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CONCAVE FUNCTIONS OF PARTITIONED MATRICES

WITH NUMERICAL RANGES IN A SECTOR

LEI HOU AND DENGPENG ZHANG

(Communicated by J.-C. Bourin)

Abstract. We prove two inequalities for concave functions and partitioned matrices whose nu-
merical ranges in a sector. These complement some results of Zhang in [Linear Multilinear
Algebra 63 (2015) 2511–2517].

1. Introduction

Let Mn , M+
n denote the set of n×n complex matrices and the set of n×n positive

semi-definite matrices, respectively. For A ∈ Mn , we denote by |A| = (AA∗)
1
2 , ‖A‖ ,

‖A‖k , A∗ , s j(A) and λ j(A) the modulus, the unitarily invariant norm, the Ky Fan k -
norms, the conjugate transpose, the singular values and eigenvalues of A , respectively,
j = 1, . . . ,n . The singular values are always arranged in nonincreasing order: s1(A) �
s2(A) · · · � sn(A) . If A is Hermitian, then all eigenvalues of A are real and ordered
as λ1(A) � λ2(A) � · · · � λn(A) . Note that s j(A) = λ j(|A|) , j = 1, . . . ,n . For two
Hermitian matrices A, B ∈ Mn , we write A � B to mean B−A ∈ M+

n . For A ∈ Mn ,
recall the Cartesian decomposition A = RA+ iSA , where,

RA =
1
2
(A+A∗), SA =

1
2i

(A−A∗).

There are many interesting properties for such a decomposition. A celebrated
result due to Fan and Hoffman (see, e.g. [2, p. 73]) states that,

λ j(RA) � s j(A), j = 1,2, · · · ,n.

This says that,
RA � U |A|U∗ (1)

for some unitary matrix U ∈ Mn .
We say that A∈Mn is an accretive-dissipativematrix if RA∈M+

n and SA∈M+
n .

This class of matrices has been recently considered in George [8], Ikramov [9, 10], Lin
[13, 14], Lin and Zhou [16].
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The numerical range of A ∈ Mn is defined by

W (A) = {x∗Ax|x ∈ C
n,x∗x = 1}.

For α ∈ [0, π
2 ) , let Sα be the sector in the complex plane given by

Sα = {z ∈ C|Rz � 0, |Sz| � (Rz) tan(α)} = {reiθ |r � 0, |θ | � α}

and let

S′α = {z ∈ C|Rz � 0,Sz � 0,Sz � (Rz) tan(α)} = {reiθ |r � 0,0 � θ � α}

Relevant studies on matrices with numerical ranges in a sector can be found in
Drury and Lin [6], Fu [7], Li [12], Lin [15], Zhang [18] and Zhang [20].

Let H be a Hermitian matrix and let f be a real-valued function defined on an in-
terval containing all the eigenvalues of H . Then, f (H) is well defined through spectral
decomposition. Consider a partitioned matrix A ∈ Mn in the form

A =
(

A11 A12

A21 A22

)
, where A11 and A22 are square. (2)

Lee [11, Theorem 2.1] proved the following result which is considered as an ex-
tension of the classical Rotfel’d theorem.

THEOREM 1. [11, Theorem 2.1] Let A ∈ M+
n be partitioned as in (2) , and let

f : [0,∞) �−→ [0,∞) be a concave function. Then,

‖ f (A)‖ � ‖ f (A11)‖+‖ f (A22)‖.

Here, and in the sequel, the symbol ‖ · ‖ stands for an arbitrary unitarily invariant
norm on Mn . Recall that this also induces a norm on Mk , k � n .

As a further extension of the classic Rotfel’d theorem, Zhang extended Theorem 1
to matrices with W (A) ⊆ Sα , for α ∈ [0, π

2 ) as follows:

THEOREM 2. [19, Theorem 3.4] Let f : [0,∞) �−→ [0,∞) be a concave function
and let A with W (A) ⊆ Sα for α ∈ [0,π/2) be partitioned as in (2) . Then,

‖ f (|A|)‖ � ‖ f (|A11|)‖+‖ f (|A22|)‖+2(‖ f (tan(α)|A11|)‖+‖ f (tan(α)|A22|)‖).

And Zhang left an open problem whether the constant 2 in Theorem 2 can be
replaced by 1.

In this paper, we partially answer the open problem of Zhang and we improve the
consequence of [19, Theorem 3.1] to some extent, when W (A) ⊆ S′α . Our approach is
quite parallel to P. Zhang’s one; however, we also use a simple eigenvalue inequality
(Lemma 1 below) which sharpens an estimate of Bhatia and Kittaneh.
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2. Some lemmas

The main new observation allowing us to improve P. Zhang’s estimates consists in
the following lemma.

