−u) if and only if the inner product (u|v) of u and v is
positive.

Proof. Suppose that v ∈ IC(−u) . Then there exists a positive number λ such that
‖v−λu‖< 1. Thus

(v−λu|v−λu)= ‖v‖2−2λ (u|v)+ λ 2‖u‖2 = 1+ λ 2−2λ (u|v) < 1,

which implies that (u|v) > 0.
Conversely, assume that v ∈ SX is a point satisfying (u|v) > 0. Then for each

λ ∈ (0,(u|v)) we have

‖v−λu‖2 = (v−λu|v−λu) = 1+ λ 2−2λ (u|v) = 1+ λ (λ −2(u|v)) < 1.

Thus v ∈ IC(−u) . �

THEOREM 4. If X is a strictly convex normed linear space whose dimension is at
least three, then each illuminated cap of SX is spherically convex if and only if X is an
inner product space.

Proof. First suppose that X is an inner product space. Let u be an arbitrary point
in SX , p,q ∈ IC(−u) , and v ∈ arc(p,q) . Then there exist two numbers α,β � 0 such
that α + β > 0 and v = α p+ βq . Thus, by Lemma 3,

(v|u) = (α p+ βq|u) = α (p|u)+ β (q|u) > 0,

which shows that v ∈ IC(−u) . Hence arc(p,q) ⊆ IC(−u) .
Now suppose that each illuminated cap of SX is spherically convex. To show

that X is an inner product space we only need to prove that Birkhoff orthogonality is
additive on the left (see, e.g., Theorem 4.18 in [1]). Since Birkhoff orthogonality is
homogeneous (see Theorem 4.5 in [1]), it suffices to show that

x,y ∈ X , u ∈ SX , x ⊥B u, y ⊥B u ⇒ x+ y⊥B u.
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Obviously, we only need to consider the case when ‖x‖ · ‖y‖ > 0. Put

s =
x
‖x‖ and t =

y
‖y‖ .

Since X is strictly convex, s,t ∈ cl(IC(u))∩ cl(IC(−u)) . For each n ∈ N , put

pn =
1
nu+

(
1− 1

n

)
s∥∥ 1

nu+
(
1− 1

n

)
s
∥∥ , qn =

1
nu+

(
1− 1

n

)
t∥∥ 1

nu+
(
1− 1

n

)
t
∥∥ ,

p′n =
− 1

nu+
(
1− 1

n

)
s∥∥− 1

nu+
(
1− 1

n

)
s
∥∥ , and q′n =

− 1
nu+

(
1− 1

n

)
t∥∥− 1

nu+
(
1− 1

n

)
t
∥∥ .

Then
pn,qn ∈ IC(−u) and p′n,q

′
n ∈ IC(u), ∀n ∈ N.

Put

vn =
‖x‖ pn +‖y‖qn

‖‖x‖ pn +‖y‖qn‖ and v′n =
‖x‖ p′n +‖y‖q′n
‖‖x‖ p′n +‖y‖q′n‖

, ∀n ∈ N.

The spherical convexity of illuminated caps shows that

vn ∈ IC(−u) and v′n ∈ IC(u), ∀n ∈ N.

Clearly, we have

lim
n→∞

vn =
‖x‖s+‖y‖ t

‖‖x‖s+‖y‖ t‖ =
x+ y

‖x+ y‖
and

lim
n→∞

v′n =
‖x‖s+‖y‖t
‖‖x‖s+‖y‖t‖ =

x+ y
‖x+ y‖ .

It follows that x+y
‖x+y‖ is in the intersection of the closures of IC(−u) and IC(u) , which

shows that x+y
‖x+y‖ ⊥B u . Thus x+y⊥B u . Hence Birkhoff orthogonality on X is additive

on the left, which shows that X is an inner product space. �

REMARK 1. We are not sure whether the strict convexity in the hypothesis of
Theorem 4 can be removed.

COROLLARY 1. If X is a strictly convex normed linear space whose dimension
is at least three, then X is an inner product space if and only if for each u ∈ SX there
exists a supporting functional u∗ ∈ SX∗ of u such that

IC(−u) = {v ∈ SX : u∗(v) > 0} . (3)

Proof. If X is an inner product space, then u∗ = (u|·) is a supporting functional
of u . Lemma 3 shows that

IC(−u) = {v ∈ SX : (u|v) = u∗(v) > 0} .
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Conversely, suppose that for each u∈ SX there exists a supporting functional u∗ ∈
SX∗ of u satisfying (3). Let p and q be two arbitrary points in IC(−u) , and w be an
arbitrary point in arc(p,q) . Then there exist two numbers α,β � 0 such that α +β > 0
and w = α p+ βq . Therefore, u∗(w) = u∗(α p+ βq) > 0. It follows that arc(p,q) ⊆
IC(−u) . By Theorem 4, X is an inner product space. �

We continue with the following characterization of illuminated caps.

