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Abstract. We show that under suitable conditions on p , q , and summability, the system of
generalized trigonometric functions {Πd

i=1 sinp,q(niπp,qxi)}n1 ,...,nd is a basis for Lr((0,1)d) for
any r ∈ (1,∞) where d = 2 or d = 3 .

1. Introduction

It is a truth universally acknowledged, that Fourier series play a fundamental role
in different areas of mathematics, and then one must be in want to generalize it. The
focus of this paper is in the specific direction of generalizing the multi-dimensional
Fourier series of trigonometric functions to multi-dimensional Fourier series of gener-
alized trigonometric functions. The generalized trigonometric functions considered in
this study are obtained as eigenfunctions of the one-dimensional p -Laplacian and they
have a long history ([8]). They appear in classical studies of exact constants for integral
operators (see: [7], [9]), and also in Approximation Theory ([6]).

We start by recalling same basic terms. For a real number p ∈ (1,∞) and a
bounded domain Ω ⊂ Rn , the eigenvalue problem for the p -Laplacian

Δp(u) := div
(
|∇u|p−2 ∇u

)
is given by:

Δp(u) = −λ |u|p−2u. (1)

A sequence (s j) in a Banach space X is said to be a Schauder basis (or simply a
basis, if there is no room for confusion, as it will be the case in the sequel) for X if for
any x ∈ X there exists a unique sequence of scalars (x j) with x = ∑∞

1 x js j.
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2. Generalized trigonometric functions

For 1 < p,q < ∞ the generalized trigonometric functions are defined as follows:
Set

sin−1
p,q x :=

∫ x

0
(1− tq)−1/p dt, x ∈ (0,1) (2)

and

πp,q := 2
∫ 1

0
(1− xq)−

1
p dx. (3)

Then we extend sinp,q : [0,πp,q/2] → [0,1] symmetrically about the line x = πp,q
2 into

[πp,q
2 ,πp,q] , next as an odd function to the interval [−πp,q,0] and finally, periodically

from the interval [−πp,q,πp,q] to (−∞,∞) . In the sequel we set πp := πp,p and sinp(x)
:= sinp,p(x) for 1 < p < ∞ . Let us note that sinp(nπpx) , n ∈ N are eigenfunctions of
(1) on the interval (0,1) .

We observe in passing that natural extensions of the preceding definitions exist for
the full range (p,q) ∈ [1,∞]× [1,∞]. Since the end-point cases fall beyond the scope of
this work, we omit every mention to the case when either of the subindices p or q is 1
or ∞ . The reader is referred to [6] for more details in connection with this remark.

The aim of this work is to exhibit sufficient conditions on the subindexes p and q
which guarantee that for each r ∈ (1,∞) , the systems{

sinp,q(nπp,qx)sinp,q(mπp,qy)
}

(n,m)∈N2 (4)

and {
sinp,q(nπp,qx)sinp,q(mπp,qy)sinp,q(kπp,qz)

}
(n,m,k)∈N3 (5)

constitute a basis for Lr((0,1)2) and Lr((0,1)3) , respectively. The one dimensional
case has been extensively treated for example in [2] and [5], among others.

In what follows we denote a multi-index by k := (k1,k2, . . . ,kn)∈Nn and by k � l
we mean that ki � li for each i : 1 � i � n . It is well known that for f ∈ Lr((−1,1)n)∥∥∥∥∥ f − ∑

k�l
f̂ (k1, . . . ,kn)e2π ik jx j

∥∥∥∥∥
Lr((−1,1)n)

−→ 0 (6)

as min{l1, l2, . . . , ln} → ∞ , where, as is customary the ordinary Fourier coefficients of
f will be written as

f̂ (k1,k2, . . .kn) :=
∫

(−1,1)n
f (x1, . . . ,xn)Πn

j=1e
2π ik jx j dx1 . . .dxn.

Since any f ∈ Lr((0,1)n) can be uniquely extended to (−1,1)n as an odd function,
it is readily concluded that
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THEOREM 1. For r ∈ (1,∞) and f ∈ Lr((0,1)n) the sine Fourier partial sums Sl
converge in Lr -norm to f in the Pringsheim sense, i.e.:

‖ f −Sl‖Lr((0,1)n) −→ 0 as min{l1, l2, . . . , ln}→ ∞,

where l := (l1, l2, . . . , ln) ∈ Nn ,

Sl := ∑
k�l

f̂ (k1, . . . ,kn)Πn
j=1 sinπk jx j.

and

f̂ (k1,k2, . . .kn) := 2n
∫

(0,1)n
f (x1, . . . ,xn)Πn

j=1 sinπk jx j dx1 . . .dxn.