LEMMA 1. Let A,B ∈ M
+
n and W (A+ iB)⊆ S′α . Then

s j(A+B) � as j(A+ iB), j = 1,2, . . . ,n,

where a = min{1+ tan(α),
√

2} .

Proof. Let e j be eigenvectors of A + B belonging to its eigenvalues λ j(A + B) .
For W (A+ iB)⊆ S′α , we get

B � A tan(α), where A, B ∈ M
+
n . (3)

So

λ j(A+B) = 〈e j,(A+B)e j〉
= 〈e j,Ae j〉+ 〈e j,Be j〉
� 〈e j,Ae j〉+ 〈e j,A tan(α)e j〉 (by (3))

= (1+ tan(α))〈e j,Ae j〉
� (1+ tan(α))|〈e j,Ae j〉+ i〈e j,Be j〉|
= (1+ tan(α))|〈e j,(A+ iB)e j〉|.

Since s j(A) = max
dim(M)= j

min
x∈M

‖x‖=1

‖Ax‖ (see, e.g. [2, p. 75]), where M represent a sub-

space of Cn for A ∈ Mn and since, by a result of Bhatia and Kittaneh,

s j(A+B) �
√

2s j(A+ iB), j = 1,2, . . . ,n,

in [3, Theorem 1.1, (1.8)]. �
Lemma 1 means that

U(A+B)U∗ � a|A+ iB|, (4)

where a = min{1+ tan(α),
√

2} for some unitary matrix U ∈ Mn .
We will also use, likewise in P. Zhang’s paper, the following series of three well-

known results, due to Bourin-Lee, Aujla-Bourin, and Thompson.

LEMMA 2. [5, Lemma 3.4] Let

(
A X
X∗ B

)
∈M

+
m+n , where A∈M+

m and B∈M+
n .

Then there exist unitary matrices U, V ∈ Mm+n such that
(

A X
X∗ B

)
= U

(
A 0
0 0

)
U∗ +V

(
0 0
0 B

)
V ∗.
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LEMMA 3. [1, Theorem 2.1] Let f : [0,∞) �−→ [0,∞) be a concave function and
let R, S ∈ M+

n . Then there exist unitary matrices U and V such that

f (R+S) � U f (R)U∗ +V f (S)V ∗.

LEMMA 4. [17, Theorem 2] Let A, B ∈ Mn . Then there exist unitary matrices
U, V such that

|A+B|� U |A|U∗+V |B|V ∗.

3. Main results

In this section, we present our main results. Firstly, according to [19, Theorem
3.1], we get a new upper bound under S′α .

THEOREM 3. Let f : [0,∞) �→ [0,∞) be concave and let A ∈ Mn , W (A) ⊆ S′α ,
partitioned as (2). Then,

‖ f (|A|)‖ � 2
(∥∥∥ f

(a
2
|A11|

)∥∥∥+
∥∥∥ f

(a
2
|A22|

)∥∥∥)
, (5)

where a = min{1+ tan(α),
√

2} .

Proof. Arguing as in Lee’s paper, we may assume that f (0) = 0. Consider the
Cartesian decomposition A = R+ iS , where R , S are positive semidefinite. First, by
Bourin and Ricard [4, (2.8)], we have, for some unitary matrix U1 ,

| R+ iS |� 1
2
{(R+S)+U1(R+S)U∗

1}.

From this, we have, for some unitary matrices Uj , Vj , j = 2,3,4,

| A | � 1
2
{(R+S)+U1(R+S)U∗

1}

=
1
2

{
U2

[
R11 +S11 0

0 0

]
U∗

2 +V2

[
0 0
0 R22 +S22

]
V ∗

2

}
(by Lemma 2)

+
1
2
U1

{
U2

[
R11 +S11 0

0 0

]
U∗

2 +V2

[
0 0
0 R22 +S22

]
V ∗

2

}
U∗

1

� a
2

{
U3

[ |R11 + iS11| 0
0 0

]
U∗

3 +V3

[
0 0
0 |R22 + iS22|

]
V ∗

3

}
(by (4))

+
a
2
U1

{
U3

[ |R11 + iS11| 0
0 0

]
U∗

3 +V3

[
0 0
0 |R22 + iS22|

]
V ∗

3

}
U∗

1

=
a
2

{
U3

[ |A11| 0
0 0

]
U∗

3 +V3

[
0 0
0 |A22|

]
V ∗

3

}

+
a
2

{
U4

[ |A11| 0
0 0

]
U∗

4 +V4

[
0 0
0 |A22|

]
V ∗

4

}
.
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Since f is nondecreasing, for some unitary matrices Uj , Vj , j = 5,6,