PROPOSITION 5. Let X = (Rn,‖·‖) . Then for each point u ∈ SX ,

IC(−u) = ∪{relintF : F is a face of BX , relintF ∩ IC(−u) �= /0} ,

where relintF denotes the relative interior of F .

Proof. Put

B = ∪{relintF : F is a face of BX , relintF ∩ IC(−u) �= /0} .

Suppose that F is a face of BX and there exists a point a ∈ relintF ∩ IC(−u) . Let c be
an arbitrary point in relintF \ {a} . Then there exists a point b ∈ F and a number γ ∈
(0,1) such that c = γa+(1− γ)b . Since a ∈ IC(−u) , there exists a number λ ∈ (0,1)
such that a−λu∈ intBX . It follows that

c− γ ·λu = γa+(1− γ)b− γλu= γ(a−λu)+ (1− γ)b∈ intBX .

Thus relintF ⊆ IC(−u) . Therefore B ⊆ IC(−u) .
Now suppose that a is an arbitrary point in IC(−u) . Let F be the intersection of

all faces of BX containing a . Then a∈ relintF ⊆ B (cf. Theorem 2.6.10 in [14]). Thus
IC(−u) ⊆ B . �

In the rest of this section we discuss the so-called maximality of illuminated caps.

DEFINITION 1. An illuminated cap of BX is said to be maximal if it is not a proper
subset of another illuminated cap of BX .

The following proposition is clear but useful.

PROPOSITION 6. Let X = (Rn,‖·‖) be a Minkowski space. Then c(BX ) equals
to the least number of maximal illuminated caps needed to cover SX .

EXAMPLE 2. In X = (R2,‖·‖∞) , IC(−(0,1)) is not a maximal illuminated cap,
and it is contained in IC(−(1,1)) and in IC(−(−1,1)) .

DEFINITION 2. Let X be a normed linear space. For each point x∈ SX , S(BX ,x) ,
which is the set such that S(BX ,x)+ x is the intersections of all supporting halfspaces
of BX at x , is called the support cone of BX at x .
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LEMMA 4. Let X be a normed linear space and u ∈ SX . Then v ∈ IC(−u) if and
only if −u ∈ intS(BX ,v) .

Proof. First suppose that −u ∈ intS(BX ,v) . We show that there exists a positive
number λ such that ‖v−λu‖< 1. Otherwise,

‖v−λu‖� 1, ∀λ � 0.

For each norm one functional v∗ satisfying v∗(v) = 1, and for each number λ < 0 it
follows from −u ∈ intS(BX ,v) that

‖v−λu‖� v∗(v−λu) = 1−λv∗(u) > 1.

Thus we have
inf

λ∈R

‖v−λu‖= 1.

In other words, v ⊥B u . Therefore there exists a norm one functional w∗ such that
w∗(v) = 1 and w∗(u) = 0 (cf. Corollary 4.2 in [1]), which is in contradiction to the
choice of u .

Now suppose that v ∈ IC(−u) . Then there exists a positive number λ such that
‖v−λu‖= γ < 1. For each norm one functional v∗ satisfying v∗(v) = 1, we have

γ = ‖v−λu‖� v∗(v−λu) = 1+ λv∗(−u).

Therefore,

v∗(−u) � γ −1
λ

< 0.

This implies that −u ∈ intS(BX ,v) . �

PROPOSITION 7. Let X be a normed linear space and u ∈ SX . Then IC(−u) is
maximal if and only if

∀v ∈ cl IC(−u)\ IC(−u), intS(BX ,v)∩
⎛
⎝ ⋂

x∈IC(−u)

intS(BX ,x)

⎞
⎠ = /0. (4)

Proof. Put
U =

⋂
x∈IC(−u)

intS(BX ,x). (5)

Lemma 4 shows that U ∩ SX is the set of directions that can illuminate each point in
IC(−u) .