In the sequel we set x = (x1,x2, . . . ,xn) , x j ∈ R for j = 1,2, . . . ,n ; for k ∈ Nn we
define the function gk,p,q ∈ Lr((0,1)n) by

gk,p,q(x) = Πn
j=1 sinp,q πp,qk jx j; (7)

the corresponding Fourier coefficients are given by

ĝk,p,q(l1, . . . , ln) = 2n
∫

[0,1]n
Πn

j=1 sinp,q πp,qk jx j Πn
i=1 sinπ lixidx (8)

= 2nΠn
j=1

∫ 1

0
sinp,q πp,qk jx j sinπ l jx j dx j.

It is easy to see that because of the symmetry of sinp,q x about the vertical line x =
πp,q/2, one has

ĝ1,p,q(k) = 0

when k has at least one even component. The next lemma is a direct consequence of
this observation.

LEMMA 1.

ĝk,p,q(l1, . . . ln) = Πn
j=1

̂sinp,q (k jπp,qx j)(l j)

= Πn
j=1

̂sinp,q (πp,qx j) (l j/k j)

if l j/k j is odd ( j = 1, . . .n) and 0 otherwise.

For the sake of completeness we state the following lemma which follows imme-
diately from Proposition 4.1 in [5]:

LEMMA 2. Let 1 < p,q < ∞ and m odd:∣∣ f̂1,p,q(m)
∣∣� 4πp,q/(πm)2.

The next lemma is a direct consequence of Proposition 4.2 in [5].
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LEMMA 3. For 1 < p,q < ∞ , one has

ŝinp,qπp,q (·)(1) =: τp,q(1) � 8/π2.

DEFINITION 1. For a function f : [0,1]n → R we define its extension as the func-
tion f̃ : [0,∞)n → R as follows:

f̃ (x) = − f̃ (2k−x) for x ∈ Πn
j=1[k j,k j +1) k j ∈ Nn,

and f̃ ≡ f on [0,1)n.

It is a matter of routine to verify that given r ∈ (1,∞) , for each k ∈ Nn , the map

Mk : Lr((0,1)n) → Lr((0,1)n)

which is defined as Mk(g)(x) := g̃(xk) is well defined, linear and in fact, an isom-
etry (i.e. we have ‖Mk‖ = 1). Note that here xk = (x1,x2, . . .xn)(k1,k2, . . .kn) =
(x1k1,x2k2, . . .xnkn).

Let us set

τp,q(k) := 2n
∫

(0,1)n
Πn

j=1 sinp,q πp,qk jx j sinπk jx j dx (9)

= 2n
∫ 1

0
Πn

j=1 sinp,q πp,qk jx j sink jπx j dx j

= Πn
j=1τ◦p,q(k j),

where τ◦p,q(k j) =: 2
∫ 1
0 sinp,q πp,qx j sink jπx j dx j. Then the (linear) operator

T : Lr((0,1)n) −→ Lr((0,1)n)

defined by:

T (g) := ∑
k∈Nn

τp,q(k)Mk(g)

is well defined and bounded (just observe that ∑k∈Nn |τp,q(k)| < ∞).
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Next we point out that

‖T − id · τp,q(1)‖ � n[τ◦p,q(1)]1 ∑
k2>1,..,kn>1

Πn
2τ◦p,q(k j)

+ . . .

(
n
s

)
[τ◦p,q(1)]s ∑

ks>1,..,kn>1

Πn
j+1τ◦p,q(k j)

+ . . .+ ∑
k1>1,k2>1,..,kn>1

Πn
j=1τ◦p,q(k j)

=
n−1

∑
k=1

(
n
k

)
[τ◦p,q(1)]k

(
∞

∑
j=3

τ◦p,q( j)

)n−k

+

(
∞

∑
j=3

τ◦p,q( j)

)n

�
n−1

∑
k=1

(
n
k

)
[τ◦p,q(1)]k

(
4πp,q

π2

(
π2

8
−1

))n−k

+
(

4πp,q

π2

(
π2

8
−1

))n

�
(

4πp,q

π2

)n
[

n−1

∑
k=1

(
n
k

)(
π2

8
−1

)n−k

+
(

π2

8
−1

)n
]

(10)

=
(

4πp,q

π2

)n((π2

8

)n

−1

)
.