‖ f (|A|)‖ �
∥∥∥ f

({
U3

[
a
2 |A11| 0

0 0

]
U∗

3 +V3

[
0 0
0 a

2 |A22|
]
V ∗

3

}

+
{
U4

[ a
2 |A11| 0

0 0

]
U∗

4 +V4

[
0 0
0 a

2 |A22|
]
V ∗

4

})∥∥∥
�

∥∥∥U5 f
([

a
2 |A11| 0

0 0

])
U∗

5 +V5 f
([

0 0
0 a

2 |A22|
])

V ∗
5 (by Lemma 3)

+U6 f
([ a

2 |A11| 0
0 0

])
U∗

6 +V6 f
([

0 0
0 a

2 |A22|
])

V ∗
6 ‖

� 2
∥∥∥ f

(a
2
|A11|

)∥∥∥+2
∥∥∥ f

(a
2
|A22|

)∥∥∥,

which leads to the desired result. �

REMARK 1. In the sector S′α , we get a apparently better result than in [19, Theo-
rem 3.1], when 1+ tan(α) <

√
2.

For the open problem proposed in section 4 of [19], we give a partial answer as
follows:

THEOREM 4. Let f : [0,∞) �−→ [0,∞) be a concave function and let A with
W (A) ⊆ S′α for α ∈ [0,π/2) be partitioned as in (2). Then,

‖ f (|A|)‖ � ‖ f (|A11|)‖+‖ f (|A22|)‖+‖ f (tan(α)|A11|)‖+‖ f (tan(α)|A22|)‖.

Proof. Here, we also suppose that f (0) = 0. Consider the Cartesian decomposi-
tion A = R+ iS , where R and S are positive semi-definite. The condition W (A) ⊆ S′α
tells that

S � tan(α)R. (6)

By Lemma 4, we obtain, for unitary matrices Uj , Vj , j = 1,2,3,

|A| = |R+ iS|� U1RU∗
1 +V1SV

∗
1

� U1RU∗
1 +V1(tan(α)R)V ∗

1 (by (6))

= U1U2

[
R11 0
0 0

]
U∗

2U∗
1 +U1V2

[
0 0
0 R22

]
V ∗

2 U∗
1 (by Lemma 2)

+V1U2

[
tan(α)R11 0

0 0

]
U∗

2V ∗
1 +V1V2

[
0 0
0 tan(α)R22

]
V ∗

2 V ∗
1

� U1U2U3

[ |R11 + iS11| 0
0 0

]
U∗

3U∗
2U∗

1 +U1V2V3

[
0 0
0 |R22 + iS22|

]
V ∗

3 V ∗
2 U∗

1

+V1U2U3

[
tan(α)|R11 + iS11| 0

0 0

]
U∗

3U∗
2V ∗

1 (by (1))

+V1V2V3

[
0 0
0 tan(α)|R22 + iS22|

]
V ∗

3 V ∗
2 V ∗

1 .
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It follows from Lemma 3 and the above inequality that

f (|A|) � U4U1U2U3 f
([ |R11 + iS11| 0

0 0

])
U∗

3U∗
2U∗

1U∗
4

+V4U1V2V3 f
([

0 0
0 |R22 + iS22|

])
V ∗

3 V ∗
2 U∗

1V ∗
4

+U5V1U2U3 f
([

tan(α)|R11 + iS11| 0
0 0

])
U∗

3U∗
2V ∗

1 U∗
5

+V5V1V2V3 f
([

0 0
0 tan(α)|R22 + iS22|

])
V ∗

3 V ∗
2 V ∗

1 V ∗
5 ,

where Uj , Vj , j = 4,5, are unitary matrices. Taking the unitarily invariant norm on
both sides of the above inequality can easily lead to the desired result. �

If we take f (t) = t p , 0 < p � 1, in Theorems 3 and 4, respectively, the following
two corollaries can easily be derived.

COROLLARY 1. Let 0 < p � 1 , and let W (A) ⊆ S′α partitioned as in (2) . Then,

‖|A|p‖ � ap

2p−1 (‖|A11|p‖+‖|A22|p‖) (7)

and

‖|A|p‖ � (1+(tan(α))p)(‖|A11|p‖+‖|A22|p‖), (8)

where a = min{1+ tan(α),
√

2} .

REMARK 2. The matrix A is accretive-dissipative if and only if W (e−
π
4 iA)⊆ S π

4
.

If we only take the upper sector into account, i. e. S′π
4
, from Theorem 4 we can derive

‖ f (|A|)‖ = 2(‖ f (|A11|)‖+‖ f (|A22|)‖). (9)

The bound in (9) is equal to that in Theorem 3.

REMARK 3. When α = 0, Theorem 4 reduces to Theorem 1.
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