First suppose that IC(−u) is maximal. If there exists a point v ∈ cl IC(−u) \
IC(−u) such that there exists a direction u′ ∈ intS(BX ,v)∩U , then IC(−u)∪{v} ⊆
IC(u′) , which is in contradiction to the fact that IC(−u) is maximal.

Conversely, suppose that (4) holds. If IC(−u) is not maximal, then there exist a
direction u′ and a point w∈ SX \ IC(−u) such that IC(−u)∪{w}⊆ IC(u′) . In this case
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we have u′ ∈U . If u and w are linearly dependent then w = −u . It follows that there
exists a positive number λ such that −u+ λu′ ∈ intBX and u+ λu′ ∈ intBX . Thus

u ∈ [
u−λu′,u+ λu′

] ⊆ intBX ,

which is impossible. In the following we distinguish two cases.
Case I: −u′ �∈ IC(−u) . Set

α = sup

{
λ ∈ [0,1] :

−λu′ +(1−λ )u
‖−λu′ +(1−λ )u‖ ∈ IC(−u)

}
and v =

−αu′ +(1−α)u
‖−αu′ +(1−α)u‖ .

It follows that v is a point of intersection of arc(−u′,u) and the relative boundary of
IC(−u) . Since arc(−u′,u) ⊆ IC(u′) , v ∈ (cl IC(−u))∩ IC(u′) .

Case II: −u′ ∈ IC(−u) . Let

β = sup

{
λ ∈ [0,1] :

λw− (1−λ )u′

‖λw− (1−λ )u′‖ ∈ IC(−u)
}

and v =
βw− (1−β )u′

‖βw− (1−β )u′‖ .

In a similar way one can show that v ∈ (cl IC(−u))∩ IC(u′) .
In each of these two cases, by Lemma 4 we have u′ ∈ intS(BX ,v)∩U , a contra-

diction to (4). �

COROLLARY 2. If X is a smooth normed linear space, then each illuminated cap
of SX is maximal.

Proof. Suppose the contrary, namely that there exists a point u ∈ SX such that
IC(−u) is not maximal. Then there exists a point v ∈ cl IC(−u) \ IC(−u) such that
intS(BX ,v)∩U contains a point w , where U is given by (5). Let v′ be the point of
intersection of arc(u,−v) and the relative boundary of IC(−u) . Let v∗ be the unique
norm one functional such that v∗(v) = 1. Then −v∗ is the unique norm one functional
such that −v∗(−v) = 1. Since v ∈ cl IC(−u) \ IC(−u) , v ⊥B u . Therefore v∗(u) =
0. Since there exists a number λ � 0 such that −v + λu = v′ , we have −v∗(v′) =
−v∗(−v+λu)= 1. Thus −v∗ is the unique norm one functional such that −v∗(v′) = 1.
For each n ∈ N , put

sn =
1
nu+

(
1− 1

n

)
v∥∥ 1

nu+
(
1− 1

n

)
v
∥∥ , tn =

1
nu+

(
1− 1

n

)
v′∥∥ 1

nu+
(
1− 1

n

)
v′

∥∥ ,

s∗n and t∗n be the unique supporting functional of sn and tn , respectively. Since

lim
n→∞

sn = v and lim
n→∞

tn = v′,

the smoothness of X shows that s∗n
w∗−→ v∗ and t∗n

w∗−→ −v∗ (cf. Corollary 5.4.29 on p.
491 in [13]). Hence

v∗(w) = lim
n→∞

s∗n(w) � 0,

and
−v∗(w) = lim

n→∞
t∗n(w) � 0.

Thus v∗(w) = 0, a contradiction. �
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3. Inradius, self-circumradius, and related inequalities

Suppose that A,B ⊆ X , x ∈ X . Put

γ(A,x) = sup{‖x− y‖ : y ∈ A} ,

γ(A,B) = inf{γ(A,x) : x ∈ B} ,

and
γ(A) = γ(A,X).

If A ⊆ SX and x ∈ A , we set

γ ′(A,x) = sup{γ � 0 : (x+ γBX)∩SX ⊆ A}
and

γ ′(A) = sup
{

γ ′(A,x) : x ∈ A
}

.

For each unit vector u , the number γ ′(IC(−u)) is called the inradius of IC(−u) ;
a point v ∈ IC(−u) satisfying γ ′(IC(−u),v) = γ ′(IC(−u)) is called an incenter of
IC(−u) .