LEMMA 4. For 1 < q < q′ < ∞ , 1 < p < p′ < ∞ , the function

w(x) =
sin−1

p,q(x)

sin−1
p′q′(x)

is strictly increasing on (0,1) .

Proof. A simple calculation reveals that the sign of w′(x) at any point x ∈ (0,1)
is the same as that of

v(x) = sin−1
p′q′ x− (1− xq)1/p(1− xq′)−1/p′ sin−1

p,q x; (11)

in turn,

v′(x) = r(x)

[
q′

p′
xq′

1− xq′ −
q
p

xq

1− xq

]
, (12)

where r(x) < 0 on (0,1) . Setting

s(x) =
xq′(1− xq)
xq(1− xq′)

(13)

it is easy to verify that

s′(x) = xq+q′
(
(q′ −q)+qxq′ −q′xq

)
x−2q(1− xq′)−2. (14)
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Since 1 < q < q′ , the function

x → (q′ −q)+qxq′ −q′xq

is strictly decreasing on (0,1) , from which one obtains immediately the inequality,
valid for x ∈ (0,1) :

s′(x) > 0. (15)

Hence, s is increasing on (0,1) and one has there:

− q
p

<
q′

p′
s(x)− q

p
< q

(
1
p′

− 1
p

)
< 0 (16)

given that p < p′ . We conclude that v′ > 0 and thus v is increasing on (0,1) , which
implies that v(x) > 0 on (0,1) , which yields the lemma. �

COROLLARY 1. If 1 < p < p′ < ∞ , 1 < q < q′ < ∞ one has

(i)
sin−1

p,q x

πp,q
<

sin−1
p′q′ x

πp′,q′

for x ∈ (0,1) .

(ii) If x ∈ (0,1/2) , then
sinp′,q′ πp′,q′x < sinp,q πp,qx.

(iii) Uniformly on (0,1):

1 <

sin−1
p′ ,q′ x

πp′,q′
sin−1

p,q x
πp,q

<
πp,q

πp′,q′

Proof. Claim (i) follows immediately since

sin−1
p′,q′(1) =

πp′,q′

2

and
sin−1

p,q(1) =
πp,q

2
.

With regard to (ii) it is sufficient to compare the inverse functions(
sin−1

p′,q′(·)
πp′,q′

)−1

and (
sin−1

p,q(·)
πp,q

)−1

on the interval (0, 1
2 ) using the information provided by (i) . Claim (iii) follows from

(i) . �
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COROLLARY 2. For 1 < p < 2 , 1 < q < 2 ,

τp,q(1) > 1.

Proof. By virtue of (9) and Corollary 1 (ii) , one has

τp,q(1) = Πn
j=1τp,q(1)τ◦p,q(1) =

(
τ◦p,q(1)

)n
=
(

2
∫ 1

0
sinp,q πp,qt sinπt dt

)n

>

(
2
∫ 1

0
sin2 πt dt

)n

= 1. �

COROLLARY 3. The system{
sinpq k1πpqx1 sinpq k2πpqx2 . . . sinpq knπpqxn, (k1,k2, . . .kn) ∈ Nn}

is a basis in Lr((0,1)n) if 1 < p < 2 , 1 < q < 2 and

πp,q <
2π2

(π2n−8n)1/n

or if either p � 2 or q � 2 , and

πp,q <
16

(π2n−8n)1/n
.

Proof. Both claims follow, respectively, from Lemma 3, Corollary 2, formula (10)
and the standard functional-analytic argument that if K is an operator with norm strictly
less than one on a Banach space X , then I +K is invertible on X . �

COROLLARY 4. In particular, if p0 and p1 are defined by the equalities

πp0 =
2π2

(π4−82)1/2
(p0 ≈ 1.85) (17)

πp1 =
16

(π4−82)1/2
(p1 ≈ 2.33) (18)

then

(i) for p = q ∈ (p0,2)∪ (p1,∞) , the system

{sinp(mπpx)sinp(nπpy)}(m,n)∈N2

constitutes a basis for Lr((0,1)2) , r ∈ (1,∞) .
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(ii) For p = q, r ∈ (1,∞) the system

{sinp(mπ px)sinp(nπpy)sinp(kπpx)}(m,n,k)∈N3

is a basis in Lr((0,1)3) for p > p2 , where p2 ≈ 6.5 is given by

πp2 =
16

(π6−83)1/3
. (19)

REMARK 1. Notice that

lim
n→∞

2π2

(π2n−8n)1/n
= 2.