In [15], it is proved that

THEOREM 8. ([15]) For each u ∈ SX we have

1. γ ′(IC(−u),u) = inf{‖u− z‖ : z ∈ Sbd(u)} ;

2. 1 � γ ′(IC(−u),u) � 2 , the equality on the left holds if and only if there exists a
unit vector z such that [z−u,z] ⊆ SX , and the equality on the right holds if and
only if the unit circle of each two-dimensional subspace L of X that contains u
is a parallelogram having u as one of its vertices.

In a similar way we can show the following:

PROPOSITION 9. For each u ∈ SX and each v ∈ IC(−u) ,

γ ′(IC(−u),v) = inf{‖v− x‖ : x ∈ Sbd(u)} .

Proof. Put
δ = inf{‖v− x‖ : x ∈ Sbd(u)} .

Since Sbd(u) is a compact set, there exists a point w ∈ Sbd(u) such that ‖v−w‖= δ .
Clearly,

w ∈ (v+‖v−w‖BX)∩SX �⊆ IC(−u).

Thus γ ′(IC(−u),v) � δ .
Let ε be an arbitrary number in (0,δ ) and z be an arbitrary point in (v + (δ −

ε)BX )∩ SX . Clearly, z �∈ Sbd(u) . Suppose that z ∈ IC(u) . Then arc(v,z) contains a
point x ∈ Sbd(u) , otherwise IC(−u)∪ IC(u) would be path-connected, which is im-
possible. Thus we have (v+(δ −ε)BX)∩SX ⊆ IC(−u) , and therefore γ ′(IC(−u),v) �
δ − ε . It follows that γ ′(IC(−u),v) � δ . �
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THEOREM 10. For each unit vector u, IC(−u) always has an incenter.

Proof. By the definition of γ ′(IC(−u)) , for each k ∈ N there exists a point uk ∈
IC(−u) such that

γ ′(IC(−u),uk) > γ ′(IC(−u))− 1
k
.

Since SX is a compact set, by choosing a subsequence if necessary, we may assume
that {uk}∞

k=1 converges to a point u0 ∈ SX .
For each number ε ∈ (0,γ ′(IC(−u))) , there exists an N0 ∈ N such that

1
k

<
1
2

ε and u0−uk ∈ 1
2

(
ε − 1

k

)
BX

hold for each k � N0 . Thus, for each k � N0 , we have

(u0 +(γ ′(IC(−u))− ε)BX)∩SX

=(u0 −uk +uk +(γ ′(IC(−u))− ε)BX)∩SX

⊆
(

u0−uk +uk +
(

γ ′(IC(−u),uk)+
1
k
− ε

)
BX

)
∩SX

⊆
(

uk +
(

γ ′(IC(−u),uk)+
1
2

(
1
k
− ε

))
BX

)
∩SX

⊆IC(−u).

Since ε is arbitrary, γ ′(IC(−u),u0) = γ ′(IC(−u)) . �
It is possible that a unit vector v is not an incenter of IC(−u) for each unit vector

u . See the following example.

EXAMPLE 3. Let X = (R2,‖·‖∞) , v = (1,1/2) , and w = (1,1) . Then for each
unit vector u , γ ′(IC(−u)) ∈ {1,2} and v is not an incenter of IC(−u) . It is also
interesting to observe that w is the incenter of IC(−u) for each u in the set

([(0,1),(1,1)]∪ [(1,1),(1,0)])\ {(0,1),(1,0)}.

It is interesting to observe that, the inradius of each maximally illuminated cap of BX

are 2, while there exist illuminated caps whose inradius is 1.

PROPOSITION 11. Let X be a Minkowski plane and u ∈ SX . Then γ ′(IC(−u)) =
1 if and only if γ ′(IC(−u),u) = 1 .

Proof. If γ ′(IC(−u)) = 1, then

1 � γ ′(IC(−u),u) � γ ′(IC(−u)) = 1,

which implies that γ ′(IC(−u),u) = 1.
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Conversely, suppose that γ ′(IC(−u),u) = 1. By Theorem 8, there exists a unit
vector z such that [z−u,z]⊆ SX . It follows that

[z,z−u]∪ [−z,u− z]⊆ Sbd(u).

Therefore
IC(−u) ⊆ arc(z,u− z).

Let v be an arbitrary point in IC(−u) . If v ∈ arc(u,z) , then, by the Monotonocity
Lemma [12, Proposition 31], we have

‖v− z‖� ‖u− z‖= 1.

If v ∈ arc(u− z,u), then

‖v− (u− z)‖� ‖u− (u− z)‖= 1.

It follows that γ ′(IC(−u)) = 1. �
Now we consider the case when γ ′(IC(−u)) = 2. Obviously, γ ′(IC(−u),u) = 2

implies that γ ′(IC(−u)) = 2. Example 4 below shows that the reverse implication is
not true in general.

THEOREM 12. Let u be a unit vector. If γ ′(IC(−u)) = 2 , then there exists a point
v ∈ IC(−u) satisfying ‖u− v‖ < 1 such that the unit circle of each two-dimensional
subspace L of X which contains v is a parallelogram having v as one of its vertices.

Proof. We only need to consider the case when γ ′(IC(−u),u) < 2 since the case
when γ ′(IC(−u),u) = 2 follows from Theorem 8. By Theorem 10, there exists a point
v ∈ IC(−u) \ {u} such that γ ′(IC(−u),v) = 2. Let C be the relative boundary of
IC(−u) with respect to SX . Then ‖v− x‖ = 2 holds for each point x ∈ C . Let L
be an arbitrary two-dimensional subspace of X containing v , and p and q be the two
points in L∩C . Then we have ‖p− v‖ = ‖q− v‖ = 2. Clearly, −p ∈ Sbd(u)∩L . If
q = −p , then ‖p− v‖ = ‖p+ v‖ = 2 which implies that SL is a parallelogram having
±v and ±p as vertices. If q �= −p , then q ∈ arc(−p,v) . By the Monotonocity Lemma
[12, Proposition 31] we have

2 � ‖−p− v‖� ‖q− v‖= 2.

Thus ‖p− v‖ = ‖p+ v‖= 2. Again this implies that SL is a parallelogram having ±v
and ±p as vertices. It follows that q = −p , a contradiction.

Consider now the two-dimensional subspace L0 spanned by u and v . Previous
arguments show that SL0 is a parallelogram having v as one vertex. Let ±w be the
two vertices of SL0 adjacent to v . Then there exist two numbers α and β satisfying
|α|+ |β | = 1 such that u = αv + βw . Suppose that ‖v−u‖ � 1. Let λ > 0 be an
arbitrary number satisfying 1−λ α > 0. Then

‖v−λu‖= ‖(1−λ α)v−λ βw‖= 1−λ α + λ |β |= 1+ λ (‖v−u‖−1) � 1.

This shows that v �∈ IC(−u) , a contradiction. Thus ‖v−u‖< 1. �
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THEOREM 13. For each Minkowski space X and each u ∈ SX , we always have

0 � γ ′(IC(−u))− γ ′(IC(−u),u) < 1.

Proof. We only need to show the inequality on the right. Otherwise we have
γ ′(IC(−u) = 2 and γ ′(IC(−u),u) = 1. By Theorem 12, there exists a point v∈ IC(−u)
such that the unit circle of each two-dimensional subspace of X is a parallelogram con-
taining v as one vertex and that ‖u− v‖< 1. Moreover, γ ′(IC(−u),v) = 2. Therefore,
for each point p ∈ (int(u+(2−‖u− v‖)BX))∩SX we have

‖v− p‖= ‖v−u+u− p‖� ‖u− v‖+‖u− p‖< ‖u− v‖+2−‖u− v‖= 2,

which shows that p ∈ IC(−u) . Thus

γ ′(IC(−u),u) � 2−‖u− v‖> 1,

which is in contradiction to the fact that γ ′(IC(−u),u) = 1. �
The difference γ ′(IC(−u))− γ ′(IC(−u),u) can be arbitrarily close to 1, see the

following example.

EXAMPLE 4. Let X = (R2,‖·‖∞) . For each n ∈ N , put un = ( 1
n ,1) . Then

IC(−un) = ([(−1,1),(1,1)]∪ [(1,1),(1,−1)])\ {(−1,1),(1,−1)}.
Clearly,

γ ′(IC(−un)) = 2 and γ ′(IC(−un),un) = 1+
1
n
.

It follows that

γ ′(IC(−un))− γ ′(IC(−un),un) = 1− 1
n
.

In the rest of this section we study γ(IC(−u),u) , which is called the self-circum-
radius of IC(−u) .

PROPOSITION 14. For each u ∈ SX ,

γ(IC(−u),u) � 1,

and equality holds if and only if in the unit circle of each two-dimensional subspace L
of X containing u a segment is contained whose length is not less than 1 and which is
parallel to the line 〈−u,u〉 .