Therefore the highest dimension n for which a conclusion can be reached using Corol-
lary 3 is n = 3.

We now set about to improving Corollary 4 (i). In fact, we will establish that the
basis property holds for any p∈ (p0,∞) . We start with the following simple observation
that follows from the right-hand-side inequality in Corollary 1 (iii): For 2 < p one has:

sin−1
p x < sin−1 x (20)

on (0,1) . Since πp < π , (20) forces the following relation between the inverse func-
tions, on the interval (0,

πp
2 ) :

sinx < sinp x, (21)

which in turn implies the following estimate on (0,1/2) :

sinp πpx > sinπpx. (22)

In conclusion,

τ(p) = 4
∫ 1/2

0
sinp πpxsinπxdx > 4

∫ 1/2

0
sinπpxsinπxdx (23)

= 2

(
1

π −πp
sin

π −πp

2
− 1

π + πp
sin

π + πp

2

)
=

4πp cos πp
2

(π + πp)(π −πp)
= γ(πp).

Since

γ(x) =
4xcos x

2

(π + x)(π − x)

is increasing in (π/2,π) , πp increases to π as p decreases to 2 and

lim
p→2+

γ(πp) = 1,
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it is immediate that if for any δ > 0 and πp∗ > π/2 it held that

γ(πp∗) > 1− δ

it would follow that

γ(πp) > 1− δ

for any p with 2 � p < p∗ . On the other hand,

γ(π2.33) = γ
(

2π
2.33sin π

2.33

)
>

93
100

>
8

π2

and which implies

γ(πp) = τ(p) >
93
100

for p ∈ [2,2.33] . Since the inequality

(
4πp

π2

)2
((

π2

8

)2

−1

)
< 0.932 (24)

is satisfied whenever πp < 3.17, i.e, whenever p < 2.33, one has the following result:

LEMMA 5. The system (4) is a basis for Lr((0,1)2) for p = q ∈ (p0,∞) .

THEOREM 2. For r ∈ (1,∞) , the system (4) is a basis for Lr((0,1)2) if (p,q) ∈
(p0,2)× (p0,2)∪ (p1,∞)× (p1,∞).

Proof. If p1 � p,q < ∞ and s = min{p,q} , then it is clear from Corollary 3 and
since πpq decreases when one of the subindexes is fixed and the remaing one increases,
that

πp,q < πs,s <
16√

π4−64
.

Hence the the basis property holds for (p,q) . Likewise, if p∈ (p0,2) , q∈ (p0,2) , then

πp,q < πmin{p,q},min{p,q} <
2π2

√
π4−64

,

which in view of Corollary 3 completes the proof. �

Invoking Corollary 4 (ii), a similar reasoning yield the following:

THEOREM 3. If n = 3 , r ∈ (1,∞) and p2 is defined as in (19), the system (5) is a
basis for Lr((0,1)3) when (p,q) ∈ (p2,∞)× (p2,∞).
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3. Concluding remarks

The two-dimensional generalized Fourier system opens the way for the use of
non-orthogonal systems in the treatment of signal processing, which conceivably could
be a valuable tool in studying image processing in the case of discontinuous gradient
(see [1], [3], [4]), due to the fact that generalized trigonometric functions have a lesser
degree of smoothness than the usual trigonometric functions ( p = q = 2). In fact, the
smoothness of generalized trigonometric function can in principle, be controlled by a
suitable variation of the parameters p and q .
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[9] E. SCHMIDT, Über die Ungleichung, welche die Integrale über eine Potenz einer Funktion und über

eine andere Potenz ihrer Ableitung verbindet, Math Ann. 117 (1940), 301–326.

(Received April 14, 2016) Jan Lang
Ohio State University

Department of Math. Sciences
231 West 18th Avenue, Columbus, OH 43210-1174, USA

e-mail: lang@math.osu.edu

Osvaldo Méndez
University of Texas at El Paso
Department of Math. Sciences

500 W University Ave., El Paso, TX, 79968, USA
e-mail: osmendez@utep.edu

Behzad Rouhani
University of Texas at El Paso
Department of Math. Sciences

500 W University Ave., El Paso, TX, 79968, USA
e-mail: behzad@utep.edu

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