Proof. Clearly, for each v ∈ cl(IC(−u))\ IC(−u) we have v ⊥B u . Thus

‖u− v‖� 1,

which shows that
γ(IC(−u),u) � 1.
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Suppose that γ(IC(−u),u) = 1. Let L be a two-dimensional subspace containing
u , and v ∈ (cl(IC(−u))\ IC(−u))∩SL . Thus v ⊥B u . Therefore,

1 � ‖v−u‖� γ(IC(−u),u) = 1.

It follows that
v−u ∈ SL.

For each λ ∈ [0,1] , we have

1 � ‖λ (v−u)+ (1−λ )v‖= ‖v−λu‖� 1,

which implies that
[v−u,v]⊆ SL.

Moreover, the length of the segment [v−u,v] is 1.
Conversely, suppose that the unit circle of each two-dimensional subspace L con-

taining u contains a segment parallel to the line 〈−u,u〉 whose length is not less than
1. Let v be an arbitrary point in IC(−u)\ {u} , then u and v are linearly independent.
Let L be the two-dimensional subspace of X spanned by u and v . Then SL contains a
segment [s, t] whose length is not less than 1 and parallel to the line 〈−u,u〉 . Without
loss of generality, we can assume that

[s, t] = 〈s,t〉∩BX , t −u ∈ [s,t], and v ∈ arc(u,t).

It is not difficult to see that t ∈ cl(IC(−u)) . Again we have by the Monotonocity
Lemma (cf. Proposition 31 in [12]) that

‖u− v‖� ‖u− t‖= 1.

It follows that γ(IC(−u),u) = 1. �

PROPOSITION 15. If X is a Minkowski space, then

γ(IC(−u),u) � 2,∀u ∈ SX .

Equality holds if and only if there exists a point v ∈ SX satisfying the following two
conditions:

(1) [−v,u]⊆ SX ,

(2) ‖v+ λu‖> 1,∀λ > 0 .

Proof. We only need to characterize the case when equality holds.
First suppose that γ(IC(−u),u) = 2. Then there exists v ∈ cl(IC(−u)) \ IC(−u)

such that ‖v−u‖= 2.
Since v ⊥B u , u �= −v . Therefore there exist three different unit vectors −v , u ,

and 1
2(u− v) in [−v,u] , which shows that [−v,u]⊆ SX .
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If the condition (2) does not hold, then there exists λ0 > 0 such that ‖v+ λ0u‖= 1.
Since v ⊥B u , we have

[v,v+ λ0u] ⊆ SX ,

a contradiction to v ∈ cl(IC(−u)) .
Conversely, suppose that v ∈ SX satisfies (1) and (2). Then

‖u− v‖= 2.

For each λ > 0, we have

‖v−λu‖= (1+ λ )
∥∥∥∥ 1

1+ λ
v+

λ
1+ λ

(−u)
∥∥∥∥ = 1+ λ > 1.

Thus
‖v+ λu‖> 1, ∀λ �= 0.

Let L = span{v,u} . Then ±v are the only two points in SL that are Birkhoff orthogonal
to u , which shows that v ∈ cl(IC(−u)) . It follows that γ(IC(−u),u) = 2. �

REMARK 2. Conditions (1) and (2) in Proposition 15 cannot be replaced by “v⊥B

u and ‖v−u‖= 2”. For example, let X = (R2,‖·‖∞−1) , where

‖(α,β )‖∞−1 =

{
max{|α|, |β |}, α ·β � 0,

|α|+ |β |, α ·β < 0.

Pick u = (1,0) and v = (0,1) . Then v⊥B u and ‖u− v‖∞−1 = 2. However, γ(IC(−u),u)
= 1.

DEFINITION 3. For a Minkowski space X , set

RC′(X) := sup{γ(IC(−u),u) : u ∈ SX} .

To prove the following theorem we shall make use of James constant J(X) and
Schäffer constant S(X) of X , where

J(X) := sup{‖x+ y‖ : x,y ∈ SX ,‖x+ y‖= ‖x− y‖} ,

S(X) := inf{‖x+ y‖ : x,y ∈ SX ,‖x+ y‖ = ‖x− y‖} .

It is well known that
1 � S(X) �

√
2 � J(X) � 2

holds for each normed linear space X , see, e.g., [7] and [9]. It is not difficult to verify
that there always exist two unit vectors in X such that ‖x+ y‖ = ‖x− y‖ =

√
2. This

fact will be used in the proof of Theorem 16.

THEOREM 16. If X is a normed linear space whose dimension is at least two,
then √

2 � RC′(X) � 2,

and equality on the left holds if and only if X is an inner product space.



580 S. WU, X. ZHANG AND X. TONG

Proof. First we prove that

RC′(X) �
√

2.

Let L be an arbitrary two-dimensional subspace of X , and u,v ∈ SX be two points
satisfying ‖u+ v‖= ‖u− v‖=

√
2. If v ∈ cl(IC(−u)) or v ∈ cl(IC(u)) , then

RC′(X) � ‖u− v‖= ‖u+ v‖=
√

2.

Otherwise, there exist two different points s and t such that

1. [s, t] ⊆ SL is parallel to 〈−u,u〉;
2. v is a relative interior point of [s,t] ;

3. (t− s)/‖t− s‖ = u .

By the Monotonocity Lemma (cf. Proposition 31 in [12]), we have

‖u− s‖ � ‖u− v‖=
√

2.

If ‖u− s‖ =
√

2, [s,v] is contained in a line which intersects the line 〈−u,u〉 (cf.
Theorem 6 in [16]), a contradiction to the facts that [s,v] ⊆ 〈s,t〉 and 〈s, t〉 is parallel
to 〈−u,u〉 . Therefore,

‖u− s‖>
√

2.

There exists a sufficiently large n ∈ N such that∥∥∥∥∥s− (1− 1
n)u+ 1

ns∥∥(1− 1
n)u+ 1

ns
∥∥

∥∥∥∥∥ � ‖s−u‖−
∥∥∥∥∥u− (1− 1

n)u+ 1
n s∥∥(1− 1

n)u+ 1
n s

∥∥
∥∥∥∥∥ >

√
2. (6)

Set

u′ =
(1− 1

n)u+ 1
n s∥∥(1− 1

n)u+ 1
n s

∥∥ .

For each p in [s, t]\ {s} , there exists α > 0 such that p = s+ αu . Then

p− 2n−1
2(n−1)

α
∥∥∥∥
(

1− 1
n

)
u+

1
n
s

∥∥∥∥u′ = s+ αu− 2n−1
2(n−1)

α
(

1− 1
n

)
u− 2n−1

2(n−1)
α

1
n
s

=
(

1− 2n−1
2n(n−1)

α
)

s+
1
2n

αu.

When n is sufficiently large, we have

1− 2n−1
2n(n−1)

α > 0,
1
2n

α > 0

and

1− 2n−1
2n(n−1)

α +
1
2n

α = 1− 1
2(n−1)

α ∈ (0,1).
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Therefore,

p− 2n−1
2(n−1)

α
∥∥∥∥
(

1− 1
n

)
u+

1
n
s

∥∥∥∥u′ ∈ intBX .

It follows that
p ∈ IC(−u′).

Since s ∈ cl([s, t]\ {s}) ,
s ∈ cl(IC(−u′)).

Then the inequality (6) shows that

RC′(X) �
∥∥s−u′

∥∥ >
√

2.

In the following we characterize the case when RC′(X) =
√

2.
If X is an inner product space, then for each u∈ SX , cl(IC(−u)) is the intersection

of the closed ball centered at u having radius
√

2 and SX . Therefore,

RC′(X) =
√

2.

Conversely, suppose that RC′(X) =
√

2. To show X is an inner product space,
we only need to prove ‖u− v‖ �

√
2 holds for each pair of points u,v ∈ SX satisfying

v⊥B u (cf. [6] or Theorem 4.22 in [1]). Let L be the two-dimensional subspace spanned
by u and v . If ‖u− v‖>

√
2, then, since RC′(X) =

√
2,

v /∈ cl(IC(u))∪ cl(IC(−u)).

Therefore, there exist two different points s and t such that

1. [s, t] ⊆ SL , and 〈s,t〉 is parallel to 〈−u,u〉 ,
2. v is a relative interior point of [s,t] ,

3. (t− s)/‖t− s‖ = u .

In a similar way as in the first part of the proof, we can construct a point u′ , such that
γ(IC(−u′),u′) >

√
2, which is in contradiction to the fact that RC′(X) =

√
2. Thus

‖u− v‖�
√

2, as claimed. It follows that X is an inner product space. �
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